首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The allele scd 1 is a recessive chromosomal mutation in Saccharomyces cerevisiae that eliminates Cu,Zn superoxide dismutase (SOD-1) activity. SOD-1- strains are unable to grow in 100% O2 in rich medium and are methionine and lysine auxotrophic when grown in air (Bilinski, T., Krawiec, Z., Liczmanski, A., and Litwinska, J. (1985) Biochem. Biophys. Res. Commun. 130, 533-539). In this report, scd1 was genetically mapped to the right arm of chromosome X, 11 centimorgans proximal to cdc11. The gene for SOD-1 (SOD1) was physically mapped by Southern blot to restriction fragments containing CDC11. scd1 failed to complement a complete deletion of SOD1. Thus, scd1 maps to the SOD1 locus and is designated sod1-1. The molecular basis for the lack of SOD-1 activity in sodl-1 carrying strains has also been established. The size and amount of SOD-1 mRNA in the mutant were essentially the same as in wild type cells. Western blot analysis showed that the SOD-1 dimer and 16-kilodalton subunit that co-migrated electrophoretically with wild type yeast SOD-1 were abundant in mutant cell extracts. However, two additional SOD-1 immunoreactive polypeptides were detected in these extracts in both denaturing and nondenaturing gels. None of the SOD-1 immunoreactive species in the mutant extracts exhibited superoxide dismutase activity. Transformants of the mutant strain carrying episomal, wild type SOD1 expressed wild type, active SOD-1 protein, indicating that the mutant allele had no discernible effect on the correct synthesis and activation of apoSOD-1. Size exclusion chromatography of soluble cell extracts derived from wild type and SOD1 deletion strains identified a copper binding peak that corresponded to SOD-1. This copper-binding fraction was absent in cell extracts from the sod1-1-containing strain although Western blot analysis of the corresponding chromatographic fractions showed that SOD-1 polypeptide was present in these fractions. Sequence data derived from the cloned genes showed that sod1-1 differed from SOD1 only in the adjacent 5'-noncoding region. The biochemical data indicate that this genetic alteration results in the synthesis of a collection of SOD-1 polypeptides that fail to bind copper and may also fail to completely self-associate. Both phenotypes could be due to the inability of these polypeptides to adopt the native SOD-1 conformation.  相似文献   

2.
The specific activities of zinc/copper (Zn/Cu)-superoxide dismutase (SOD-1) and manganese (Mn)-superoxide dismutase (SOD-2) were assayed in young passage 5 fibroblasts and in serially subcultured cells that were characterized as senescent at passages 15-35. SOD-1 and SOD-2 activities did not significantly change in senescent and young cells cultured in either routine medium [minimum essential medium 1 (MEM1)], or in Zn, Cu and Mn supplemented medium (MEM2) containing normal human plasma levels of the cations. SOD-1 and SOD-2 activities, however, underwent parallel progressive significant activity increases in senescent passage 20 and 25 cells, which peaked in value in passage 30 and 35 cells subcultured in supplemented medium (MEM3) containing triple human plasma levels of the cations. Concurrently, superoxide radical generation rates underwent progressive significant increases in senescent passage 15-25 cells, which peaked in value in passage 30 and 35 cells subcultured in MEM1 or MEM2. These rates, however, were significantly lowered in senescent cells subcultured in MEM3. We infer that it was only possible to significantly stimulate SOD-1 and SOD-2 activities in senescent MEM3 cultured cells enabling them to combat oxidative stress.  相似文献   

3.
Oxygen enhanced the bactericidal activity of rifamycin SV to Escherichia coli K12. Anaerobically grown cells, which had a low level of superoxide dismutase, were more susceptible to the bactericidal activity than aerobically grown cells, which contained a high level of superoxide dismutase. Oxygen also enhanced the inhibition of RNA polymerase activity of rifamycin SV, when Mn2+ was used as a cofactor. Rifamycin S was reduced to rifamycin SV by NADPH catalyzed by cell-free extracts of Escherichia coli K12. These results indicate that the inhibition of bacterial growth by rifamycin SV is due to the production of active species of oxygen resulting from the oxidation-reduction cycle of rifamycin SV in the cells. The aerobic oxidation of rifamycin SV to rifamycin S was induced by metal ions, such as Mn2+, Cu2+, and Co2+. The most effective metal ion was Mn2+. In the presence of Mn2+, accompanying the consumption of 1 mol of oxygen and the oxidation of 1 mol of rifamycin SV, 1 mol of hydrogen peroxide and 1 mol of rifamycin S were formed. Superoxide was generated during the autoxidation of rifamycin SV. Superoxide dismutase inhibited the formation of rifamycin S, but scavengers for hydrogen peroxide and the hydroxyl radical did not affect the oxidation. A mechanism of Mn2+-catalyzed oxidation of rifamycin SV is proposed and its relation to bactericidal activity is discussed.  相似文献   

4.
Oxidants induce phosphorylation of ribosomal protein S6   总被引:1,自引:0,他引:1  
We have investigated the phosphorylation of the ribosomal S6 protein which may be on the pathway of mitogenic stimulation in response to oxidants. Mouse epidermal cells JB6 (clone 41) were exposed to active oxygen generated extracellularly by glucose/glucose oxidase (producing H2O2) or xanthine oxidase (producing H2O2 plus superoxide) or active oxygen produced intracellularly by the metabolism of menadione (producing mostly superoxide). All three sources of active oxygen induced rapidly a protein kinase activity which phosphorylated S6 in cellular extracts prepared in the presence of the phosphatase inhibitor beta-glycerophosphate. Maximal activity was reached within 15 min of exposure, and phosphorylation occurred specifically at serine residues. Strong activation of the protein kinase activity was also observed by diamide which selectively oxidizes SH functions. The following observations characterize the reaction: 1) Extracellular addition of catalase but not Cu,Zn-superoxide dismutase was inhibitory, implicating H2O2 rather than superoxide as the active species. 2) Exposure of JB6 cells to reagent H2O2 or H2O2 released by glucose/glucose oxidase resulted in a measurable increase in intracellular free Ca2+. 3) The intracellular Ca2+ complexer quin 2 suppressed the reaction. 4) The calmodulin antagonist trifluoperazine prevented the activation of the protein kinase. 5) Exposure of cells to Mn2+ and La3+, which stimulate calmodulin-dependent activities, potently increased the S6 kinase activity of the cell extracts. 6) Desalted extracts strictly required the addition of Mg2+ and their activity was inhibited by Mn2+. In contrast, the phosphorylation of a 95-kDa protein was strongly stimulated by Mn2+. 7) For several agonists, i.e. active oxygen, phorbol 12-myristate 13-acetate, and serum, tryptic peptide analysis yielded the same phosphopeptides, suggesting that a common S6 kinase is involved in these reactions. From these data we propose that oxidants induce an increase in intracellular free Ca2+ which activates a Ca2+/calmodulin-dependent protein kinase and, as a consequence, an S6 kinase.  相似文献   

5.
Dopamine (DA) is rapidly oxidized by Mn3(+)-pyrophosphate to its cyclized o-quinone (cDAoQ), a reaction which can be prevented by NADH, reduced glutathione (GSH) or ascorbic acid. The oxidation of DA by Mn3+, which appears to be irreversible, results in a decrease in the level of DA, but not in a formation of reactive oxygen species, since oxygen is neither consumed nor required in this reaction. The formation of cDAoQ can initiate the generation of superoxide radicals (O2-.) by reduction-oxidation cycling, i.e. one-electron reduction of the quinone by various NADH- or NADPH-dependent flavoproteins to the semiquinone (QH.), which is readily reoxidized by O2 with the concomitant formation of O2-.. This mechanism is believed to underly the cytotoxicity of many quinones. Two-electron reduction of cDAoQ to the hydroquinone can be catalyzed by the flavoprotein DT diaphorase (NAD(P)H:quinone oxidoreductase). This enzyme efficiently maintains DA quinone in its fully reduced state, although some reoxidation of the hydroquinone (QH2) is observed (QH2 + O2----QH. + O2-. + H+; QH. + O2----Q + O2-.). In the presence of Mn3+, generated from Mn2+ by O2-. (Mn2+ + 2H+ + O2-.----Mn3+ + H2O2) formed during the autoxidation of DA hydroquinone, the rate of autoxidation is increased dramatically as is the formation of H2O2. Furthermore, cDAoQ is no longer fully reduced and the steady-state ratio between the hydroquinone and the quinone is dependent on the amount of DT diaphorase present. The generation of Mn3+ is inhibited by superoxide dismutase (SOD), which catalyzes the disproportionation of O2-. to H2O2 and O2. It is noteworthy that addition of SOD does not only result in a decrease in the amount of H2O2 formed during the regeneration of Mn3+, but, in fact, prevents H2O2 formation. Furthermore, in the presence of this enzyme the consumption of O2 is low, as is the oxidation of NADH, due to autoxidation of the hydroquinone, and the cyclized DA o-quinone is found to be fully reduced. These observations can be explained by the newly-discovered role of SOD as a superoxide:semiquinone (QH.) oxidoreductase catalyzing the following reaction: O2-. + QH. + 2H+----QH2 + O2. Thus, the combination of DT diaphorase and SOD is an efficient system for maintaining cDAoQ in its fully reduced state, a prerequisite for detoxication of the quinone by conjugation with sulfate or glucuronic acid. In addition, only minute amounts of reactive oxygen species will be formed, i.e. by the generation of O2-., which through disproportionation to H2O2 and further reduction by ferrous ions can be converted to the hydroxyl radical (OH.). Absence or low levels of these enzymes may create an oxidative stress on the cell and thereby initiate events leading to cell death.  相似文献   

6.
Superoxide dismutase activity in crude or partially purified cell extracts from several species and strains of obligate anaerobe Bacteroides was inhibited instantaneously by NaN3 and was inactivated rapidly upon incubation with H2O2. The extent of NaN3 inhibition varied from 41 to 93%, and the half-life of the enzymatic activity in 5 mM H2O2 ranged from 1.2 to 6.1 min, depending upon the organism tests. When grown in a defined medium containing 59Fe, Bacteroides fragilis (VPI 2393) incorporated radiolabel into a 40,000-molecular-weight NaN3- and H2O2-sensitive superoxide dismutase but did not incorporate 54Mn into that protein under similar growth conditions. The anaerobe Actinomyces naeslundii (VPI 9985) incorporated 54Mn but not 59Fe into a NaN3-insensitive and H2O2-resistant superoxide dismutase. The apparent molecular weight of the superoxide dismutase from this and several other Actinomyces spp. was estimated to be 110,000 to 140,000. Comparison of these data with studies of homogeneous metallosuperoxide dismutases suggests that the Bacteroides spp. studied contain a ferrisuperoxide dismutase, whereas Actinomyces spp. contain a managanisuperoxide dismutase.  相似文献   

7.
Mutant strains of the yeast Saccharomyces cerevisiae which lack functional Cu,Zn superoxide dismutase (SOD-1) do not grow aerobically unless supplemented with methionine. The molecular basis of this O2-dependent auxotrophy in one of the mutants, Dscd1-1C, has been investigated. Sulfate supported anaerobic but not aerobic mutant growth. On the other hand, cysteine and homocysteine supported aerobic growth while serine, O-acetylserine, and homoserine did not, indicating that the interconversion of cysteine and methionine (and homocysteine) was not impaired. Thiosulfate (S2O3(2-] and sulfide (S2-) also supported aerobic growth; the activities of thiosulfate reductase and sulfhydrylase in the aerobic mutant strain were at wild-type levels. Although the levels of SO4(2-) and adenosine-5'-sulfate (the first intermediate in the SO4(2-) assimilation pathway) were elevated in the aerobically incubated mutant strain, this condition could be attributed to a decrease in protein synthesis caused by the de facto sulfur starvation and not to a block in the pathway. Therefore, the activation of SO4(2-) (to form 3'-phosphoadenosine-5'-phosphosulfate) appeared to be O2 tolerant. Sulfite reductase activity and substrate concentrations [( NADPH] and [SO3(2-)]) were not significantly different in aerobically grown mutant cultures and anaerobic cultures, indicating that SOD-1- mutant strains could reductively assimilate sulfur oxides. However, the mutant strain exhibited an O2-dependent sensitivity to SO3(2-) concentrations of less than 50 microM not exhibited by any SOD-1+ strain or by SOD-1- strains supplemented with a cytosolic O2(-)-scavenging activity. This result suggests that the aerobic reductive assimilation of SO4(2-) at the level of SO3(2-) may generate a cytotoxic compound(s) which persists in SOD-(1-) yeast strains.  相似文献   

8.
T R Cassity  B J Kolodziej 《Microbios》1984,41(160):117-125
A study was undertaken to determine if the capsule produced by Bacillus megaterium ATCC 19213 was capable of binding metallic ions. For non-toxic metallic ions, this was accomplished by determining the relative concentrations of Fe2+, Ca2+, Zn2+, Mg2+, and Mn2+ removed from a chemically defined medium by the normally capsulated parent strain and two mutants with much smaller capsules. For toxic metals, the rates of respiration of the parent strain and a small capsule mutant in the presence of Cu2+, Hg2+, and Ag1+ were compared. It was found that the parent strain accumulated more Ca2+, Mg2+, and Mn2+. Accumulation of Fe2+ and Zn2+ was similar for the parent strain and the small capsule mutants. Respiration of the parent strain was less inhibited by Cu2+, Hg2+, and Ag1+, indicating that these metals are also bound to the capsule.  相似文献   

9.
Previously, we showed that hydroethidine (HE) reacts with intracellular superoxide radical anion (O2-*) to form a unique fluorescent marker product, 2-hydroxyethidium cation (2-OH-E+), that was not formed from HE reaction with other biologically relevant oxidants (H. Zhao et al. Proc. Natl. Acad. Sci. USA102:5727-5732; 2005). Here we rigorously assessed the confounding effects of light, sonication, and Mn(III)TBAP on 2-OH-E+, the HE/O2-* reaction product. Results indicate that continuous exposure to visible light induced photo-oxidation of HE to ethidium cation (E+) by a 2-OH-E+ -dependent mechanism. Treatment of HE with ultrasound, a frequently used technique to lyse cell membranes, induced 2-OH-E+ from in situ generation of O2-*. Mn(III)TBAP, a cell-permeable metal-porphyrin complex used as a catalytic antioxidant, reacts with HE to form E+. This finding provides an alternative interpretation for Mn(III)TBAP effects during the HE/O2-* reaction. In order to correctly interpret the HE reaction with O2-* in cells, it is therefore imperative that HE and HE-derived products be measured by HPLC. A new and improved HPLC-electrochemical (HPLC-EC) detection has been developed for analysis of intracellular O2-*. The HPLC-EC method is at least 10 times more sensitive than the HPLC-fluorescence technique for detecting O2-* in cells.  相似文献   

10.
To examine the role of divalent cations in the generation of superoxide anion (O2-) by the NADPH oxidase system of phagocytic cells, membrane-rich fractions were prepared from human neutrophils and monocytes. O2- generation by the fractions in sucrose was enhanced by addition of Ca2+ or Mg2+. EDTA inhibited most of the O2- generation; Ca2+ or Mg2+ reversed the inhibition. Zn2+, Mn2+, or Cu2+ completely inhibited O2- production. Neutrophil membrane fraction solubilized with Triton X-100, then passed through a chelating column, lost 80% of its oxidase activity; the loss could be reversed by addition of Ca2+ or Mg2+. Addition of 0.3 mM Ca2+ or Mg2+ protected against thermal instability of the enzyme. Kinetic analysis of the neutrophil oxidase activity as a function of NADPH and Ca2+ or Mg2+ concentrations showed that cation did not interact with NADPH in solution or affect the binding of NADPH to the oxidase; rather, cation bound directly to the oxidase, or to some associated regulatory component, to activate the enzyme. For the neutrophil oxidase, the Km for NADPH was 51 +/- 6 (S.D.) microM. Hyperbolic saturation was observed with Ca2+ and Mg2+, and the Kd values were 1.9 +/- 0.3 and 2.9 +/- 0.3 microM, respectively, suggesting that the oxidase, or some associated component, has a relatively high-affinity binding site for Ca2+ and Mg2+.  相似文献   

11.
The large depot of phosphoglyceric acid (PGA) which is accumulated within spores of Bacillus megaterium is greater than 99% 3-phosphoglyceric acid (3-PGA). The 3-PGA depot is stable in forespores and dormant spores, but is utilized rapidly during spore germination. When spores were germinated in KBr plus NaF, the PGA depot was not utilized, but 13% of the 3-PGA was converted to 2-PGA. These data suggest phosphoglycerate phosphomutase as the enzyme which is regulated to allow 3-PGA accumulation during sporulation. Young isolated forespores, in which 3-PGA was normally stable, utilized their 3-PGA rapidly when incubated with Mn2+ plus the divalent cation ionophore X-537A; Mn2+ or ionophore alone or Mg2+ or Ca2+ plus ionophore was without effect. Young forespores contained significant amounts of Mn2+. However, forespore Mn2+ exchanged slowly with exogenous Mn2+ and was removed poorly by toluene treatment. This suggests that much of the forespore Mn2+ is tightly bound to some forespore component. Since phosphoglycerate phosphomutase from B. megaterium has an absolute and specific requirement for Mn2+, these data suggest that the activity of this enzyme in vivo may be regulated to a large degree by the level of free Mn2+. Indeed, the activity of this enzyme in forespore or dormant spore extracts was stimulated greater than 25-fold by Mn2+, whereas comparable extracts from cells or germinated spores were stimulated only two- to fourfold.  相似文献   

12.
Formation of H2O2 during the oxidation of three lignin-derived hydroquinones by the ligninolytic versatile peroxidase (VP), produced by the white-rot fungus Pleurotus eryngii, was investigated. VP can oxidize a wide variety of phenols, including hydroquinones, either directly in a manner similar to horseradish peroxidase (HRP), or indirectly through Mn3+ formed from Mn2+ oxidation, in a manner similar to manganese peroxidase (MnP). From several possible buffers (all pH 5), tartrate buffer was selected to study the oxidation of hydroquinones as it did not support the Mn2+-mediated activity of VP in the absence of exogenous H2O2 (unlike glyoxylate and oxalate buffers). In the absence of Mn2+, efficient hydroquinone oxidation by VP was dependent on exogenous H2O2. Under these conditions, semiquinone radicals produced by VP autoxidized to a certain extent producing superoxide anion radical (O2*-) that spontaneously dismutated to H2O2 and O2. The use of this peroxide by VP produced quinone in an amount greater than equimolar to the initial H2O2 (a quinone/H2O2 molar ratio of 1 was only observed under anaerobic conditions). In the presence of Mn2+, exogenous H2O2 was not required for complete oxidation of hydroquinone by VP. Reaction blanks lacking VP revealed H2O2 production due to a slow conversion of hydroquinone into semiquinone radicals (probably via autooxidation catalysed by trace amounts of free metal ions), followed by O2*- production through semiquinone autooxidation and O2*- reduction by Mn2+. This peroxide was used by VP to oxidize hydroquinone that was mainly carried out through Mn2+ oxidation. By comparing the activity of VP to that of MnP and HRP, it was found that the ability of VP and MnP to oxidize Mn2+ greatly increased hydroquinone oxidation efficiency.  相似文献   

13.
The role of Leu 332 in ribulose-1,5-bisphosphate carboxylase/oxygenase from the cyanobacterium Anacystis nidulans was investigated by site-directed mutagenesis. Substitutions of this residue with Met, Ile, Val, Thr, or Ala decreased the CO2/O2 specificity factor by as much as 67% and 96% for the Ile mutant in the presence of Mg2+ and Mn2+, respectively. For the Met, Ile, and Ala mutants in the presence of Mg2+, no loss of oxygenase activity was observed despite the loss of greater than 65% of the carboxylase activity relative to the wild-type enzyme. In the presence of Mn2+, carboxylase activities for mutant enzymes were reduced to approximately the same degree as was observed in the presence of Mg2+, although oxygenase activities were also reduced to similar extents as carboxylase activities. Only minor changes in Km(RuBP) were observed for all mutants in the presence of Mg2+ relative to the wild-type enzyme, indicating that Leu 332 does not function in RuBP binding. These results suggest that in the presence of Mg2+, Leu 332 contributes to the stabilization of the transition state for the carboxylase reaction, and demonstrate that it is possible to affect only one of the activities of this bifunctional enzyme.  相似文献   

14.
M H Park  B B Wong    J E Lusk 《Journal of bacteriology》1976,126(3):1096-1103
Mutants in three genes affecting two Mg2+ transport systems are described. System I, for which Co2+, Mn2+, and Mg2+ are substrates, is inactive in corA mutants corB mutants express system I after growth on high (10 mM) Mg2+ but not low (0.1 mM) Mg2+. Both corA and corB mutants are resistant to Co2+ or Mn2+. corA mutants are sensitive to CA2+. Transport system II is specific for Mg2+ and is repressed by growth on 10 mM Mg2+. mgt mutations inactivate system II. Growth on mgt mutants in normal except on very low (1 muM) concentrations of Mg2+, corA mgt strains exhibit no high-affinity, energy-dependent transport of Mg2+ and require 10 mM Mg2+ for optimal growth. The three genes are not linked. The corA locus is contransducible with ilv at 75 min, corB is cotransducible with pyrB at 85 min, and mgt is cotransducible with malB and mel at 81 min on the genetic map.  相似文献   

15.
Acid phosphatase (APase) activity of the yeast Yarrowia lipolytica increased with increasing Cu2+ concentrations in the medium. Furthermore, the enzyme in soluble form was stimulated in vitro by Cu2+, Co2+, Ni2+, Mn2+ and Mg2+ and inhibited by Ag+ and Cd2+. The most effective ion was Cu2+, especially for the enzyme from cultures in medium containing Cu2+, whereas APase activity in wall-bound fragments was only slightly activated by Cu2+. The content of cellular phosphate involving polyphosphate was decreased by adding Cu2+, regardless of whether or not the medium was rich in inorganic phosphate. Overproduction of the enzyme stimulated by Cu2+ might depend on derepression of the gene encoding the APase isozyme.  相似文献   

16.
The catalytic activity of phosphoenolpyruvate carboxykinase in rat liver cytosol is stimulated by incubating with Fe2+, Mn2+, Co2+, and Cd2+. When purified, the enzyme no longer responds to Fe2+, Co2+, or Cd2+ but retains a response to Mn2+. Low concentrations of SO4(2-) in the incubation medium with enzyme and divalent transition metal allow stimulation by Fe2+ and Co2+ and enhance the response to Mn2+. Under identical conditions, orthophosphate with Fe2+ is a potent inhibitor of the enzyme (half-maximal inhibition at 50 muM). A thiol is required in the incubation medium for the effects of Fe2+ plus sulfate or orthophosphate to be expressed. The magnitude of these effects depends on the thiol concentration. Dithiothreitol is more effective than GSH and activation by sulfate plus Fe2+ appears to require the reduced form of dithiothreitol. Sulfate ion is not considered to be the physiological Fe2+-activator of P-enolpyruvate carboxykinase in rat liver cytosol, as this function is fulfilled by a newly discovered liver protein. Knowledge concerning the interaction of Fe2+ and sulfate with the enzyme may be useful in examining their interaction between the enzyme, ferrous ion, and this activator protein.  相似文献   

17.
Radical scavenging activities of flavonoids rutin, taxifolin, (-)-epicatechin, luteolin, and their complexes with transition metal (Fe2+, Fe3+, and Cu2+) towards superoxide were determined using illumination of riboflavin as source and NBT as detector of O*2-. The scavenger potencies of flavonoid metal complexes were significantly higher than those of the parent flavonoids. To elucidate the mechanism of this phenomenon, the rates of superoxide-dependent oxidation of flavonoids and their metal complexes in photochemical system with riboflavin were examined. It was found for the first time that flavonoids bound to metal ions were much less subjected to oxidation compared with those of free compounds. The findings directly demonstrate superoxide scavenging activity of metal ions in complexes with flavonoids and support earlier suggestions that flavonoid metal complexes may exhibit superoxide dismuting activity.  相似文献   

18.
The source of superoxide anion radical (O2-.) in aerobic mixtures consisting of NAD[P]H, 5-methylphenazinium methyl sulfate (or its 1-methoxy derivative) and tetrazolium salt was investigated using superoxide dismutase (SOD), Mn(II), ferricytochrome-C, and epinephrine as probes. NAD[P]H + phenazine + O2 was found to reduce nitroblue tetrazolium, iodonitrotetrazolium, and thiazolyl blue in a manner sensitive to agents that dismutase O2-., viz., SOD and Mn(II). It also mediated the reduction of ferricytochrome-C, and augmented the autooxidation of epinephrine to the adrenochrome, without a tetrazolium salt present in the medium. The autooxidation of epinephrine, but not the reduction of ferricytochrome-C, was found to be sensitive to SOD. Nitroblue tetrazolium, either singly or in combination with SOD, did not stimulate the reduction of ferricytochrome-C. The oxidation of NADH, mediated by a catalytically low concentration of phenazine(+O2), was augmented two-fold by SOD. These observations are consistent with, and lend support to, a scheme of redox events (Scheme-3) wherein it is proposed that the source of O2-. in the NAD[P]H + phenazine + tetrazolium(+O2) system is the reduced phenazine, that the tetrazoinyl radical (a one-electron reduction product of tetrazolium) may not reduce O2 to O2-., that the redox reaction between semiquinone radicals of phenazine and O2 is reversible, and that the disproportionation of semiquinone radicals constitutes an important rate-limiting reaction in the expression of phenazine redox couple.  相似文献   

19.
A F Miller  G W Brudvig 《Biochemistry》1989,28(20):8181-8190
The Mn complex of photosystem II and O2-evolution activity are reconstituted in Mn-depleted photosystem II membranes in a light-dependent process called photoactivation. Recovery of O2-evolution activity requires both Mn2+ and Ca2+ in the photoactivation medium. The Mn2+ and Ca2+ dependences of both the effective rate constant and yield of photoactivation have been determined. A comparison of these data with the predictions of mathematical models for photoactivation leads to the conclusion that photoactivation occurs in two stages. The first stage, photoligation of Mn, requires light and depends primarily on Mn2+. The second stage, binding of Ca2+, is required for expression of O2-evolution activity. This two-stage model affords an excellent fit to the data and provides dissociation constants and binding stoichiometries for Ca2+ and Mn2+. We conclude that one Mn2+ ion is bound and photooxidized in the rate-determining step(s) of photoactivation. On the basis of these results and data already in the literature, the molecular details of the elementary steps in photoactivation are discussed and a mechanism of photoactivation is proposed.  相似文献   

20.
Wheat germ phosphoglycerate mutase: evidence for a metalloenzyme   总被引:1,自引:0,他引:1  
Wheat germ phosphoglycerate mutase, exposed to 3.4 M guanidinium chloride at 22 degrees C and pH 7.8, slowly undergoes time-dependent inactivation which can be fully reversed by adding excess Co2+ or Mn2+ to a 50-fold dilution of the denaturing medium. Titration of the denatured enzyme with either Co2+ or Mn2+ shows that wheat germ mutase preferentially binds Co2+. Assuming 1:1 complexation between metal atom and protein, the apparent dissociation constants (Kd) for E Co2+ and E Mn2+ at 22 degrees C and pH 8.7 are approximately 1.06 and 1.84, respectively. Other metal atoms (e.g., Cr2+, Cu2+, Fe2+, Fe3+, Mg2+, and Ni2+) have no effect in restoring the apoenzyme's catalytic activity. At low concentrations (0.11-0.23 mM) Zn2+ partially restores activity, but promotes protein precipitation at elevated concentrations. Evidence suggests that all bisphosphoglycerate-independent phosphoglycerate mutases require either an intra- or an extramolecular metal atom in order to function. Attempts to characterize wheat germ mutase as a glycoprotein have yielded negative results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号