首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomarkers are molecular indicators of a biological status, and as biochemical species can be assayed to evaluate the presence of cancer and therapeutic interventions. Through a variety of mechanisms cancer cells provide the biomarker material for their own detection. Biomarkers may be detectable in the blood, other body fluids, or tissues. The expectation is that the level of an informative biomarker is related to the specific type of disease present in the body. Biomarkers have potential both as diagnostic indicators and monitors of the effectiveness of clinical interventions. Biomarkers are also able to stratify cancer patients to the most appropriate treatment. Effective biomarkers for the early detection of cancer should provide a patient with a better outcome which in turn will translate into more efficient delivery of healthcare. Technologies for the early detection of cancer have resulted in reductions in disease-associated mortalities from cancers that are otherwise deadly if allowed to progress. Such screening technologies have proven that early detection will decrease the morbidity and mortality from cancer. An emerging theme in biomarker research is the expectation that panels of biomarker analytes rather than single markers will be needed to have sufficient sensitivity and specificity for the presymptomatic detection of cancer. Biomarkers may provide prognostic information of disease enabling interventions using targeted therapeutic agents as well as course-corrections in cancer treatment. Novel genomic, proteomic and metabolomic technologies are being used to discover and validate tumor biomarkers individually and in panels.  相似文献   

2.
Early detection of breast cancer reduces the suffering and cost to society associated with the disease. A sensitive assay to identify biomarkers that can accurately diagnose the onset of breast cancer using non-invasively collected clinical specimens is ideal for early detection. The earlier and more accurate the diagnostic biomarker can predict disease onset, the more valuable it becomes. Here, a brief review of existing and emerging approaches for breast cancer biomarker identification and analysis is presented. Those biomarkers found in biological fluids, blood in particular, apparently hold the best promise for fast development of screening assays. Autoantibodies and abnormal tumor-specific DNA methylation found in cell-free plasma DNA may provide the best opportunity for constructing multiplexed and highly redundant tests, which will be sufficiently specific and sensitive for early detection of breast cancer. It is expected that technologies developed for breast cancer detection will be useful for other types of cancer.  相似文献   

3.
Cancer biomarkers facilitate screening and early detection but are known for only a few cancer types. We demonstrated the principle of inducing tumors to secrete a serum biomarker using a systemically administered gene delivery vector that targets tumors for selective expression of an engineered cassette. We exploited tumor-selective replication of a conditionally replicative Herpes simplex virus (HSV) combined with a replication-dependent late viral promoter to achieve tumor-selective biomarker expression as an example gene delivery vector. Virus replication, cytotoxicity and biomarker production were low in quiescent normal human foreskin keratinocytes and high in cancer cells in vitro. Following intravenous injection of virus >90% of tumor-bearing mice exhibited higher levels of biomarker than non-tumor-bearing mice and upon necropsy, we detected virus exclusively in tumors. Our strategy of forcing tumors to secrete a serum biomarker could be useful for cancer screening in high-risk patients, and possibly for monitoring response to therapy. In addition, because oncolytic vectors for tumor specific gene delivery are cytotoxic, they may supplement our screening strategy as a "theragnostic" agent. The cancer screening approach presented in this work introduces a paradigm shift in the utility of gene delivery which we foresee being improved by alternative vectors targeting gene delivery and expression to tumors. Refining this approach will usher a new era for clinical cancer screening that may be implemented in the developed and undeveloped world.  相似文献   

4.
Early detection of colon cancer: new tests on the horizon   总被引:1,自引:0,他引:1  
This year, the American Cancer Society reported that the rate of decline in both the incidence and mortality of colorectal cancer has increased over the last two decades. This success is felt to be attributable to the early detection and treatment of colonic adenomas and early-stage colorectal cancers. However, the current recommended 'menu of options' for screening is limited by poor patient acceptance, low sensitivity, and both high cost and poor accessibility for application to a large general screening population (colonoscopy). Computerized tomography and magnetic resonance colonography offer an alternative method for the identification of polyps and early lesions in certain patients, but have cost, access, and acceptance limitations that are similar to those of colonoscopy; thus, they present similar barriers to their use in broad population screening. These limitations provide a strong rationale for the development of early colorectal cancer detection biomarkers that are simple to use and are cost effective. A successful biomarker or biomarker panel, coupled with the colonoscopic follow-up of only those patients with positive results, would reduce the burden and morbidity associated with the screening of colonoscopy. This would most likely result in enhanced adherence to colorectal screening, as well as a dramatic reduction in the incidence and mortality rates of colorectal cancer. In this paper, we review recent advances in the discovery of potential colorectal cancer biomarkers. Their applicability to clinical population screening will require large prospective validation.  相似文献   

5.
Autoantibodies represent an attractive biomarker for diagnostic assays principally due to the stability of immunoglobulin in patient serum facilitating measurement with conventional assays. Immune responses to tumorigenesis may facilitate detection of ovarian cancer in the early stages of the disease with identification of a panel of tumour specific autoantibodies. Despite the reporting of many tumour associated autoantibodies using arrays of tumour antigens, this has not led to the advance in diagnostic capability as rapidly as was initially expected. Here we examine the potential diagnostic utility of candidate autoantibody biomarkers identified via screening of serum samples on a high content human protein array from a unique cohort of early stage and late stage ovarian cancer patients. We analyse the performance of autoantibodies to the tumour suppressor protein p53 and the novel autoantigens alpha adducin and endosulfine alpha identified in our array screen. Each antigen has different performance characteristics using conventional ELISA format and Western blot immunoassay. The high attrition rate of promising autoantigens identified by array screening can in part be explained by the presentation of the epitope of the antigen in the subsequent method of validation and this study provides directions on maximising the potential of candidate biomarkers. This article is part of a Special Issue entitled: Translational Proteomics.  相似文献   

6.

Background

Increasing efforts and financial resources are being invested in early cancer detection research. Blood assays detecting tumor biomarkers promise noninvasive and financially reasonable screening for early cancer with high potential of positive impact on patients'' survival and quality of life. For novel tumor biomarkers, the actual tumor detection limits are usually unknown and there have been no studies exploring the tumor burden detection limits of blood tumor biomarkers using mathematical models. Therefore, the purpose of this study was to develop a mathematical model relating blood biomarker levels to tumor burden.

Methods and Findings

Using a linear one-compartment model, the steady state between tumor biomarker secretion into and removal out of the intravascular space was calculated. Two conditions were assumed: (1) the compartment (plasma) is well-mixed and kinetically homogenous; (2) the tumor biomarker consists of a protein that is secreted by tumor cells into the extracellular fluid compartment, and a certain percentage of the secreted protein enters the intravascular space at a continuous rate. The model was applied to two pathophysiologic conditions: tumor biomarker is secreted (1) exclusively by the tumor cells or (2) by both tumor cells and healthy normal cells. To test the model, a sensitivity analysis was performed assuming variable conditions of the model parameters. The model parameters were primed on the basis of literature data for two established and well-studied tumor biomarkers (CA125 and prostate-specific antigen [PSA]). Assuming biomarker secretion by tumor cells only and 10% of the secreted tumor biomarker reaching the plasma, the calculated minimally detectable tumor sizes ranged between 0.11 mm3 and 3,610.14 mm3 for CA125 and between 0.21 mm3 and 131.51 mm3 for PSA. When biomarker secretion by healthy cells and tumor cells was assumed, the calculated tumor sizes leading to positive test results ranged between 116.7 mm3 and 1.52 × 106 mm3 for CA125 and between 27 mm3 and 3.45 × 105 mm3 for PSA. One of the limitations of the study is the absence of quantitative data available in the literature on the secreted tumor biomarker amount per cancer cell in intact whole body animal tumor models or in cancer patients. Additionally, the fraction of secreted tumor biomarkers actually reaching the plasma is unknown. Therefore, we used data from published cell culture experiments to estimate tumor cell biomarker secretion rates and assumed a wide range of secretion rates to account for their potential changes due to field effects of the tumor environment.

Conclusions

This study introduced a linear one-compartment mathematical model that allows estimation of minimal detectable tumor sizes based on blood tumor biomarker assays. Assuming physiological data on CA125 and PSA from the literature, the model predicted detection limits of tumors that were in qualitative agreement with the actual clinical performance of both biomarkers. The model may be helpful in future estimation of minimal detectable tumor sizes for novel proteomic biomarker assays if sufficient physiologic data for the biomarker are available. The model may address the potential and limitations of tumor biomarkers, help prioritize biomarkers, and guide investments into early cancer detection research efforts.  相似文献   

7.
Lung cancer is one of the diseases responsible for a large number of cancer related death cases worldwide. The recommended standard for screening and early detection of lung cancer is the low dose computed tomography. However, many patients diagnosed die within one year, which makes it essential to find alternative approaches for screening and early detection of lung cancer. We present computational methods that can be implemented in a functional multi-genomic system for classification, screening and early detection of lung cancer victims. Samples of top ten biomarker genes previously reported to have the highest frequency of lung cancer mutations and sequences of normal biomarker genes were respectively collected from the COSMIC and NCBI databases to validate the computational methods. Experiments were performed based on the combinations of Z-curve and tetrahedron affine transforms, Histogram of Oriented Gradient (HOG), Multilayer perceptron and Gaussian Radial Basis Function (RBF) neural networks to obtain an appropriate combination of computational methods to achieve improved classification of lung cancer biomarker genes. Results show that a combination of affine transforms of Voss representation, HOG genomic features and Gaussian RBF neural network perceptibly improves classification accuracy, specificity and sensitivity of lung cancer biomarker genes as well as achieving low mean square error.  相似文献   

8.
A panel of biomarkers for the early detection of bladder cancer has not yet been identified. Many different molecules, including DNA, RNA or proteins have been reported but none have provided adequate sensitivity for a single-tier screening test or a test to replace cystoscopy. Therefore, multimarker panels are discussed at present to give a more-precise answer to the biomarker quest. Mass spectrometry or 2D gel-electrophoresis have evolved greatly within recent years and are capable of analyzing multiple proteins or peptides in parallel with high sensitivity and specificity. However, transmission of screening results from one laboratory to another is still the main pitfall of those methods; a fact that emphasizes the need for consistent and standardized procedures as suggested by the Human Proteome Organization (HUPO). In this article, recent results in screening approaches and other proteomic techniques used for biomarker evaluation in bladder cancer are discussed with a focus on serum and tissue biomarkers.  相似文献   

9.
A panel of biomarkers for the early detection of bladder cancer has not yet been identified. Many different molecules, including DNA, RNA or proteins have been reported but none have provided adequate sensitivity for a single-tier screening test or a test to replace cystoscopy. Therefore, multimarker panels are discussed at present to give a more-precise answer to the biomarker quest. Mass spectrometry or 2D gel-electrophoresis have evolved greatly within recent years and are capable of analyzing multiple proteins or peptides in parallel with high sensitivity and specificity. However, transmission of screening results from one laboratory to another is still the main pitfall of those methods; a fact that emphasizes the need for consistent and standardized procedures as suggested by the Human Proteome Organization (HUPO). In this article, recent results in screening approaches and other proteomic techniques used for biomarker evaluation in bladder cancer are discussed with a focus on serum and tissue biomarkers.  相似文献   

10.
Proteomic profiling of pancreatic cancer for biomarker discovery   总被引:15,自引:0,他引:15  
Pancreatic cancer is a uniformly lethal disease that is difficult to diagnose at early stage and even more difficult to cure. In recent years, there has been a substantial interest in applying proteomics technologies to identify protein biomarkers for early detection of cancer. Quantitative proteomic profiling of body fluids, tissues, or other biological samples to identify differentially expressed proteins represents a very promising approach for improving the outcome of this disease. Proteins associated with pancreatic cancer identified through proteomic profiling technologies could be useful as biomarkers for the early diagnosis, therapeutic targets, and disease response markers. In this article, we discuss recent progress and challenges for applying quantitative proteomics technologies for biomarker discovery in pancreatic cancer.  相似文献   

11.
Epithelial ovarian cancer is the leading cause of cancer-related death among gynecological cancers due to the asymptomatic nature of the disease, a lack of early detection markers and the development of resistance to current chemotherapeutic agents. Currently available tests (CA-125, transvaginal ultrasound or combination of both) lack the sensitivity and specificity to be useful as an efficient screening tool for surveillance of the general population. Thus, there is an urgent need for the development and validation of new molecular markers that would be both specific and sensitive indicators of disease onset, as well as progression. Proteomic profiling has emerged as a powerful tool to study ovarian cancer in an unbiased way at the molecular level, to monitor the effects of given treatment options and for the discovery of biomarkers. In this review we discuss the challenges associated with proteomics-based biomarker discovery and some recent concepts to potentially overcome these hurdles. Recent proteomics work on ovarian cancer cells and tissues will be discussed in light of obtaining new insights into fundamental biological processes, as well as their potential integration with ongoing biomarker discovery pipelines.  相似文献   

12.

Background

The majority of colorectal cancer (CRC) cases are preventable by early detection and removal of precancerous polyps. Even though CRC is the second most common internal cancer in Australia, only 30 per cent of the population considered to have risk factors participate in stool-based test screening programs. Evidence indicates a robust, blood-based, diagnostic assay would increase screening compliance. A number of potential diagnostic blood-based protein biomarkers for CRC have been reported, but all lack sensitivity or specificity for use as a stand-alone diagnostic. The aim of this study was to identify and validate a panel of protein-based biomarkers in independent cohorts that could be translated to a reliable, non-invasive blood-based screening test.

Principal Findings

In two independent cohorts (n = 145 and n = 197), we evaluated seven single biomarkers in serum of CRC patients and age/gender matched controls that showed a significant difference between controls and CRC, but individually lack the sensitivity for diagnostic application. Using logistic regression strategies, we identified a panel of three biomarkers that discriminated between controls and CRC with 73% sensitivity at 95% specificity, when applied to either of the two cohorts. This panel comprised of Insulin like growth factor binding protein 2 (IGFBP2), Dickkopf-3 (DKK3), and Pyruvate kinase M2(PKM2).

Conclusions

Due to the heterogeneous nature of CRC, a single biomarker is unlikely to have sufficient sensitivity or specificity for use as a stand-alone diagnostic screening test and a panel of markers may be more effective. We have identified a 3 biomarker panel that has higher sensitivity and specificity for early stage (Stage I and -II) disease than the faecal occult blood test, raising the possibility for its use as a non-invasive blood diagnostic or screening test.  相似文献   

13.
Prostate-specific antigen (PSA) screening has led to a significant rise in the number of men diagnosed with prostate cancer and an associated increase in biopsies performed. Despite its limitations, including a positive predictive value of only 25%-40%, PSA remains the only generally accepted biomarker for prostate cancer. There is a need for better tools to not only identify men with prostate cancer, but also to recognize those with potentially lethal disease who will benefit from intervention. A great deal of work has been done worldwide to improve our knowledge of the genetics behind prostate cancer and the specificity of PSA by developing assays for different PSA isoforms. Common genetic alterations in prostate cancer patients have been identified, including CpG hypermethylation of GSPT1 and TMPRSS2:ERG gene fusion. Serum and urine detection of RNA biomarkers (eg, PCA3) and prostate cancer tissue protein antibodies (eg, EPCA) are being evaluated for detection and prognostic tools. This article reviews some of the promising developments in biomarkers.  相似文献   

14.
Epithelial ovarian cancer is the leading cause of cancer-related death among gynecological cancers due to the asymptomatic nature of the disease, a lack of early detection markers and the development of resistance to current chemotherapeutic agents. Currently available tests (CA-125, transvaginal ultrasound or combination of both) lack the sensitivity and specificity to be useful as an efficient screening tool for surveillance of the general population. Thus, there is an urgent need for the development and validation of new molecular markers that would be both specific and sensitive indicators of disease onset, as well as progression. Proteomic profiling has emerged as a powerful tool to study ovarian cancer in an unbiased way at the molecular level, to monitor the effects of given treatment options and for the discovery of biomarkers. In this review we discuss the challenges associated with proteomics-based biomarker discovery and some recent concepts to potentially overcome these hurdles. Recent proteomics work on ovarian cancer cells and tissues will be discussed in light of obtaining new insights into fundamental biological processes, as well as their potential integration with ongoing biomarker discovery pipelines.  相似文献   

15.

Background  

Diagnosis of ovarian carcinoma is in urgent need for new complementary biomarkers for early stage detection. Proteins that are aberrantly excreted in the urine of cancer patients are excellent biomarker candidates for development of new noninvasive protocol for early diagnosis and screening purposes. In the present study, urine samples from patients with ovarian carcinoma were analysed by two-dimensional gel electrophoresis and the profiles generated were compared to those similarly obtained from age-matched cancer negative women.  相似文献   

16.
Aside from primary prevention, early detection remains the most effective way to decrease mortality associated with the majority of solid cancers. Previous cancer screening models are largely based on classification of at-risk populations into three conceptually defined groups (normal, cancer without symptoms, and cancer with symptoms). Unfortunately, this approach has achieved limited successes in reducing cancer mortality. With advances in molecular biology and genomic technologies, many candidate somatic genetic and epigenetic "biomarkers" have been identified as potential predictors of cancer risk. However, none have yet been validated as robust predictors of progression to cancer or shown to reduce cancer mortality. In this Perspective, we first define the necessary and sufficient conditions for precise prediction of future cancer development and early cancer detection within a simple physical model framework. We then evaluate cancer risk prediction and early detection from a dynamic clonal evolution point of view, examining the implications of dynamic clonal evolution of biomarkers and the application of clonal evolution for cancer risk management in clinical practice. Finally, we propose a framework to guide future collaborative research between mathematical modelers and biomarker researchers to design studies to investigate and model dynamic clonal evolution. This approach will allow optimization of available resources for cancer control and intervention timing based on molecular biomarkers in predicting cancer among various risk subsets that dynamically evolve over time.  相似文献   

17.
Won Y  Song HJ  Kang TW  Kim JJ  Han BD  Lee SW 《Proteomics》2003,3(12):2310-2316
Despite having a relatively low incidence, renal cell carcinoma (RCC) is one of the most lethal urologic cancers. For successful treatment including surgery, early detection is essential. Currently there is no screening method such as biomarker assays for early diagnosis of RCC. Surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF) is a recent technical advance that can be used to identify biomarkers for cancers. In this study, we investigated whether SELDI protein profiling and artificial intelligence analysis of serum could distinguish RCC from healthy persons and other urologic diseases (nonRCC). The SELDI-TOF data was acquired from a total of 36 serum samples with weak cation exchange-2 protein chip arrays and filtered using ProteinChip software. We used a decision tree algorithm c4.5 to classify the three groups of sera. Five proteins were identified with masses of 3900, 4107, 4153, 5352, and 5987 Da. These biomarkers can correctly separate RCC from healthy and nonRCC samples.  相似文献   

18.
There are currently over 2.5 million breast cancer survivors in the United States and, according to the American Cancer Society, 10 to 20 percent of these women will develop recurrent breast cancer. Early detection of recurrence can avoid unnecessary radical treatment. However, self-examination or mammography screening may not discover a recurring cancer if the number of surviving cancer cells is small, while biopsy is too invasive and cannot be frequently repeated. It is therefore important to identify non-invasive biomarkers that can detect early recurrence. The present paper develops a mathematical model of cancer recurrence. The model, based on a system of partial differential equations, focuses on tissue biomarkers that include the plasminogen system. Among them, only uPAR is known to have significant correlation to its concentration in serum and could therefore be a good candidate for serum biomarker. The model includes uPAR and other associated cytokines and cells. It is assumed that the residual cancer cells that survived primary cancer therapy are concentrated in the same location within a region with a very small diameter. Model simulations establish a quantitative relation between the diameter of the growing cancer and the total uPAR mass in the cancer. This relation is used to identify uPAR as a potential serum biomarker for breast cancer recurrence.  相似文献   

19.
Despite considerable advancements, the development of effective cancer screening tools based on serum biomarker measurements has thus far failed to achieve a meaningful clinical impact. The incremental progress observed over the course of serum biomarker development suggests that further refinements based on novel approaches may yet result in a breakthrough. The use of urine as an analytical biofluid for biomarker development may represent such an approach. The unique characteristics of urine including a high level of stability, ease of sampling, and an inactive and low-complexity testing matrix offer several potential advantages over the use of serum. A number of recent reports have demonstrated the utility of urine in the identification of novel cancer biomarkers and also the improved performance of biomarkers previously evaluated in serum. In this review, advancements related to the use of urine biomarkers within the settings of ovarian, breast, and pancreatic cancer are presented and discussed. Findings regarding the identification of specific urine biomarkers for each disease are highlighted along with comparative analyses of urine and serum biomarkers as diagnostic tools.  相似文献   

20.
IntroductionThe current availability of genomic information represents an opportunity to develop new strategies for early detection of cancer. New molecular tests for endometrial cancer may improve performance and failure rates of histological aspirate-based diagnosis, and provide promising perspectives for a potential screening scenario. However, the selection of relevant biomarkers to develop efficient strategies can be a challenge.Materials and methodsWe developed an algorithm to identify the largest number of patients with endometrial cancer using the minimum number of somatic mutations based on The Cancer Genome Atlas (TCGA) dataset.ResultsThe algorithm provided the number of subjects with mutations (sensitivity) for a given number of biomarkers included in the signature. For instance, by evaluating the 50 most representative point mutations, up to 81.9% of endometrial cancers can be identified in the TCGA dataset. At gene level, a 92.9% sensitivity can be obtained by interrogating five genes.DiscussionWe developed a computational method to aid in the selection of relevant genomic biomarkers in endometrial cancer that can be adapted to other cancer types or diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号