首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper binding to apolipoprotein B-100 (apo B-100) and its reduction by endogenous components of low-density lipoprotein (LDL) represent critical steps in copper-mediated LDL oxidation, where cuprous ion (Cu(I)) generated from cupric ion (Cu(II)) reduction is the real trigger for lipid peroxidation. Although the copper-reducing capacity of the lipid components of LDL has been studied extensively, we developed a model to specifically analyze the potential copper reducing activity of its protein moiety (apo B-100). Apo B-100 was isolated after solubilization and extraction from size exclusion-HPLC purified LDL. We obtained, for the first time, direct evidence for apo B-100-mediated copper reduction in a process that involves protein-derived radical formation. Kinetics of copper reduction by isolated apo B-100 was different from that of LDL, mainly because apo B-100 showed a single phase-exponential kinetic, instead of the already described biphasic kinetics for LDL (namely alpha-tocopherol-dependent and independent phases). While at early time points, the LDL copper reducing activity was higher due to the presence of alpha-tocopherol, at longer time points kinetics of copper reduction was similar in both LDL and apo B-100 samples. Electron paramagnetic resonance studies of either LDL or apo B-100 incubated with Cu(II), in the presence of the spin trap 2-methyl-2-nitroso propane (MNP), indicated the formation of protein-tryptophanyl radicals. Our results supports that apo B-100 plays a critical role in copper-dependent LDL oxidation, due to its lipid-independent-copper reductive ability.  相似文献   

2.
The mechanisms by which low-density lipoprotein (LDL) particles undergo oxidative modification to an atherogenic form that is taken up by the macrophage scavenger-receptor pathway have been the subject of extensive research for almost two decades. The most common method for the initiation of LDL oxidation in vitro involves incubation with Cu(II) ions. Although various mechanisms have been proposed to explain the ability of Cu(II) to promote LDL modification, the precise reactions involved in initiating the process remain a matter of contention in the literature. This review provides a critical overview and evaluation of the current theories describing the interactions of copper with the LDL particle. Following discussion of the thermodynamics of reactions dependent upon the decomposition of preexisting lipid hydroperoxides, which are present in all crude LDL preparations, attention is turned to the more difficult (but perhaps more physiologically-relevant) system of the hydroperoxide-free LDL particle. In both systems, the key role of alpha-tocopherol is discussed. In addition to its protective, radical-scavenging action, alpha-tocopherol can also behave as a prooxidant via its reduction of Cu(II) to Cu(I). Generation of Cu(I) greatly facilitates the decomposition of lipid hydroperoxides to chain-carrying radicals, but the mechanisms by which the vitamin promotes LDL oxidation in the absence of preformed hydroperoxides remain more speculative. In addition to the so-called tocopherol-mediated peroxidation model, in which polyunsaturated fatty acid oxidation is initiated by the alpha-tocopheroxyl radical (generated during the reduction of Cu(II) by alpha-tocopherol), an evaluation of the role of the hydroxyl radical is provided. Important interactions between copper ions and thiols are also discussed, particularly in the context of cell-mediated LDL oxidation. Finally, the mechanisms by which ceruloplasmin, a copper-containing plasma protein, can bring about LDL modification are discussed. Improved understanding of the mechanisms of LDL oxidation by copper ions should facilitate the establishment of any physiological role of the metal in LDL modification. It will also assist in the interpretation of studies in which copper systems of LDL oxidation are used in vitro to evaluate potential antioxidants.  相似文献   

3.
Radiolabeling of low density lipoprotein (LDL) apoB100 with 125I, an oxidative process, is commonly used in lipoprotein investigation. Since 1) LDL is unstable and oxidation-prone, 2) the modification of apoB100 by oxidation increases the negative charge of particles and leads to the uptake of modified LDL through the scavenger receptor pathway, and 3) oxidized LDL is cytotoxic, it is relevant to investigate whether the oxidative stability of LDL is influenced by its labeling with 125I. The aim of this study was to investigate and compare lipid and protein oxidation markers in human LDL after labeling with 125I by two widely adopted methods that use ICl or the chloramide 1,3,4,6-tetrachloro-3alpha,6alpha-diphenylglycoluril as the oxidizing agent. Native LDL served as a common control and sham-iodinated LDL as a handling control for each procedure. The resistance against copper-induced oxidation of 125I-LDL labeled with ICl was similar to that of controls with regard to the lag time and maximal amount of conjugated diene formed, as there were levels of initial conjugated diene, alpha-tocopherol, and tryptophan. However, radioiodination with the chloramide accelerated the onset of the rapid phase of LDL oxidation due to a drastic depletion of alpha-tocopherol and increased conjugated diene content. Measurements of copper-induced LDL oxidizability showed enhanced indices of lipid oxidation. The lag time and the time to maximal diene production were 65% and 30% shorter than controls. This was accompanied by a 50% reduced tryptophan fluorescence. The anionic surface charge of the LDL particle increased moderately with both labeling procedures. The results indicate that labeling of LDL with 125I may oxidize lipids and apoB100 to a variable extent, depending on the nature of the iodinating agent. This is why assessment of the oxidizability properties of 125I-labeled LDL is recommended for reliable biological studies.  相似文献   

4.
Potential mechanisms underlying zinc's capacity to protect membranes from lipid oxidation were examined in liposomes. Using lipid oxidation initiators with different chemical and physical properties (transition metals, lipid- or water-soluble azo compounds, ultraviolet radiation c (UVc), superoxide radical anion (O2*-), and peroxynitrite (ONOO-) we observed that zinc only prevented copper (Cu2+)- and iron (Fe2+)-initiated lipid oxidation. In the presence of Fe2+, the antioxidant action of zinc depended directly on the negative charge density of the membrane bilayer. An inverse correlation (r2: 0.96) was observed between the capacity of zinc to prevent iron binding to the membrane and the inhibitory effect of zinc on Fe2+-initiated lipid oxidation. The interaction of zinc with the bilayer did not affect physical properties of the membrane, including rigidification and lateral phase separation known to increase lipid oxidation rates. The interactions between zinc and the lipid- (alpha-tocopherol) and water- (epicatechin) soluble antioxidants were studied. The inhibition of Fe2+-induced lipid oxidation by either alpha-tocopherol or epicatechin was increased by the simultaneous addition of zinc. The combined actions of alpha-tocopherol (0.01 mol%), epicatechin (0.5 microM) and zinc (5-50 microM) almost completely prevented Fe2+ (25 microM)-initiated lipid oxidation. These results show that zinc can protect membranes from iron-initiated lipid oxidation by occupying negatively charged sites with potential iron binding capacity. In addition, the synergistic actions of zinc with lipid and water-soluble antioxidants to prevent lipid oxidation, suggests that zinc is a pivotal component of the antioxidant defense network that protects membranes from oxidation.  相似文献   

5.
Oxidation of lipoprotein Lp(a). A comparison with low-density lipoproteins.   总被引:1,自引:0,他引:1  
Aimed at identifying possible mechanisms of the suggested high atherogenicity of Lp(a), its susceptibility for Cu(II)-induced oxidation was studied and compared with that of LDL. Since the content of antioxidants as well as the fatty acid pattern of a lipoprotein greatly affects its oxidizability, Lp(a) and LDL were characterized first with respect to these substances. Paired samples of low-density lipoproteins (LDL) and Lp(a) were isolated from seven individual donors and compared with each other. This study showed that LDL and Lp(a) are very similar with respect to their fatty acid and antioxidant composition. LDL contains approx. 1132 nmol of total fatty acids/mg lipoprotein and LDL 1466 nmol total fatty acids/mg lipoprotein. Analysis of the fatty acid composition of individual lipid classes (cholesteryl esters, phospholipids and triacylglycerols) revealed also a high similarity in the composition of these lipid classes between the two lipoproteins. A comparison of the antioxidant composition showed that Lp(a) contains less alpha-tocopherol than LDL (1.6 +/- 0.35 nmol/mg vs. 2.1 +/- 0.25 nmol/mg LDL). In copper(II)-induced lipid peroxidation experiments we found a striking difference in the susceptibility of individual lipoprotein classes between all donors. In addition, Lp(a) exhibited a 1.2 to 2.4 longer lag-phase than the corresponding LDL preparation from the same blood donor. Treatment of Lp(a) with neuraminidase resulted in a drastic decrease of the lag-phase of Lp(a). Neuraminidase treatment of LDL on the other hand had no significant effects on its susceptibility to oxidation. Supplementation of neuraminidase-treated Lp(a) with N-acetylneuraminic acid (NANA) at concentrations comparable to the naturally occurring amounts of NANA in the Lp(a) protein moiety led to an increase of the lag-phase yielding values which were comparable to those observed with native Lp(a). These results demonstrate that the fatty acid composition as well as the antioxidant concentrations of Lp(a) and LDL are quite similar; despite this fact, Cu2(+)-mediated oxidation of Lp(a) is retarded in comparison to LDL which might be due to the higher content of NANA in Lp(a).  相似文献   

6.
Oxidative modification of LDL by vascular cells has been proposed as the mechanism by which LDL become atherogenic. The effect of ibuprofen on LDL modification by copper ions, monocytes and endothelial cells was studied by measuring lipid peroxidation products. Ibuprofen inhibited LDL oxidation in a dose-dependent manner over a concentration range of 0.1 to 2.0 mM. Ibuprofen (2 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides formed during 2 and 6 h incubation in the presence of copper ions by 52 and 28%, respectively. Weak free radical scavenging activity of ibuprofen was observed in the DPPH test. The protective effect of ibuprofen was more marked when oxidation was induced by monocytes or endothelial cells. Ibuprofen (1 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides generated in LDL during monocyte-mediated oxidation by 40%. HUVEC-mediated oxidation of LDL in the absence and presence of Cu2+ was reduced by 32 and 39%, respectively. More lipid peroxides appeared when endothelial cells were stimulated by IL-1beta or TNFalpha and the inhibitory effect of ibuprofen in this case was more pronounced. Ibuprofen (1 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides formed during incubation of LDL with IL-1beta-stimulated HUVEC by 43%. The figures in the absence and presence of Cu2+ for HUVEC stimulated with TNFalpha were 56 and 59%, respectively. To assess the possibility that ibuprofen acts by lowering the production rate of reactive oxygen species, the intracellular concentration of H2O2 was measured. Ibuprofen (1 mM) reduced intracellular production of hydrogen peroxide in PMA-stimulated mononuclear cells by 69%. When HUVEC were stimulated by IL-1beta or TNFalpha the reduction was 62% and 66%, respectively.  相似文献   

7.
Faure P  Oziol L  Artur Y  Chomard P 《Biochimie》2004,86(6):411-418
Triiodothyronine (T3) and triiodothyroacetic acid (TA3) are thyroid compounds that similarly protect low-density lipoprotein (LDL) against oxidation induced by the free radical generator 2,2'-azobis-[2-amidinopropane] dihydrochloride (AAPH). However, TA3 is more antioxidant than T3 on LDL oxidation induced by copper ions (Cu2+), suggesting that these compounds act by different mechanisms. Here we measured conjugated diene production kinetics during in vitro human LDL (50 mg LDL-protein per l) oxidation induced by various Cu2+ (0.5-4 microM) or AAPH (0.25-2 mM) concentrations in the presence of T3, TA3, butylated hydroxytoluene (BHT) (a free radical scavenger) or ethylenediaminetetracetic acid (EDTA) (a metal chelator). From the kinetics were estimated: length of the lag phase (Tlag), maximum velocity of conjugated diene production (Vmax), and maximum amount of generated dienes (Dmax). Thyroid compound effects on these oxidation parameters were compared to those of the controls BHT and EDTA. In addition we measured by atomic absorption spectrometry copper remaining in LDL after a 30 min incubation of LDL with Cu2+ and the compounds followed by extensive dialysis, i.e. copper bound to LDL. As expected, LDL-copper was decreased by EDTA in a concentration-dependent manner, whereas it was not affected by BHT. T3 increased LDL-copper whereas TA3 slightly decreased it. The whole data suggest that T3 and TA3 are free radical scavengers that also differently disturb LDL-copper binding, an essential step for LDL lipid peroxidation. The most likely mechanisms are that T3 induces new copper binding sites inside the LDL particle, increasing the LDL-copper amount but in a redox-inactive form, whereas TA3 blocks some redox-active copper binding sites highly implicated in the initiation and the propagation of lipid peroxidation. Alternatively, we also found that a little amount of copper is tightly bound in LDL, which may be essential for the propagation of lipid peroxidation induced by free radical generators.  相似文献   

8.
Glucose at pathophysiological concentrations was able to accelerate copper-induced oxidation of isolated low-density lipoprotein (LDL) and whole serum. The efficiency of glucose was favored under the following circumstances: (a) when LDL oxidation was induced by low copper concentration, (b) when LDL was partly oxidized, i.e. enriched with lipid peroxides. The glucose derivative methyl- &#102 - d -glucoside was ineffective on Cu 2+ -induced LDL oxidation, pointing out the essential role of the reactivity of the aldehydic carbon for the pro-oxidative effect. When LDL oxidation was induced by a peroxyl radical generator, as a model of transition metal independent oxidation, glucose was ineffective. Glucose was found to stimulate oxidation of LDL induced by ceruloplasmin, the major copper-containing protein of human plasma. Thus, glucose accelerated oxidation of LDL induced by both free and protein bound copper. Considering the requirement for catalytically active copper and for the aldehydic carbon, the pro-oxidative effect of glucose is likely to depend on the increased availability of Cu + ; this is more efficient in decomposing lipid peroxide than Cu 2+ , accounting for acceleration of LDL oxidation. The possible biological relevance of our work is supported by the finding that glucose was able to accelerate oxidation of whole serum, which was assessed by monitoring low-level chemiluminescence associated with lipid peroxidation.  相似文献   

9.
The aim of this study was to explore the possible modifications induced by 17beta-estradiol (E(2)) in vivo on low-density lipoprotein (LDL) lipid composition, particle size, and oxidizability. For this purpose, women were recruited from an in vitro fertilization program, ranging their plasma E(2) levels from less than 12 pg/ml to more than 2000 pg/ml at the end of the treatment. The LDL lipid constituents were analyzed by thin layer chromatography and image analysis, and the LDL diameter was calculated from the lipid data. The results showed that high plasma E(2) levels were associated with smaller LDL particles, with lower amounts of free and esterified cholesterol and an increased relative content of alpha-tocopherol. The hormonal treatment produced a remodelation of the LDL acyl composition, rendering a lipoprotein enriched in saturated fatty acids, with a poorer polyunsaturated fatty acid content. These alterations in the physicochemical properties of LDL paralleled changes in the susceptibility of LDL to in vitro oxidation induced by both Cu(2+) and the peroxyl radical generator, 2,2'-azobis (2-amidinopropane), these changes being mainly reflected in a reduced maximum oxidation rate. The in vivo changes in the physicochemical properties of LDL induced by E(2) could explain some of the antiatherogenic actions of estrogens.  相似文献   

10.
In this study oxidation of low-density lipoprotein (LDL) induced by different Cu2+ concentrations was investigated. Lipid peroxidation was assessed by monitoring low-level chemiluminescence (LL-CL), conjugated diene hydroperoxide (CD) and alpha-tocopherol (TocOH), the major lipophilic antioxidant in LDL. At high Cu2+ concentration, LDL oxidation was characterised by CD formation, LL-CL emission and TocOH consumption. At low Cu2+ concentration, CD formation was independent of LL-CL and occurred in the presence of TocOH. Thus, two different mechanisms lead to lipid peroxide formation in LDL. The combination of CD assay and LL-CL monitoring makes it possible to distinguish the autocatalytic mechanism of CD formation and that associated with TocOH, found at a high and a low rate of initiation, respectively.  相似文献   

11.
Objective: Al3+ stimulates Fe2+ induced lipid oxidation in liposomal and cellular systems. Low-density lipoprotein (LDL) oxidation may render the particle atherogenic. As elevated levels of Al3+ and increased lipid oxidation of LDL are found in sera of hemodialysis patients, we investigated the influence of Al3+ on LDL oxidation.

Materials and methods: Using different LDL modifying systems (Fe2+, Cu2+, free radical generating compounds, human endothelial cells, hemin/H2O2 and HOCl), the influence of Al3+ on LDL lipid and apoprotein alteration was investigated by altered electrophoretic mobility, lipid hydroperoxide-, conjugated diene- and TBARS formation.

Results: Al3+ could stimulate the oxidizability of LDL by Fe2+, but not in the other systems tested. Al3+ and Fe2+ were found to bind to LDL and Al3+could compete with Fe2+ binding to the lipoprotein. Fluorescence polarization data indicated that Al3+ does not affect the phospholipid compartment of LDL.

Conclusions:The results indicate that increased LDL oxidation by Fe2+ in presence of Al3+ might be due to blockage of Fe2+ binding sites on LDL making more free Fe2+ available for lipid oxidation.  相似文献   

12.
Damage to apoB100 on low density lipoprotein (LDL) has usually been described in terms of lipid aldehyde derivatisation or fragmentation. Using a modified FOX assay, protein hydroperoxides were found to form at relatively high concentrations on apoB100 during copper, 2,2'-azobis(amidinopropane) dihydrochloride (AAPH) generated peroxyl radical and cell-mediated LDL oxidation. Protein hydroperoxide formation was tightly coupled to lipid oxidation during both copper and AAPH-mediated oxidation. The protein hydroperoxide formation was inhibited by lipid soluble alpha-tocopherol and the water soluble antioxidant, 7,8-dihydroneopterin. Kinetic analysis of the inhibition strongly suggests protein hydroperoxides are formed by a lipid-derived radical generated in the lipid phase of the LDL particle during both copper and AAPH mediated oxidation. Macrophage-like THP-1 cells were found to generate significant protein hydroperoxides during cell-mediated LDL oxidation, suggesting protein hydroperoxides may form in vivo within atherosclerotic plaques. In contrast to protein hydroperoxide formation, the oxidation of tyrosine to protein bound 3,4-dihydroxyphenylalanine (PB-DOPA) or dityrosine was found to be a relatively minor reaction. Dityrosine formation was only observed on LDL in the presence of both copper and hydrogen peroxide. The PB-DOPA formation appeared to be independent of lipid peroxidation during copper oxidation but tightly associated during AAPH-mediated LDL oxidation.  相似文献   

13.
Glucose at pathophysiological concentrations was able to accelerate copper-induced oxidation of isolated low-density lipoprotein (LDL) and whole serum. The efficiency of glucose was favored under the following circumstances: (a) when LDL oxidation was induced by low copper concentration, (b) when LDL was partly oxidized, i.e. enriched with lipid peroxides. The glucose derivative methyl-alpha-D-glucoside was ineffective on Cu2+-induced LDL oxidation, pointing out the essential role of the reactivity of the aldehydic carbon for the pro-oxidative effect. When LDL oxidation was induced by a peroxyl radical generator, as a model of transition metal independent oxidation, glucose was ineffective. Glucose was found to stimulate oxidation of LDL induced by ceruloplasmin, the major copper-containing protein of human plasma. Thus, glucose accelerated oxidation of LDL induced by both free and protein bound copper. Considering the requirement for catalytically active copper and for the aldehydic carbon, the pro-oxidative effect of glucose is likely to depend on the increased availability of Cu+; this is more efficient in decomposing lipid peroxide than Cu2+, accounting for acceleration of LDL oxidation. The possible biological relevance of our work is supported by the finding that glucose was able to accelerate oxidation of whole serum, which was assessed by monitoring low-level chemiluminescence associated with lipid peroxidation.  相似文献   

14.
Lipolytic modification of LDL particles by SMase generates LDL aggregates with a strong affinity for human arterial proteoglycans and may so enhance LDL retention in the arterial wall. Here, we evaluated the effects of apoA-I mimetic peptide 4F on structural and functional properties of the SMase-modified LDL particles. LDL particles with and without 4F were incubated with SMase, after which their aggregation, structure, and proteoglycan binding were analyzed. At a molar ratio of L-4F to apoB-100 of 2.5 to 20:1, 4F dose-dependently inhibited SMase-induced LDL aggregation. At a molar ratio of 20:1, SMase-induced aggregation was fully blocked. Binding of 4F to LDL particles inhibited SMase-induced hydrolysis of LDL by 10% and prevented SMase-induced LDL aggregation. In addition, the binding of the SMase-modified LDL particles to human aortic proteoglycans was dose-dependently inhibited by pretreating LDL with 4F. The 4F stabilized apoB-100 conformation and inhibited SMase-induced conformational changes of apoB-100. Molecular dynamic simulations showed that upon binding to protein-free LDL surface, 4F locally alters membrane order and fluidity and induces structural changes to the lipid layer. Collectively, 4F stabilizes LDL particles by preventing the SMase-induced conformational changes in apoB-100 and so blocks SMase-induced LDL aggregation and the resulting increase in LDL retention.  相似文献   

15.
Being intimately involved in cholesterol transport and lipid metabolism human low density lipoprotein (LDL) plays a prominent role in atherogenesis and cardiovascular diseases. The receptor-mediated cellular uptake of LDL is triggered by apolipoprotein B-100 (apoB-100), which represents the single protein moiety of LDL. Due to the size and hydrophobic nature of apoB-100, its structure is not well characterized. Here we present a low resolution structure of solubilized apoB-100. We have used small angle neutron scattering in combination with advanced shape reconstruction algorithms to generate a three-dimensional model of lipid-free apoB-100. Our model clearly reveals that apoB-100 is composed of distinct domains connected by flexible regions. The apoB-100 molecule adopts a curved shape with a central cavity. In comparison to LDL-associated apoB-100, the lipid-free protein is expanded, whereas according to spectroscopic data the secondary structure is widely preserved. Finally, the low resolution model was used as a template to reconstruct a hypothetical domain organization of apoB-100 on LDL, including information derived from a secondary structure prediction.  相似文献   

16.
We reported earlier that urate may behave as a pro-oxidant in Cu2+-induced oxidation of diluted plasma. Thus, its effect on Cu2+-induced oxidation of isolated low-density lipoprotein (LDL) was investigated by monitoring the formation of malondialdehyde and conjugated dienes and the consumption of urate and carotenoids. We show that urate is antioxidant at high concentration but pro-oxidant at low concentration. Depending on Cu2+ concentration, the switch between the pro- and antioxidant behavior of urate occurs at different urate concentrations. At high Cu2+ concentration, in the presence of urate, superoxide dismutase and ferricytochrome c protect LDL from oxidation but no protection is observed at low Cu2+ concentration. The use of Cu2+ or Cu+ chelators demonstrates that both copper redox states are required. We suggest that two mechanisms occur depending on the Cu2+ concentration. Urate may reduce Cu2+ to Cu+, which in turn contributes to formation. The Cu2+ reduction is likely to produce the urate radical (UH.-). It is proposed that at high Cu2+ concentration, the reaction of UH.- radical with generates products or intermediates, which trigger LDL oxidation. At low Cu2+ concentration, we suggest that the Cu+ ions formed reduce lipid hydroperoxides to alkoxyl radicals, thereby facilitating the peroxidizing chain reaction. It is anticipated that these two mechanisms are the consequence of complex LDL-urate-Cu2+ interactions. It is also shown that urate is pro-oxidant towards slightly preoxidized LDL, whatever its concentration. We reiterate the conclusion that the use of antioxidants may be a two-edged sword.  相似文献   

17.
Among different proposed mechanisms to account for the protection exerted by estrogens against cardiovascular diseases, the antioxidant effect has attracted considerable attention. We confirmed that 17-beta-estradiol (E2), when added to human LDL at a 6:1 ratio to apoB-100, markedly delays the phase of massive LDL lipid peroxidation induced by Cu(2+). We also observed an increased oxidative resistance of E2-treated LDL by monitoring the early phase of oxidative degradation on the basis of increased LDL surface polarity by the generalized polarization of the lipophilic fluorescent probe 2-(dimethylamino)-6-lauroylnaphthalene (Laurdan). A scavenging of free radicals by E2 is ruled out since, consistent with its structure, its rate constant for the reduction of peroxy radicals is extremely low, i.e., 0.02% of that of vitamin E. Tryptophan fluorescence lifetime and circular dichroism measurements revealed that (i) apoB-100 undergoes a conformational modification and a progressive loss of secondary structure during lipid peroxidation; (ii) E2 increases apoB-100 secondary structure and modifies its conformation; and (iii) the apoB-100 conformational change induced by E2 makes this protein resistant to modifications brought about by lipid peroxidation. We propose that E2, by affecting apoB-100 secondary structure and conformation, modifies the interaction of this protein with the outer layer of the LDL particle thus increasing its overall oxidative resistance.  相似文献   

18.
Several lines of evidence indicate that oxidized LDL (Ox-LDL) may promote atherogenesis. Hence, the role of antioxidants in the prevention of LDL oxidation needs to be determined. beta-Carotene, in addition to being an efficient quencher of singlet oxygen, can also function as a radical-trapping antioxidant. Since previous studies have failed to show that beta-carotene inhibits LDL oxidation, we re-examined its effect on the oxidative modification of LDL. For these studies, LDL was oxidized in both a cell-free (2.5 microM Cu2+ in PBS) and a cellular system (human monocyte macrophages in Ham's F-10 medium). beta-Carotene inhibited the oxidative modification of LDL in both systems as evidenced by a decrease in the lipid peroxide content (thiobarbituric-acid-reacting substances activity), the negative charge of LDL (electrophoretic mobility) and the formation of conjugated dienes. By inhibiting LDL oxidation, beta-carotene substantially decreased its degradation by macrophages. beta-Carotene (2 microM) was more potent than alpha-tocopherol (40 microM) in inhibiting LDL oxidation. Thus, beta-carotene, like ascorbate and alpha-tocopherol, inhibits LDL oxidation and might have an important role in the prevention of atherosclerosis.  相似文献   

19.
Human plasma low density lipoprotein (LDL), which binds 0.2% of plasma T4, was shown to interact with the hormone through its protein moiety, apolipoprotein B-100. LDL and LDL2, the major subfraction of LDL, were found to have 3 equivalent binding sites for T4 with Ka = 2.5 x 10(6) M-1. Photoaffinity labeling of LDL with inner ring-labeled [125I]T4, followed by SDS-PAGE or agarose-SDS-PAGE of the labeled products, revealed that apoB-100 and its proteolytic cleavage products, apoB-74 and apoB-26, bound [125I]T4. In the presence of 1 or 10 microM T4, labeling was decreased in 7 separate experiments by 40-53% or 65-86%, respectively, consistent with a Ka of approximately 10(6) M-1. Binding of T4 to apoB-100 associated with VLDL was also demonstrated by photoaffinity labeling. The observed thyroid hormone binding property of lipid-complexed apoB-100 and the knowledge that receptors for the apolipoprotein exist in various tissues suggest a possible physiological role in thyroid hormone transport.  相似文献   

20.
Chondroitin sulfate proteoglycans (CSPG) appear to contribute to retention of low density lipoproteins (LDL) in atherosclerotic lesions. In vitro, CSPG and glycosaminoglycans (GAG) modify LDL structure and increase its uptake by macrophages. This latter effect appears related to increased exposure of arginine- and lysine-rich segments of apoB-100. We explored whether alterations of LDL induced by human arterial CSPG and purified GAG alter the lipoprotein susceptibility to transition metals-catalyzed oxidation. Human LDL was complexed with human arterial CSPG and dissociated by raising the ionic strength. The nonaggregated, CSPG- and GAG-treated LDL was subjected to oxidation by micromolar amounts of Cu+, Cu2+, Fe2+, and Fe3+. This treatment increased LDL susceptibility to Cu2+ oxidation 3- to 5-times, as indicated by the degradation rate of phospholipids and cholesteryl esters and formation rates of dienes and thiobarbituric acid-reacting substances (TBARS). Also, human macrophages degraded the CSPG-treated, Cu2+-oxidized LDL 3- to 6-times faster than native LDL similarly treated. No enhancement of oxidation was observed with Fe2+, Fe3+, and Cu+. Quenching of the LDL intrinsic fluorescence by Cu2+ showed that heparin, CSPG, and chondroitin-6-SO4 pretreatment increased the access of Cu2+ to hydrophobic chromophores, probably tryptophan, 6- to 7-, 3- to 4-, and 2- to 3-fold, respectively. Also, the affinity constant (Ka) of LDL for Cu2+ was increased from 0.12 microM to 0.20 microM by the treatment with CSPG and GAG. These results and evaluation of the fraction of surface-accessible LDL chromophores to acrylamide quenching suggest that the increased susceptibility to oxidation may be associated with an increase in the access of Cu2+ to hydrophobic regions in LDL caused by treatment with CSPG and GAG. This effect was not detected with Cu+, Fe2+, or Fe3+. The phenomenon may contribute to acceleration of the oxidative modifications of LDL in cell culture models and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号