首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract The catabolism of indole-3-acetic acid was investigated in chloroplast preparations and a crude enzyme fraction derived from chloroplasts of Pisum sativum seedlings. Data obtained with both systems indicate that indole-3-acetic acid undergoes decarboxylative oxidation in pea chloroplast preparations. An enhanced rate of decarboxylation of [1′-1C]indole-3-acetic acid was obtained when chloroplast preparations were incubated in the light rather than in darkness. Results from control experiments discounted the possibility of this being due to light-induced breakdown of indole-3-acetic acid. High performance liquid chromatography analysis of [2′-14C]indole-3-acetic acid-fed incubates showed that indole-3-methanol was the major catabolite in both the chloroplast and the crude enzyme preparations. The identification of this reaction product was confirmed by gas chromatography-mass spectrometry when [2H5]indole-3-methanol was detected in a purified extract derived from the incubation of an enzyme preparation with 32H5]indole-3-acetic acid.  相似文献   

2.
Summary A group of chlorophyll deficient mutants (br s mutants) of Chlamydomonas accumulates protoporphyrin and has poorly developed chloroplast membrane systems (Wang et al. 1974). In order to determine whether a poorly developed chloroplast membrane system is the reason for, or the result of, the inability of the br s mutants to metabolize protoporphyrin to chlorophyll, a second mutation was selected which restored chlorophyll synthesis in br s mutants. One such double mutant (br s-2 g-4) was analyzed. The double mutant br s-2 g-4 has partially restored chlorophyll synthesis, but has defective photosystem II and photosystem I electron transport as well as abnormal chloroplast ultrastructure. Since these defects are not present in cells carrying only the g-4 mutation, they are presumed to be caused by the br s-2 mutation. It is concluded that a defect in chloroplast membrane development resulting from the br s-2 mutation causes an apparent defect in magnesium chelation by protoprophyrin. This is consistant with evidence that chlorophyll biosynthesis from magnesium protoporphyrin to chlorophyll takes place on the chloroplast membranes.  相似文献   

3.
Summary The chloroplast gene for the epsilon subunit (atpE) of the CF1/CF0 ATPase in the green alga Chlamydomonas reinhardtii has been localized and sequenced. In contrast to higher plants, the atpE gene does not lie at the 3 end of the beta subunit (atpB) gene in the chloroplast genome of C. reinhardtii, but is located at a position 92 kb away in the other single copy region. The uninterrupted open reading frame for the atpE gene is 423 bp, and the epsilon subunit exhibits 43% derived amino acid homology to that from spinach. Codon usage for the atpE gene follows the restricted pattern seen in other C. reinhardtii chloroplast genes.The genes for the CF0 subunits I (atpF) and IV (atpI) of the ATPase complex have also been mapped on the chloroplast genome of C. reinhardtii. The six chloroplast ATPase genes in C. reinhardtii are dispersed individually between the two single copy regions of the chloroplast genome, an organization strikingly different from the highly conserved arrangement in two operon-like units seen in chloroplast genomes of higher plants.Abbreviations bp base pairs - CF1 chloroplast coupling factor 1 - CF0 chloroplast coupling factor 0 - F1 coupling factor 1 - F0 coupling factor 0 - kb kilobase pairs  相似文献   

4.
5.
6.
7.
8.
为确定瑶药紫九牛叶绿体基因组密码子的使用模式及其成因,该研究以紫九牛叶绿体基因组50条蛋白质编码序列为研究对象,利用Codon W 1.4.2和在线软件CUSP和Chips分析其密码子偏好性。结果表明:(1)RSCU>1的密码子有29个,其中有28个以A/U结尾,说明叶绿体基因组的同义密码子中偏好以A/U结尾。(2)紫九牛叶绿体基因组密码子的GC含量GC1(47.38%)>GC2(39.81%)>GC3(29.60%),ENC值大于45的有40个,说明紫九牛叶绿体基因组存在较弱的偏性。(3)中性绘图分析和ENC-plot分析说明了紫九牛叶绿体基因组密码子的偏好性既受到选择的作用,又受到突变因素的影响。(4)通过构建的高低基因表达库最终确定了15个最优密码子,分别为UUG、AUU、GUU、GUA、UCU、 CCU、ACU、ACA、GCU、CAA、AAC、GAA、UGU、CGU和GGU。该研究为紫九牛叶绿体基因组的确定以及遗传多样性分析提供了依据。  相似文献   

9.
The isolation of the photosynthetically competent chloroplast preparations was undertaken by means of the density gradient centrifugation on the modified silica sol “Percoll.” A clear separation of the intact chloroplast sustaining the high photosynthetic activities (light dependent CO2 fixation ca. 130μmol/mg Chl·hr) was established. The contamination of mitochondria and peroxisomes was estimated to be less than 3% by measuring the activities of their marker enzymes. The chloroplasts were proved to be free from endoplasmic reticulum and cytosol. The photosynthetic CO2 fixation of the isolated chloroplast preparations was saturated by illumination of the light intensity of 20,000 Lux (12 mW/cm2, 400~750 nm).  相似文献   

10.
Organelle inheritance in intergeneric hybrids of Festuca pratensis and Lolium perenne was investigated by restriction enzyme and Southern blot analyses of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA). All F1 hybrids exhibited maternal inheritance of both cpDNA and mtDNA. However, examination of backcross hybrids, obtained by backcrossing the intergeneric F1 hybrids to L. Perenne, indicated that both uniparental maternal organelle inheritance and uniparental paternal organelle inheritance can occur in different backcross hybrids.  相似文献   

11.
The effects of nano-anatase TiO2 on light absorption, distribution, and conversion, and photoreduction activities of spinach chloroplast were studied by spectroscopy. Several effects of nano-anatase TiO2 were observed: (1) the absorption peak intensity of the chloroplast was obviously increased in red and blue region, the ratio of the Soret band and Q band was higher than that of the control; (2) the great enhancement of fluorescence quantum yield near 680 nm of the chloroplast was observed, the quantum yield under excitation wavelength of 480 nm was higher than the excitation wavelength of 440 nm; (3) the excitation peak intensity near 440 and 480 nm of the chloroplast significantly rose under emission wavelength of 680 nm, and F 480 / F 440 ratio was reduced; (4) when emission wavelength was at 720 nm, the excitation peaks near 650 and 680 nm were obviously raised, and F 650 / F 680 ratio rose; (5) the rate of whole chain electron transport, photochemical activities of PSII DCPIP photoreduction and oxygen evolution were greatly improved, but the photoreduction activities of PSI were a little changed. Together, the studies of the experiments showed that nano-anatase TiO2 could increase absorption of light on spinach chloroplast and promote excitation energy to be absorbed by LHCII and transferred to PSII and improve excitation energy from PSI to be transferred to PSII, thus, promote the conversion from light energy to electron energy and accelerate electron transport, water photolysis, and oxygen evolution.  相似文献   

12.
Summary The possibility that 32PO 4 3- (32Pi) labeling of both chloroplast and non-chloroplast RNAs during light-induced chloroplast development in Euglena is due, in part, to the break-down of existing RNAs and their resynthesis into labeled RNAs has been examined by comparing the RNA content of dark-grown, non-dividing cells after completion of light-induced chloroplast development with that of identical cells maintained in darkness for the same period of time. The involvement of the photo-conversion of protochlorophyll to chlorophyll and other photoreceptor systems in the labeling of RNA during chloroplast development has been considered by comparing the labeling pattern obtained with wild-type cells with the patterns obtained with mutants of Euglena which either lack detectable amounts of protochlorophyll and chlorophyll or form only rudimentary chloroplasts upon light induction.No significant difference in RNA content between dark-grown, non-dividing cells containing fully developed chloroplasts and the same cells maintained in darkness for the development period can be detected. This observation is interpreted to mean that in non-dividing cells precursors for chloroplast-associated RNAs are derived from pools and pre-existing RNAs, including non-chloroplast RNAs, and that the matebolic entrapment of 32Pi involves a light-dependent turnover and DNA-directed RNA synthesis in wild-type cells.The RNA profiles on sucrose gradients of mutants of Euglena show no remarkable deviation from the profile established for wild-type cells. The labeling patterns obtained after 24 hours of incubation in light and in darkness differ from that obtained for wild-type cells in that all mutants show less of a light-minus-dark difference than wild-type and that mutants lacking plastid-associated DNA and detectable amounts of chlorophyll incorporate considerably more 32Pi into RNA in darkness than wild-type. One such mutant shows no significant difference in its light-dark labeling pattern.These observations indicate that cells possessing normal proplastids capable of forming functional chloroplasts regulate metabolism of RNA in darkness in a different manner than with either rudimentary chloroplasts or containing no detectable plastids structures. The possible involvement of more than one photoreceptor system in metabolic control is discussed.Supported by a grant from the National Institutes of Health, GM 14595  相似文献   

13.
Abstract A simple mechanical method for the rapid isolation of chloroplasts with high rates of photosynthesis from young leaves of oat (Avena sativa L.) was described. The photosynthetic activity of these chloroplasts was stable for at least 2 h with rates of CO2-dependent O2 evolution of 30–40 μmol g 1 Chl s 1. The photosynthetic properties of these chloroplasts were similar to those reported for spinach and pea chloroplasts isolated by mechanical disruption. The pH optimum for photosynthetic O2 evolution was pH 7.6. The induction time was 0.5–2 min. Maximal rates of photosynthetic O2 evolution in these chloroplast preparations were obtained in the absence of both divalent cations and EDTA. Addition of divilent cations strongly inhibited photosynthesis which could be partially restored by the subsequent addition of EDTA. But when these cations were not present in the assay medium the addition of EDTA greater than 1 mol m 3 decreased photosynthetic activity. The optimal orthophosphate concentration required for photosynthesis in these chloroplast preparations was 0.2–0.3 mol m 3. In contrast, the addition of pyrophosphate either in the light or dark inhibited photosynthesis. In a comparative study, chloroplasts were also isolated from oat and wheat (Triticum aestivum L., cultivar Hybrid C306) protoplasts. These chloroplast preparations were found to have properties similar to those determined for oat chloroplasts isolated by the mechanical method reported above.  相似文献   

14.
Exposure of dark grown resting Euglena to light induced the synthesis of chloroplast valyl-tRNA synthetase. Ethanol, a specific inhibitor of Euglena chloroplast development had little effect on chloroplast valyl-tRNA synthetase induction during the first 12 h of light exposure. Ethanol, however, completely inhibited enzyme synthesis between 12–72 h of light exposure. Malate, an alternative carbon source, had little effect on the photoinduction of valyl-tRNA synthetase. When dark grown resting cells were exposed to 2 h of light and returned to the dark, chloroplast valyl-tRNA synthetase continued to accumulate for 8–12 h at a rate which was less than the rate in cells maintained continuously in the light. The mutant strain W3BUL lacks detectable chloroplast DNA and phototransformable protochlorophyllide, but retains a plastid remnant. Exposure of strain W3BUL to light induced the synthesis of chloroplast valyl-tRNA synthetase and enzyme induction was not inhibited by ethanol. After 72 h of light exposure in the presence or absence of ethanol, enzyme levels in strain W3BUL were comparable to the levels found in the wildtype strain after 8–14 h of light exposure. These results suggest that the nonchloroplast photoreceptor regulates the initial phase of enzyme synthesis. Mutant strain W10BSmL differs from strain W3BUL in that the plastid remnant if present, is greatly reduced. Chloroplast valyl-tRNA synthetase was undetectable in the strain W10BSmL suggesting that the levels of active, cytoplasmically synthesized, chloroplast localized enzymes may be related to the developmental status of the chloroplast through the extent to which the enzyme precursor can be accumulated and or posttranslationally processed into an active enzyme within the chloroplast or chloroplast remnant.This research was supported by National Institutes of Health Grant GM26994, Biomedical support grant RR-0755 and funds from the Research Council, University of Nebraska  相似文献   

15.
  • 1 In a mendelian (sr3) and an uniparental (sr35) streptomycin resistant mutant of Chlamydomonas reinhardi the influence of streptomycin on protein synthesis on the chloroplast and cytoplasmic ribosomes was investigated in vitro. Hetero-, mixo- and phototrophic agar cultures and heterotrophic liquid cultures were used.
  • 2 Protein synthesis on the cytoplasmic ribosomes, measured by the activity of glyceraldehyde-3-phosphate: NADP dehydrogenase (EC 1.2.1.9), was not inhibited, but rather stimulated by streptomycin.
  • 3 Protein synthesis on the chloroplast ribosomes of sr3, measured by the activity of ribulose-1,5-diphosphate carboxylase (EC 4.1.1.39), was greatly inhibited by streptomycin, especially in hetero- and mixotrophic cultures. In sr35 the chloroplast ribosomes were resistant to streptomycin.
  • 4 Heterotrophically grown cultures of sr3 and of a streptomycin-sensitive strain are yellow in the presence of streptomycin and form no or only reduced thylakoids on solid media. But 70-S organelle-ribosomes are present in a normal amount.
  • 5 The relationship between chloroplast protein synthesis and thylakoid formation is discussed.
  相似文献   

16.
Summary We have carried out a molecular and genetic analysis of the chloroplast ATPase in Chlamydomonas reinhardtii. Recombination and complementation studies on 16 independently isolated chloroplast mutations affecting this complex demonstrated that they represent alleles in five distinct chloroplast genes. One of these five, the ac-u-c locus, has been positioned on the physical map of the chloroplast DNA by deletion mutations. The use of cloned spinach chloroplast ATPase genes in heterologous hybridizations to Chlamydomonas chloroplast DNA has allowed us to localize three or possibly four of the ATPase genes on the physical map. The beta and probably the epsilon subunit genes of Chlamydomonas CF1 lie within the same region of chloroplast DNA as the ac-u-c locus, while the alpha and proteolipid subunit genes appear to map adjacent to one another approximately 20 kbp away. Unlike the arrangement in higher plants, these two pairs of genes are separated from each other by an inverted repeat.  相似文献   

17.
Although the chloroplast movement can be strongly affected by ambient temperature, the information about chloroplast movement especially related to high temperatures is scarce. For detailed investigation of the effects of heat stress (HS) on tobacco leaves (Nicotiana tabacum L. cv. Samsun), we used two different HS treatments in dark with wide range of elevated temperatures (25–45°C). The leaf segments were either linearly heated in water bath at heating rate of 2°C min−1 from room temperature up to maximal temperature (T m) and then linearly cooled down to 25°C or incubated for 5 min in water bath at the same T m followed by 5 min incubation at 25°C (T-jump). The changes in light-induced chloroplast movement caused by the HS pretreatment were detected after the particular heating regime at 25°C using a method of time-dependent collimated transmittance (CT) and compared with the chlorophyll O–J–I–P fluorescence rise (FLR) measurements. The inhibition of chloroplast movement started at about 40°C while the fluorescence parameters responded generally at higher T m. This difference in sensitivity of CT and FLR was higher for the T-jump than for the linear HS indicating importance of applied heating regime. A possible influence of chloroplast movement on the FLR measurement and a physiological role of the HS-impaired chloroplast movement are discussed.  相似文献   

18.
CN17 is a functional stay‐green wheat variety that exhibits delayed leaf senescence and enhanced photosynthetic competence. To better understand these valuable traits, levels of chlorophyll a and b, soluble proteins, unsaturated fatty acids, and other components of CN17 were assayed. In addition, chloroplast ultrastructure, chloroplast number, and differences in gene expression between CN17 and a control variety, MY11, were examined. By 21 d post‐anthesis (DPA), CN17 leaves exhibited a significantly higher maximal photochemical efficiency for photosystem II (PSII) (F v /F m ) and a significantly higher efficiency of excitation capture by open PSII reaction centres (Fv′/Fm). In addition, chlorophyll degradation in CN17 was delayed by approximately 14 d, and was not blocked as observed in cosmetic stay‐green phenotypes. The soluble protein content (Ps) of CN17 was higher than MY11 at all timepoints assayed, and the ratio of unsaturated to saturated fatty acids was significantly higher. CN17 also exhibited isolated granal lamellae associated with vesicles and diminished peroxidation, and between 35 and 42 DPA, a sharp decrease in chloroplast number was detected. Taken together, these results strongly support the hypothesis that chloroplast ultrastructure regeneration is responsible for the functional stay‐green trait of CN17, and gene expression data provide insight into the mechanistic details.  相似文献   

19.
20.
SYNOPSIS The pattern of chloroplast development was followed in Euglena gracilis strain Z greening in media with a variety of fixed carbon and nitrogen sources. The greening pattern of cells grown in inorganic medium with added ethanol or glucose involves an inhibition of chloroplast development when compared to that of cells grown in inorganic medium alone. Several nitrogen sources were tested to ascertain their effectiveness in relieving the inhibition of chloroplast development by glucose. Of those, only 0.05% (w/v) (NH4)2 SO4 accelerated the recovery from the inhibition after most of the glucose had been removed from the medium by the cells. The other nitrogen sources tested were not effective. An inhibition of chloroplast development, similar to that observed in cells greening in the presence of glucose, was seen in cells greening in an ethanol-containing medium. These cells, however, had a different response upon the addition of 0.05% (NH4)2 SO4. They appeared to recover from the inhibition of chloroplast development, even before the ethanol was removed from the medium by the cells. A slight enhancement of chloroplast development was noted in cells greening in an inorganic medium with glycine or serine. Other amino acids tested had little or no effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号