首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic GMP plays a key role in retinal phototransduction and its photoreceptor concentration is precisely controlled by the cooperative action of cGMP phosphodiesterase (PDE) and retinal guanylyl cyclase (retGC). However, studies of the relationship between these two systems have focused only on a Ca(2+)-mediated, indirect connection. Using a retinal "regulator of G-protein signaling" (RGS9-1) and its fragments, we show that the N-terminus of RGS9-1 inhibits retGC activity. We also indicate that the GGL domain and/or the RGS domain function as an internal suppressor against the N-terminus, suggesting that proteins bound to these domains regulate the inhibitory activity of the N-terminus. Direct interaction of retGC with RGS9-1 and its N-terminus is also proved by immunoprecipitation and an overlay technique. Since RGS9-1 also controls the lifetime of transducin-activated PDE through regulating GTPase activity of transducin, this study strongly suggests that RGS9-1 mediates the direct interaction between PDE and retGC systems, and that this ingenious mechanism plays an important role in tuning of cGMP concentration in photoreceptors.  相似文献   

2.
Cyclic GMP is essential for the ability of rods and cones to respond to the light stimuli. Light triggers hydrolysis of cGMP and stops the influx of sodium and calcium through the cGMP-gated ion channels. The consequence of this event is 2-fold: first, the decrease in the inward sodium current plays the major role in an abrupt hyperpolarization of the cellular membrane; secondly, the decrease in the Ca2+ influx diminishes the free intracellular Ca2+ concentration. While the former constitutes the essence of the phototransduction pathway in rods and cones, the latter gives rise to a potent feedback mechanism that accelerates photoreceptor recovery and adaptation to background light. One of the most important events by which Ca2+ feedback controls recovery and light adaptation is synthesis of cGMP by guanylyl cyclase. Two isozymes of membrane photoreceptor guanylyl cyclase (retGC) have been identified in rods and cones that are regulated by Ca2+-binding proteins, GCAPs. At low intracellular concentrations of Ca2+ typical for light-adapted rods and cones GCAPs activate RetGC, but concentrations above 500 nM typical for dark-adapted photoreceptors turn them into inhibitors of retGC. A variety of mutations found in GCAP and retGC genes have been linked to several forms of human congenital retinal diseases, such as dominant cone degeneration, cone-rod dystrophy and Leber congenital amaurosis.  相似文献   

3.
It has been believed that retinal guanylyl cyclase (retGC), a key enzyme in the cGMP recovery to the dark state, is solely activated by guanylyl cyclase-activating proteins (GCAPs) in a Ca2+-sensitive manner. However, a question has arisen as to whether the observed GCAP stimulation of retGC is sufficient to account for the cGMP recovery because the stimulated activity measured in vitro is less than the light/GTP-activated cGMP phosphodiesterase activity. Here we report that the retGC activation by GCAPs is larger than previously reported and that a preincubation with adenine nucleotide is essential for the large activation. Under certain conditions, ATP is two times more effective than adenylyl imidodiphosphate (AMP-PNP), a hydrolysis-resistant ATP analog; however, this study mainly used AMP-PNP to focus on the role of adenine nucleotide binding to retGC. When photoreceptor outer segment homogenates are preincubated with AMP-PNP (EC50 = 0.65 +/- 0.20 mM), GCAP2 enhanced the retGC activity 10-13 times over the control rate. Without AMP-PNP, GCAP2 stimulated the control activity only 3-4-fold as in previous reports. The large activation is due to a GCAP2-dependent increase in Vmax without an alteration of retGC affinity for GCAP2 (EC50 = 47.9 +/- 2.7 nM). GCAP1 stimulated retGC activity in a similar fashion but with lower affinity (EC50 = 308 nM). In the AMP-PNP preincubation, low Ca2+ concentrations are not required, and retGC exists as a monomeric form. This large activation is accomplished through enhanced action of GCAPs as shown by Ca2+ inhibition of the activity (IC50 = 178 nM). We propose that retGC is activated by a two-step mechanism: a conformational change by ATP binding to its kinase homology domain under high Ca2+ concentrations that allows large enhancement of GCAP activation under low Ca2+ concentrations.  相似文献   

4.
Vertebrate phototransduction is mediated by cGMP, which is generated by retGC (retinal guanylate cyclase) and degraded by cGMP phosphodiesterase. Light stimulates cGMP hydrolysis via the G-protein transducin, which directly binds to and activates phosphodiesterase. Bright light also causes relocalization of transducin from the OS (outer segments) of the rod cells to the inner compartments. In the present study, we show experimental evidence for a previously unknown interaction between G(alphat) (the transducin alpha subunit) and retGC. G(alphat) co-immunoprecipitates with retGC from the retina or from co-transfected COS-7 cells. The retGC-G(alphat) complex is also present in cones. The interaction also occurs in mice lacking RGS9 (regulator of G-protein signalling 9), a protein previously shown to associate with both G(alphat) and retGC. The G(alphat)-retGC interaction is mediated primarily by the kinase homology domain of retGC, which binds GDP-bound G(alphat) stronger than the GTP[S] (GTPgammaS; guanosine 5'-[gamma-thio]triphosphate) form. Neither G(alphat) nor G(betagamma) affect retGC-mediated cGMP synthesis, regardless of the presence of GCAP (guanylate cyclase activating protein) and Ca2+. The rate of light-dependent transducin redistribution from the OS to the inner segments is markedly accelerated in the retGC-1-knockout mice, while the migration of transducin to the OS after the onset of darkness is delayed. Supplementation of permeabilized photoreceptors with cGMP does not affect transducin translocation. Taken together, these results suggest that the protein-protein interaction between G(alphat) and retGC represents a novel mechanism regulating light-dependent translocation of transducin in rod photoreceptors.  相似文献   

5.
6.
The cGMP phosphodiesterase (PDE) of retinal rods plays a central role in phototransduction. Illumination leads to its activation by a rod G-protein (Gt, transducin), thus causing a decrease in intracellular cGMP concentration, closure of plasma membrane cationic channels gated by cGMP, and development of the photoresponse. The PDE holoenzyme is an alpha beta gamma 2 tetramer. The alpha- and beta-subunits each contain one catalytic and one, or possibly two, noncatalytic cGMP-binding sites. Two identical gamma-subunits serve as protein inhibitors of the enzyme. Their inhibition is removed when they bind to Gt-GTP during PDE activation. Here we report that the noncatalytic cGMP-binding sites regulate the binding of PDE alpha beta with PDE gamma and as a result determine the mechanism of PDE activation by Gt. If the noncatalytic sites are empty, Gt-GTP physically removes PDE gamma from PDE alpha beta upon activation. Alternatively, if the noncatalytic sites are occupied by cGMP, Gt-GTP releases PDE gamma inhibitory action but remains bound in a complex with the PDE heterotetramer. The kinetic parameters of activated PDE in these two cases are indistinguishable. This mechanism appears to have two implications for the physiology of photoreceptor cells. First, the tight binding of PDE gamma with PDE alpha beta when the noncatalytic sites are occupied by cGMP may be responsible for the low level of basal PDE activity observed in dark-adapted cells. Second, occupancy of the noncatalytic sites ultimately controls the rate of PDE inactivation (cf. Arshavsky, V. Yu., and Bownds, M. D. (1992) Nature 357, 416-417), for the GTPase activity that terminates PDE activity is slower when these sites are occupied and Gt stays in a complex with PDE holoenzyme. In contrast GTPase acceleration is maximal when the noncatalytic sites are empty and Gt-PDE gamma dissociates from PDE alpha beta. Because cGMP levels are known to decrease upon illumination over a concentration range corresponding to the binding constants of the noncatalytic sites, the binding might be involved in determining the lifetime of activated PDE, after a single flash and/or during dark adaptation.  相似文献   

7.
Cyclic guanosine monophosphate (cGMP) is an important secondary messenger synthesized by the guanylyl cyclases which are found in the soluble (sGC) and particular isoforms. In the central nervous system, the nitric oxide (NO)-sensitive sGC isoform is the major enzyme responsible for cGMP synthesis. Phosphodiesterases (PDEs) are enzymes for hydrolysis of cGMP in the brain, and they are mainly isoforms 2, 5, and 9. The NO/cGMP signaling pathway has been shown to play an important role in the process underlying learning and memory. Aging is associated with an increase in PDE expression and activity and a decrease in cGMP concentration. In addition, aging is also associated with an enhancement of neuronal NO synthase, a lowering of endothelial, and no alteration in inducible activity. The observed changes in NMDA receptor density along with the Ca2+/NO/cGMP pathway underscore the lower synaptic plasticity and cognitive performance during aging. This notion is in agreement with last data indicating that inhibitors of PDE2 and PDE9 improve learning and memory in older rats. In this review, we focus on recent studies supporting the role of Ca2+/NO/cGMP pathway in aging and Alzheimer's disease.  相似文献   

8.
Chronic treatment of rats with LiCl is known to induce a decrease in cAMP, while this decrease has also been found to occur together with both a simultaneous increase in total cortical phosphodiesterase (PDE; EC 3.1.4.17) activity and a concomitant increase in cGMP. These studies have implicated an involvement of PDE in lithium (Li+) action and it has been suggested that cGMP and the cGMP-stimulated PDE may be instrumental in the observed effects of Li+ on cAMP. In this study, three isozymes of PDE were isolated and identified from rat cortex and their activity determined, together with simultaneous measurement of cAMP and cGMP, after chronic treatment with oral LiCl (0.35% m/m). Li+ treatment exerted profound effects on cyclic nucleotides in the cortex, inducing significant suppression of cAMP while increasing cGMP levels. However, the ion only induced a slight but insignificant increase in the activities of the three PDE isozymes. To confirm these observations, methylparaben (MPB), a drug demonstrating both an ability to induce a selective stimulation of cAMP-specific PDE and also to lower intracellular levels of cGMP, was co-administration orally (0.4% m/m) with Li+ over the same period. This combination emphasized certain actions of Li+ not noted with Li+ alone. MPB inhibited the Li+-induced increase in cGMP, yet did not prevent the ion from decreasing cAMP. However, the combination of Li+ and MPB engendered a synergistic 100% increase in the activity of the membrane-bound, cAMP-specific PDE, PDE IV. This combination also produced a significant suppression of cAMP, while no reduction in cGMP was observed. The data is indicative that Li+-induced suppression of cAMP does not appear to be related to an effect on the cGMP-dependent PDE II, and that the increases in cGMP and PDE induced by Li+ observed previously and in the present study are two unrelated events. Instead, the synergistic response of Li+ plus MPB on PDE IV, and the associated reduction of cAMP, indicate that Li+ may promote selective cAMP hydrolysis via an effect on membrane-bound forms of PDE. This effect of Li+ on PDE IV, as well as the reciprocal effects on cyclic nucleotide balance, may have important implications in explaining the antipsychotic actions of the ion.  相似文献   

9.
10.
Cyclic guanosine monophosphate (cGMP) signalling plays a fundamental role in many cell types, including platelets. cGMP has been implicated in platelet formation, but mechanistic detail about its spatio-temporal regulation in megakaryocytes (MKs) is lacking. Optogenetics is a technique which allows spatio-temporal manipulation of molecular events in living cells or organisms. We took advantage of this method and expressed a photo-activated guanylyl cyclase, Blastocladiella emersonii Cyclase opsin (BeCyclop), after viral-mediated gene transfer in bone marrow (BM)-derived MKs to precisely light-modulate cGMP levels. BeCyclop-MKs showed a significantly increased cGMP concentration after illumination, which was strongly dependent on phosphodiesterase (PDE) 5 activity. This finding was corroborated by real-time imaging of cGMP signals which revealed that pharmacological PDE5 inhibition also potentiated nitric oxide-triggered cGMP generation in BM MKs. In summary, we established for the first-time optogenetics in primary MKs and show that PDE5 is the predominant PDE regulating cGMP levels in MKs. These findings also demonstrate that optogenetics allows for the precise manipulation of MK biology.  相似文献   

11.
Photon absorption by photoreceptors activates hydrolysis of cGMP, which shuts down cGMP-gated channels and decreases free Ca2+ concentrations in outer segment. Suppression of Ca2+ influx through the cGMP channel by light activates retinal guanylyl cyclase through guanylyl cyclase activating proteins (GCAPs) and thus expedites photoreceptors recovery from excitation and restores their light sensitivity. GCAP1 and GCAP2, two ubiquitous among vertebrate species isoforms of GCAPs that activate retGC during rod response to light, are myristoylated Ca2+/Mg2+-binding proteins of the EF-hand superfamily. They consist of one non-metal binding EF-hand-like domain and three other EF-hands, each capable of binding Ca2+ and Mg2+. In the metal binding EF-hands of GCAP1, different point mutations can selectively block binding of Ca2+ or both Ca2+ and Mg2+ altogether. Activation of retGC at low Ca2+ (light adaptation) or its inhibition at high Ca2+ (dark adaptation) follows a cycle of Ca2+/Mg2+ exchange in GCAPs, rather than release of Ca2+ and its binding by apo-GCAPs. The Mg2+ binding in two of the EF-hands controls docking of GCAP1 with retGC1 in the conditions of light adaptation and is essential for activation of retGC. Mg2+ binding in a C-terminal EF-hand contributes to neither retGC1 docking with the cyclase nor its subsequent activation in the light, but is specifically required for switching the cyclase off in the conditions of dark adaptation by binding Ca2+. The Mg2+/Ca2+ exchange in GCAP1 and 2 operates within different range of intracellular Ca2+ concentrations and provides a two-step activation of the cyclase during rod recovery.  相似文献   

12.
By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca2+]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mm for ROS-GC1 and 39 mm for ROS-GC2. The effect required neither Ca2+ nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca2+]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity.  相似文献   

13.
《Journal of molecular biology》2019,431(19):3677-3689
Photoreceptor phosphodiesterase (PDE6) is the central effector enzyme in the visual excitation pathway in rod and cone photoreceptors. Its tight regulation is essential for the speed, sensitivity, recovery, and adaptation of visual signaling. The rod PDE6 holoenzyme (Pαβγ2) is composed of a catalytic heterodimer (Pαβ) that binds two inhibitory γ subunits. Each of the two catalytic subunits (Pα and Pβ) contains a catalytic domain responsible for cGMP hydrolysis and two tandem GAF domains, one of which binds cGMP noncatalytically. Unlike related GAF-containing PDEs where cGMP binding allosterically activates catalysis, the physiological significance of cGMP binding to the GAF domains of PDE6 is unknown. To elucidate the structural determinants of PDE6 allosteric regulators, we biochemically characterized PDE6 complexes in various allosteric states (Pαβ, Pαβ–cGMP, Pαβγ2, and Pαβγ2–cGMP) with a quantitative cross-linking/mass spectrometry approach. We employed a normalization strategy to dissect the cross-linking reactivity of individual residues in order to assess the spatial cross-linking propensity of detected pairs. In addition to identifying cross-linked pairs that undergo conformational changes upon ligand binding, we observed an asymmetric binding of the inhibitory γ-subunit and the noncatalytic cGMP to the GAFa domains of rod PDE6, as well as a stable open conformation of Pαβ catalytic dimer in different allosteric states. These results advance our understanding of the exquisite regulatory control of the lifetime of rod PDE6 activation/deactivation during visual signaling, as well as providing a structural basis for interpreting how mutations in rod PDE6 subunits can lead to retinal diseases.  相似文献   

14.
Sustained increases in intracellular cGMP concentrations ([cGMP]i) inhibit cell growth and induce apoptosis. We now report that a cGMP-specific phosphodiesterase, PDE5, plays a dominant role in regulating [cGMP]i transitions that inhibit cell growth and control susceptibility to apoptosis in pulmonary endothelium. Atrial natriuretic peptide (ANP) activates guanylyl cyclase A/B and induces a rapid [cGMP]i rise 2-5 min after its application, in both pulmonary arterial endothelial cells (PAECs) and pulmonary microvascular endothelial cells (PMVECs). However, increased [cGMP]i in PAECs is transient and decays within 10 min due to cytosolic PDE5 hydrolytic activity. Increased [cGMP]i in PMVECs is sustained for >3 h due to the absence of PDE5. Indeed, at any ANP concentration, the sustained (30 min) [cGMP]i rise is greater in PMVECs than in PAECs, unless PAECs are also treated with the PDE5 inhibitor zaprinast. Using RT-PCR, Western blot analysis, immunoprecipitation, and DEAE chromatography, we resolved the expression and activity of PDE 5A1/A2 only in PAECs. Similarly, PDE5 expression was restricted to extra-alveolar endothelium in vivo. ANP induced growth inhibition and apoptosis in PMVECs, but similar effects were not seen in PAECs unless ANP treatment was combined with zaprinast. ANP blocked the VEGF-induced proliferation and migration in PMVECs. Collectively, these data suggest that PDE5-regulated [cGMP]i controls endothelial cell growth and apoptosis, representing a mechanism of heterogeneity between two endothelial phenotypes.  相似文献   

15.
We report experiments which involve a light sensitive GTPase in the light dependent activation of retinal rod 3′5′-cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE). The data suggest that the light activated GTPase is intermediate between rhodopsin and PDE in the light-dependent activation sequence. We list the many striking similarities between hormone sensitive adenylate cyclase and light activated PDE in order to emphasize that the findings presented herein may have predictive value for ongoing studies of the hormone sensitive adenylate cyclase specifically regarding the role of the hormone activated GTPase in the activation sequence.  相似文献   

16.
We have recently shown that activation of retinal guanylate cyclase (retGC) by GC-activating proteins (GCAPs) is much stronger than that previously reported and that preincubation of photoreceptor outer segment homogenates with ATP or its analogue, adenylyl imidodiphosphate (AMP-PNP), is required for the strong activation [Yamazaki, A., Yu, H., Yamazaki, M., Honkawa, H., Matsuura, I., Usukura, J., and Yamazaki, R. K. (2003) J. Biol. Chem. 278, 33150-33160]. Here we show that illuminated rhodopsin is essential for development of the AMP-PNP incubation effect. This was demonstrated by illumination of dark homogenates and treatments of illuminated homogenates with 11-cis-retinal and hydroxylamine prior to the AMP-PNP incubation and by measurement of the GCAP2 concentration required for 50% activation. We also found that the AMP-PNP incubation effect was not altered by addition of guanosine 5'-O-(3-thiotriphosphate), indicating that transducin activation is not required. It is concluded that illuminated rhodopsin is involved in retGC activation in two ways: to initiate the ATP incubation effect for preparation of retGC activation as shown here and to reduce the Ca2+ concentrations through cGMP phosphodiesterase activation as already known. These two signal pathways may be activated in a parallel and perhaps proportional manner and finally converge for strong activation of retGC by Ca2+-free GCAPs.  相似文献   

17.
In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions.  相似文献   

18.
Phosphodiesterase-5 (PDE5) is a dimer containing a cGMP-specific catalytic domain and an allosteric cGMP-binding subdomain (GAF A) on each subunit. PDE5 exhibits three conformational forms that can be separated by Native PAGE and are denoted as Bands 1, 2, and 3 in decreasing order of mobility. A preparation comprised mainly of Band 2 PDE5 was partially converted to Band 3 PDE5 by 1 h incubation with cGMP or the PDE5-specific inhibitors sildenafil, vardenafil, or tadalafil, but not with cAMP, milrinone (PDE3-specific), or rolipram (PDE4-specific). Band 2 PDE5 was converted almost entirely to Band 3 PDE5 by overnight incubation with sildenafil at 30 °C. This time-dependent conversion was accompanied by a 7-fold increase in allosteric cGMP-binding activity, suggesting that Band 3 PDE5 is a much more active form than Band 2 PDE5 for allosteric cGMP binding. Conversion of Band 2 PDE5 to Band 3 PDE5 occurred faster by pre-incubation with cGMP, which binds to both the allosteric and catalytic sites of PDE5, than with catalytic site-specific sildenafil. Overnight incubation of a Band 2/Band 3 PDE5 mixture with EDTA caused time-dependent conversion to Band 1 PDE5 (apoenzyme), and this conversion was accompanied by a 50% loss in cGMP-binding activity. After incubation with EDTA, addition of Mn++ or Mg++ caused reversion of Band 1 to a Band 2/Band 3 PDE5 mixture in which Band 3 PDE5 predominated. This reversion was accompanied by a 3-fold increase in allosteric cGMP-binding activity. The combination of results implied that physiological conversion of Band 2 to Band 3 PDE5 by cGMP and/or divalent metal ion occupancy of the catalytic domain would increase allosteric cGMP binding to the enzyme. This conversion would produce a greater negative feedback effect on cGMP action by increasing sequestration of cGMP at the allosteric cGMP-binding site of PDE5 and by increasing cGMP degradation at the catalytic site of the enzyme. This conversion would also increase PDE5 inhibitor binding to the enzyme.  相似文献   

19.

Objectives

Phosphodiesterase 9 (PDE9) is a major isoform of phosphodiesterase hydrolysing cGMP and plays a key role in proliferation of cells, their differentiation and apoptosis, via intracellular cGMP signalling. The study described here was designed to investigate expression, activity and apoptotic effect of PDE9 on human breast cancer cell lines, MCF‐7 and MDA‐MB‐468.

Materials and methods

Activity and expression of PDE9 were examined using colorimetric cyclic nucleotide phosphodiesterase assay and real‐time RT‐PCR methods respectively; cGMP concentration was also measured. MTT viability test, annexin V‐FITC staining, Hoechst 33258 staining and caspase3 activity assay were used to detect apoptosis.

Results

Treatment of both cell lines with BAY 73‐6691 lead to reduction in PDE9 mRNA expression, PDE9 cGMP‐hydrolytic activity and elevation of the intracellular cGMP response. BAY 73‐6691 significantly reduced cell proliferation in a dose‐ and time‐dependent manner and caused marked increase in apoptosis through caspase3 activation.

Conclusion

Our results revealed that BAY 73‐6691 induced apoptosis in these breast cancer cell lines through the cGMP pathway. These data suggest that BAY 73‐6691 could be utilized as an agent in treatment of breast cancer.  相似文献   

20.
The Ca(2+)-dependent activation of retina-specific guanylyl cyclase (retGC) is mediated by guanylyl cyclase-activating proteins (GCAPs). Here we report for the first time detection of a 19 kDa protein (p19) with GCAP properties in extracts of rat retina and pineal gland. Both extracts stimulate synthesis of cGMP in rod outer segment (ROS) membranes at low (30 nM) but not at high (1 microM) concentrations of Ca(2+). At low Ca(2+), immunoaffinity purified p19 activates guanylyl cyclase(s) in bovine ROS and rat retinal membranes. Moreover, p19 is recognized by antibodies against bovine GCAP1 and, similarly to other GCAPs, exhibits a Ca(2+)-dependent electrophoretic mobility shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号