首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase constitute a family of tetrahydropterin-dependent aromatic amino acid hydroxylases. Comparison of the amino acid sequences of these three proteins shows that the C-terminal two-thirds are homologous, while the N-terminal thirds are not. This is consistent with a model in which the C-terminal two-thirds constitute a conserved catalytic domain to which has been appended discrete regulatory domains. To test such a model, two mutant proteins have been constructed, expressed in Escherichia coli, purified, and characterized. One protein contains the first 158 amino acids of rat tyrosine hydroxylase. The second lacks the first 155 amino acid residues of this enzyme. The spectral properties of the two domains suggest that their three-dimensional structures are changed only slightly from intact tyrosine hydroxylase. The N-terminal domain mutant binds to heparin and is phosphorylated by cAMP-dependent protein kinase at the same rate as the holoenzyme but lacks any catalytic activity. The C-terminal domain mutant is fully active, with Vmax and Km values identical to the holoenzyme; these results establish that all of the catalytic residues of tyrosine hydroxylase are located in the C-terminal 330 amino acids. The results with the two mutant proteins are consistent with these two segments of tyrosine hydroxylase being two separate domains, one regulatory and one catalytic.  相似文献   

2.
Abstract: Tryptophan hydroxylase (TPH) catalyzes the rate-limiting and committed step in serotonin biosynthesis. Within this enzyme, two distinct domains have been hypothesized to exist, an amino-terminal regulatory domain and a carboxyl-terminal catalytic domain. In the present experiments, the functional boundary between the putative domains was defined using deletion muta-genesis. A full-length cDNA clone for rabbit TPH was engineered for expression in bacteria. Five amino-terminal deletions were constructed using PCR, i.e., NΔ50, NΔ60, NΔ90, NΔ106, and NΔ116 (referring to the number of amino acids deleted from the amino terminus). Enzymatic activity was determined for each mutant after expression in bacteria. Whereas deletion of 116 amino acids (NΔ116) abolished enzyme activity, all of the other amino-terminal deletions exhibited increased specific activity relative to the recombinant wild-type TPH. The ability of the cyclic AMP-dependent protein kinase (PKA) to phosphorylate members of the deletion series was also examined. Deletion of the first 60 amino-terminal residues abolished the ability of the enzyme to serve as a substrate for PKA, yet the native and NΔ50 enzymes were phosphorylated. Moreover, a serine-58 point mutant (S58A) was not phosphorylated by PKA. In conclusion, the first 106 amino acids comprise a regulatory domain that is phosphorylated by PKA at serine-58. In addition, the boundary between regulatory and catalytic domains is analogous to the domain structure observed for the related enzyme tyrosine hydroxylase.  相似文献   

3.
Pradhan S  Estève PO 《Biochemistry》2003,42(18):5321-5332
The human maintenance DNA (cytosine-5) methyltransferase (hDNMT1) consists of a large N-terminal regulatory domain fused to a catalytic C-terminal domain by randomly repeated Gly-Lys dipeptides. Several N-terminal deletion mutants of hDNMT1 were made, purified, and tested for substrate specificity. Deletion mutants lacking 121, 501, 540, or 580 amino acids from the N-terminus still functioned as DNA methyltransferases, methylated CG sequences, and preferred hemimethylated to unmethylated DNA, as did the full-length hDNMT1. Methylated DNA stimulated methylation spreading on unmethylated CpG sequences for the full-length and the 121 amino acid deletion hDNMT1 equally well but not for the mutants lacking 501, 540, or 580 amino acids, indicating the presence of an allosteric activation determinant between amino acids 121 and 501. Peptides from the N- and C-termini bound methylated DNA independently. Point mutation analysis within the allosteric region revealed that amino acids 284-287 (KKHR) were involved in methylated DNA-mediated allosteric activation. Allosteric activation was reduced in the double point mutant enzymes D25 (K284A and K285A) and D12 (H286A and R287A). Retinoblastoma gene product (Rb), a negative regulator of DNA methylation, bound to the allosteric site of hDNMT1 and inhibited methylation, suggesting Rb may regulate methylation spreading.  相似文献   

4.
To map the DNA-binding domain of polyomavirus large T antigen, we constructed a set of plasmids coding for unidirectional carboxy- or amino-terminal deletion mutations in the large T antigen. Analysis of origin-specific DNA binding by mutant proteins expressed in Cos-1 cells revealed that the C-terminal boundary of the DNA-binding domain is at or near Glu-398. Fusion proteins of large T antigen lacking the first 200 N-terminal amino acids bound specifically to polyomavirus origin DNA; however, deletions beyond this site resulted in unstable proteins which could not be tested for DNA binding. Testing of point mutants and internal deletions by others suggested that the N-terminal boundary of the DNA-binding domain lies between amino acids 282 and 286. Taken together, these results locate the DNA-binding domain of polyomavirus large T antigen to the 116-amino-acid region between residues 282 and 398.  相似文献   

5.
The hydroxylation of phenylalanine to tyrosine by the liver enzyme phenylalanine hydroxylase is regulated by the level of phenylalanine. Whether there is a distinct allosteric binding site for phenylalanine outside of the active site has been unclear. The enzyme contains an N-terminal regulatory domain that extends through Thr117. The regulatory domain of rat phenylalanine hydroxylase was expressed in Escherichia coli. The purified protein behaves as a dimer on a gel filtration column. In the presence of phenylalanine, the protein elutes earlier from the column, consistent with a conformational change in the presence of the amino acid. No change in elution is seen in the presence of the non-activating amino acid proline. 1H–15N HSQC NMR spectra were obtained of the 15N-labeled protein alone and in the presence of phenylalanine or proline. A subset of the peaks in the spectrum exhibits chemical shift perturbation in the presence of phenylalanine, consistent with binding of phenylalanine at a specific site. No change in the NMR spectrum is seen in the presence of proline. These results establish that the regulatory domain of phenylalanine hydroxylase can bind phenylalanine, consistent with the presence of an allosteric site for the amino acid.  相似文献   

6.
7.
Colony-stimulating factor-1 (CSF1) is a cell lineage-specific hemopoietin required for the growth, differentiation, and survival of macrophages and their precursors. The human CSF1 receptor (CSF1R) is a 150-kDa transmembrane glycoprotein whose cytoplasmic tyrosine kinase domain is split by a kinase insert (KI) region of approximately 70 amino acids. We tested the ability of CSF1R KI domain deletion mutants to stimulate phosphatidylinositol-3-kinase (PtdIns-3-kinase), an enzyme whose activity is augmented by tyrosine kinase oncogenes and receptor tyrosine kinases, and to support mitogenesis in transfected cells. Receptor immunoprecipitates from CSF1-stimulated cells contained greater than 5-fold more PtdIns-3-kinase activity compared to nonstimulated cells. High performance liquid chromatography analysis of the PtdIns-3-kinase product scraped from thin layer chromatography plates indicated that PtdIns-3-P was produced. CSF1R KI domain deletion mutants retained tyrosine kinase activity in vitro. Receptor immunoprecipitates of two partially overlapping 28 and 30 amino acid KI deletion mutants of CSF1R retained some PtdIns-3-kinase activity, in contrast to immunoprecipitates of CSF1R lacking 67 amino acids of the KI domain. Each deletion mutant stimulated CSF1-dependent DNA synthesis in transfected cells at much reduced levels compared to wild-type receptor expressing cells. These data suggest a role for the CSF1R KI domain in PtdIns-3-kinase association and for CSF1-induced thymidine incorporation into DNA.  相似文献   

8.
The X-ray crystallographic structure of tyrosyl-tRNA synthetase (TyrTS) comprises only the N-terminal 320 amino acids of the molecule as the C-terminal 99 amino acids are poorly ordered in the crystal. A new technique, employing a single-stranded M13 splint, has been used to direct a deletion in the cloned gene of TyrTS so as to remove the disordered C-terminal region. We find that the truncated enzyme catalyses the formation of tyrosyl adenylate with unchanged Kcat and Km values and the crystallographic model must therefore include all the binding and catalytic residues involved in tyrosine activation. However, the truncated enzyme no longer binds tRNATyr or transfers tyrosine to tRNATyr. This indicates that the structural division of TyrTS is equally a functional one: the N-terminal structural domain catalyses tyrosine activation while the disordered C-terminal domain carries major determinants in tRNA binding.  相似文献   

9.
The heme-regulated phosphodiesterase (PDE) from Escherichia coli (Ec DOS) is a tetrameric protein composed of an N-terminal sensor domain (amino acids 1-201) containing two PAS domains (PAS-A, amino acids 21-84, and PAS-B, amino acids 144-201) and a C-terminal catalytic domain (amino acids 336-799). Heme is bound to the PAS-A domain, and the redox state of the heme iron regulates PDE activity. In our experiments, a H77A mutation and deletion of the PAS-B domain resulted in the loss of heme binding affinity to PAS-A. However, both mutant proteins were still tetrameric and more active than the full-length wild-type enzyme (140% activity compared with full-length wild type), suggesting that heme binding is not essential for catalysis. An N-terminal truncated mutant (DeltaN147, amino acids 148-807) containing no PAS-A domain or heme displayed 160% activity compared with full-length wild-type protein, confirming that the heme-bound PAS-A domain is not required for catalytic activity. An analysis of C-terminal truncated mutants led to mapping of the regions responsible for tetramer formation and revealed PDE activity in tetrameric proteins only. Mutations at a putative metal-ion binding site (His-590, His-594) totally abolished PDE activity, suggesting that binding of Mg2+ to the site is essential for catalysis. Interestingly, the addition of the isolated PAS-A domain in the Fe2+ form to the full-length wild-type protein markedly enhanced PDE activity (>5-fold). This activation is probably because of structural changes in the catalytic site as a result of interactions between the isolated PAS-A domain and that of the holoenzyme.  相似文献   

10.
Tyrosine hydroxylase catalyzes the hydroxylation of tyrosine and other aromatic amino acids using a tetrahydropterin as the reducing substrate. The enzyme is a homotetramer; each monomer contains a single nonheme iron atom. Five histidine residues are conserved in all tyrosine hydroxylases that have been sequenced to date and in the related eukaryotic enzymes phenylalanine and tryptophan hydroxylase. Because histidine has been suggested as a ligand to the iron in these enzymes, mutant tyrosine hydroxylase proteins in which each of the conserved histidines had been mutated to glutamine or alanine were expressed in Escherichia coli. The H192Q, H247Q, and H317A mutant proteins contained iron in comparable amounts to the wild-type enzyme, about 0.6 atoms/sub-unit. In contrast, the H331 and H336 mutant proteins contained no iron. The first three mutant enzymes were active, with Vmax values 39, 68, and 7% that of the wild-type enzyme, and slightly altered V/Km values for both tyrosine and 6-methyltetrahydropterin. In contrast, the H331 and H336 mutant enzymes had no detectable activity. The EPR spectra of the H192Q and H247Q enzymes are indistinguishable from that of wild-type tyrosine hydroxylase, whereas that of the H317A enzyme indicated that the ligand field of the iron had been slightly perturbed. These results are consistent with H331 and H336 being ligands to the active site iron atom.  相似文献   

11.
Abstract: Tryptophan hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, is activated by protein kinase A and calcium/calmodulin-dependent protein kinase. One important aspect of the regulation of any enzyme by a phosphorylation-dephosphorylation cascade, and one that is lacking for tryptophan hydroxylase, lies in the identification of its site of phosphorylation by protein kinases. Recombinant forms of brain tryptophan hydroxylase were expressed as glutathione S -transferase fusion proteins and exposed to protein kinase A. This protein kinase phosphorylates and activates full-length tryptophan hydroxylase. The inactive regulatory domain of the enzyme (corresponding to amino acids 1–98) was also phosphorylated by protein kinase A. The catalytic core of the hydroxylase (amino acids 99–444), which expresses high levels of enzyme activity, was neither phosphorylated nor activated by protein kinase A. Conversion of serine-58 to arginine resulted in the expression of a full-length tryptophan hydroxylase mutant that, although remaining catalytically active, was neither phosphorylated nor activated by protein kinase A. These results indicate that the activation of tryptophan hydroxylase by protein kinase A is mediated by the phosphorylation of serine-58 within the regulatory domain of the enzyme.  相似文献   

12.
13.
L Ye  M Sugiura 《Nucleic acids research》1992,20(23):6275-6279
Five ribonucleoproteins (or RNA-binding proteins) from tobacco chloroplasts have been identified to date; each of these contains an acidic N-terminal domain (24-64 amino acids) and two conserved RNA-binding domains (82-83 amino acids). All five ribonucleoproteins can bind to ssDNA and dsDNA but show high specificity for poly(G) and poly(U). Here we present the nucleic acid binding activity of each domain using a series of deletion mutant proteins made in vitro from the chloroplast 29 kDa ribonucleoproteins. The acidic domain does not have a positive effect on binding activities and proteins lacking this domain show higher affinities for nucleic acids than the wild-type proteins. Mutant proteins containing single RNA-binding domains can bind to poly(G) and poly(U), though with lower affinities than proteins containing two RNA-binding domains. The spacer region (11-37 amino acids) between the two RNA-binding domains does not interact with poly(G) or poly(U) by itself, but is required for the additive activity of the two RNA-binding domains. Proteins consisting of two RNA-binding domains but lacking the spacer have the same activity as those containing only one RNA-binding domain. Possible roles for each domain in chloroplast ribonucleoproteins are discussed.  相似文献   

14.
The interaction of hepatic lipase (HL) with heparan sulfate is critical to the function of this enzyme. The primary amino acid sequence of HL was compared to that of lipoprotein lipase (LPL), a related enzyme that possesses several putative heparin-binding domains. Of the three putative heparin-binding clusters of LPL (J. Biol. Chem. 1994. 269: 4626-4633; J. Lipid Res. 1998. 39: 1310-1315), one was conserved in HL (Cluster 1; residues Lys 297-Arg 300 in rat HL) and two were partially conserved (Cluster 2; residues Asp 307-Phe 320, and Cluster 4; residues Lys 337, and Thr 432-Arg 443). Mutants of HL were generated in which potential heparin-binding residues within Clusters 1 and 4 were changed to Asn. Two chimeras in which the LPL heparin-binding sequences of Clusters 2 and 4 were substituted for the analogous HL sequences were also constructed. These mutants were expressed in Chinese hamster ovary (CHO) cells and assayed for heparin-binding ability using heparin-Sepharose chromatography and a CHO cell-binding assay. The results suggest that residues within the homologous Cluster 1 region (Lys 297, Lys 298, and Arg 300), as well as some residues in the partially conserved Cluster 4 region (Lys 337, Lys 436, and Arg 443), are involved in the heparin binding of hepatic lipase. In the cell-binding assay, heparan sulfate-binding affinity equal to that of LPL was seen for the RHL chimera mutant that possessed the Cluster 4 sequence of LPL. Mutation of Cluster 1 residues of HL resulted in a major reduction in heparin binding ability as seen in both the cell-binding assay and the heparin-Sepharose elution profile. These results suggest that Cluster 1, the N-terminal heparin-binding domain, is of primary significance in RHL. This is different for LPL: mutations in the C-terminal binding domain (Cluster 4) cause a more significant shift in the salt required for elution from heparin-Sepharose than mutations in the N-terminal domain (Cluster 1).  相似文献   

15.
The ST6Gal I is a sialyltransferase that modifies N-linked oligosaccharides of glycoproteins. Previous results suggested a role for luminal stem and active domain sequences in the efficiency of ST6Gal I Golgi retention. Characterization of a series of STtyr isoform deletion mutants demonstrated that the stem is sensitive to proteases and that preventing cleavage in this region leads to increased cell surface expression. A mutant lacking amino acids 32-104 (STDelta4) is not active or cleaved and secreted like the wild type STtyr, but does exhibit increased cell surface expression. It is probable that the STDelta4 mutant lacks the stem region and some amino acids of the active domain because the STDelta5 mutant lacking amino acids 86-104 is also not active but is cleaved and secreted. In contrast, deletion of stem amino acids between residues 32 and 86 in the STDelta1, STDelta2, and STDelta3 mutants does not inactive these enzyme forms, eliminate their cleavage and secretion, or increase their cell surface expression. Surprisingly, cleavage occurs even though the previously identified Asn63-Ser 64 cleavage site is missing. Further evaluation demonstrated that a cleavage site between Lys 40 and Glu 41 is used in COS cells. Mutagenesis of Lys 40 significantly decreased, but did not eliminate cleavage, suggesting that there are additional secondary sites of cleavage in the ST6Gal I stem.  相似文献   

16.
17.
To study the active site(s) of IL-6 we combined mutagenesis of IL-6 with epitope mapping of IL-6 specific mAb. In addition to amino-terminal deletion mutants we described previously, carboxyl-terminal deletion mutants were prepared. Functional analysis showed that deletion of only five carboxyl-terminal amino acids already reduced the bioactivity 1000-fold. A panel of mAb to IL-6 was subsequently analyzed by antibody competition experiments and binding to the amino- and carboxyl-terminal deletion mutants. On the basis of the competition experiments the six neutralizing mAb were divided in two groups (I and II). The binding pattern with the deletion mutants suggested that the region recognized by the four mAb in group I is composed of residues of amino- and carboxyl-terminus: binding of two mAb was abolished after deletion of amino acid Ala I-Ile26, of the third mAb after deletion of the four carboxyl-terminal amino acids whereas the fourth mAb did not bind to either mutant. Group II mAb retained binding to these mutants. Taken together these data suggest that in the native IL-6 molecule amino acid residues of amino and carboxyl terminus are in close proximity and that together they constitute an active site. Furthermore our data suggest that the part of the molecule recognized by group II antibodies is a second site involved in biologic activity.  相似文献   

18.
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is an essential cofactor of phospholipase D (PLD) enzymes. In order to further characterize its role in PLD activation, we have constructed N-terminal deletion mutants of the human PLD1 (hPLD1) and a mutant lacking the putative pleckstrin homology domain (delta PH), which has been proposed to be involved in PIP(2) binding. For the N-terminal deletion mutants (up to 303 amino acids) and the delta PH mutant we found no significant differences compared to the hPLD1 wild-type, except changes in the specific activities: the K(m) values were about 20 microM for the substrate phosphatidylcholine, and PIP(2) activated the PLD enzymes maximally between 5 and 10 microM. In contrast, preincubation of the PLD proteins with 5-10 microM PIP(2) or PIP(2)-containing lipid vesicles inhibited the PLD activity. This inhibition was neither abolished by n-octyl-beta-D-glucopyranoside or neomycin nor by the ADP-ribosylation factor, another activator of PLD enzymes. All tested PLD proteins were active without PIP(2) in the presence of 1 M ammonium sulfate. The 303 N-terminal amino acids of hPLD1 are not involved in substrate binding or the interaction with PIP(2). Our data indicate further that the putative PH domain of hPLD1 is not responsible for the essential effects of PIP(2) on PLD activity.  相似文献   

19.
A cDNA clone containing the entire coding region of quail tyrosine hydroxylase (TH) has been isolated and analyzed. Comparison with rat and human THs and phenylalanine hydroxylases reveals several highly conserved domains. Two of them, shared by all these hydroxylases, are localized in the central and C-terminal parts of the molecules, and most probably include the active site. Two others are found only in the TH molecules. One contains putative sites of phosphorylation and is implicated in the posttranslational regulation of the enzyme. The second highly preserved domain, consisting of a stretch of 21 amino acids, is presumably associated with an important feature of the enzyme that remains to be identified.  相似文献   

20.
GDNF (glial cell-line-derived neurotrophic factor), and the closely related cytokines artemin and neurturin, bind strongly to heparin. Deletion of a basic amino-acid-rich sequence of 16 residues N-terminal to the first cysteine of the transforming growth factor beta domain of GDNF results in a marked reduction in heparin binding, whereas removal of a neighbouring sequence, and replacement of pairs of other basic residues with alanine had no effect. The heparin-binding sequence is quite distinct from the binding site for the high affinity GDNF polypeptide receptor, GFRalpha1 (GDNF family receptor alpha1), and heparin-bound GDNF is able to bind GFRalpha1 simultaneously. The heparin-binding sequence of GDNF is dispensable both for GFRalpha1 binding, and for activity for in vitro neurite outgrowth assay. Surprisingly, the observed inhibition of GDNF bioactivity with the wild-type protein in this assay was still found with the deletion mutant lacking the heparin-binding sequence. Heparin neither inhibits nor potentiates GDNF-GFRalpha1 interaction, and the extracellular domain of GFRalpha1 does not bind to heparin itself, precluding heparin cross-bridging of cytokine and receptor polypeptides. The role of heparin and heparan sulfate in GDNF signalling remains unclear, but the present study indicates that it does not occur in the first step of the pathway, namely GDNF-GFRalpha1 engagement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号