首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A mutant of Bacillus licheniformis (BLU166) sensitive to its own antibiotic bacitracin was isolated and the mutation bcr-l was mapped close to the bacitracin synthetase genes. The sensitivity was shown to be specific for bacitracin. Two further bacitracin-sensitive strains were constructed, one (BLU171) with normal ability to synthesize bacitracin, and one (BLU170) a bacitracin non-producer. In addition to an increased sensitivity of growing cells to bacitracin, sporulation of the mutant strain BLU171 was self-inhibited by bacitracin. It is concluded that (1) there might exist at least two levels of resistance to bacitracin; (2) mutation bcr-1 affects a 'structural' component, which may protect the sensitive reaction of cell-wall biosynthesis; (3) sporulation is affected to a greater extent by bacitracin than vegetative growth; and (4) synthesis of bacitracin is independent of the presence of this resistance mechanism since the sensitive mutant produces similar amounts of the antibiotic to the wild-type strain.  相似文献   

3.
The effect of glucose feeding on bacitracin production was investigated by fed-batch culture of Bacillus licheniformis. In batch culture, bacitracin secretion was induced after the glucose initially contained in the medium was completely consumed. The concentration of bacitracin, however, increased to no more than 340 units·ml−1 in the batch cultivations. Therefore, additional glucose was supplied after exhaustion of the initial glucose. The effect of glucose feeding on bacitracin biosynthesss was investigated in two ways, the pH-stat modal feeding method and the CO2-dependent feeding method. A kinetic study of bacitracin production found that some glucose was necessary, even during the bacitracin production phase. Excessive feeding of glucose, however, caused a reduction in bacitracin biosynthetic activity. When 50 g·l−1 of defatted soy bean meal (SBM) was used, the bacitracin concentration reached 670 units·ml−1 with the pH-stat modal feeding method and 610 units·ml−1 with the CO2-dependent feeding method, respectively. The yield of bacitracin from consumed glucose was better for the pH-stat method. Using this control strategy, the highest concentration of bacitracin (940 units·ml−1) was obtained with 150 g·l−1 of SBM.  相似文献   

4.
Mycobacterial cell wall is rigid and offers a high resistance to the transport of sitosterol into cytosol. The effect of ethambutol, penicillin, polymixin and bacitracin on biotransformation of sitosterol to androstenedione by modification of cell wall permeability was examined. Drug sensitivity assay results established that bacitracin increased the permeability of the cell wall to hydrophobic compounds. Growth inhibitory study of bacitracin and rifamycin, individually as well as in combination showed that these two antibiotics act synergistically to reduce cell growth. A comparison of transmission electron micrograph results of the bacitracin-treated cells with untreated cells, revealed deformities caused in the cell wall structure by bacitracin treatment. These deformities increased the cell wall permeability and transport of sitosterol inside the cell, and thus enhanced androstenedione (AD) production. A maximum of 1.37, 1.44, 1.65 and 1.76 g AD per gram dry cell weight of mycobacterial cells was produced in the presence of ethambutol, penicillin, polymixin and bacitracin, respectively. Below the minimum inhibitory concentration, bacitracin can be used as potent enhancer of permeability of hydrophobic substances across the mycobacterial cell wall.  相似文献   

5.
The structural genes for the entire bacitracin synthetase 2 (component II) and for a part of the putative bacitracin synthetase 3 (component III) from Bacillus licheniformis ATCC 10716 were cloned and expressed in Escherichia coli. A cosmid library of B. licheniformis DNA was constructed. The library was screened for the ability to produce bacitracin synthetase by in situ immunoassay using anti-bacitracin synthetase antiserum. A positive clone designated B-15, which has a recombinant plasmid carrying about a 32-kilobase insert of B. licheniformis DNA, was further characterized. Analysis of crude cell extract from B-15 by polyacrylamide gel electrophoresis and Western blotting (immunoblotting) showed that the extract contains two immunoreactant proteins with high molecular weight. One band with a molecular weight of about 240,000 comigrates with bacitracin synthetase 2; the other band is a protein with a molecular weight of about 300,000. Partial purification of the gene products encoded by the recombinant plasmid by gel filtration and hydroxyapatite column chromatography revealed that one gene product catalyzes L-lysine- and L-ornithine-dependent ATP-PPi exchange reactions which are characteristic of bacitracin synthetase 2, and the other product catalyzes L-isoleucine-, L-leucine, L-valine-, and L-histidine-dependent ATP-PPi exchange activities, suggesting the activities of a part of bacitracin synthetase 3. Subcloning experiments indicated that the structural gene for bacitracin synthetase 2 is located near the middle of the insert.  相似文献   

6.
Bacitracin resistance is normally conferred by either of two major mechanisms, the BcrABC transporter, which pumps out bacitracin, or BacA, an undecaprenol kinase that provides C(55)-isoprenyl phosphate by de novo synthesis. We demonstrate that the Bacillus subtilis bcrC (ywoA) gene, encoding a putative bacitracin transport permease, is an important bacitracin resistance determinant. A bcrC mutant strain had an eightfold-higher sensitivity to bacitracin. Expression of bcrC initiated from a single promoter site that could be recognized by either of two extracytoplasmic function (ECF) sigma factors, sigma(X) or sigma(M). Bacitracin induced expression of bcrC, and this induction was dependent on sigma(M) but not on sigma(X). Under inducing conditions, expression was primarily dependent on sigma(M). As a consequence, a sigM mutant was fourfold more sensitive to bacitracin, while the sigX mutant was only slightly sensitive. A sigX sigM double mutant was similar to a bcrC mutant in sensitivity. These results support the suggestion that one function of B. subtilis ECF sigma factors is to coordinate antibiotic stress responses.  相似文献   

7.
Bacitracin is a peptide antibiotic produced by several Bacillus licheniformis strains that is most active against other Gram-positive microorganisms, but not against the producer strain itself. Recently, heterologous expression of the bacitracin resistance mediating BcrABC transporter in Bacillus subtilis and Escherichia coli was described. In this study we could determine that the transporter encoding bcrABC genes are localized about 3 kb downstream of the 44-kb bacitracin biosynthetic operon bacABC. Between the bac operon and the bcrABC genes two orfs, designated bacR and bacS, were identified. They code for proteins with high homology to regulator and sensor proteins of two-component systems. A disruption mutant of the bacRS genes was constructed. While the mutant displayed no effects on the bacitracin production it exhibited highly increased bacitracin sensitivity compared to the wild-type strain. Western blot analysis of the expression of BcrA, the ATP-binding cassette of the transporter, showed in the wild-type a moderate BcrA induction in late stationary cells that accumulate bacitracin, whereas in the bacRS mutant cells the BcrA expression was constitutive. A comparison of bacitracin stressed and nonstressed wild-type cells in Western blot analysis revealed increasing amounts of BcrA and a decrease in BacR in the stressed cells. From these findings we infer that BacR acts as a negative regulator for controlling the expression of the bcrABC transporter genes.  相似文献   

8.
The peptide antibiotic bacitracin is widely used as an inhibitor of protein disulfide isomerase (PDI) to demonstrate the role of the protein-folding catalyst in a variety of molecular pathways. Commercial bacitracin is a mixture of at least 22 structurally related peptides. The inhibitory activity of individual bacitracin analogs on PDI is unknown. For the present study, we purified the major bacitracin analogs, A, B, H, and F, and tested their ability to inhibit the reductive activity of PDI by use of an insulin aggregation assay. All analogs inhibited PDI, but the activity (IC(50) ) ranged from 20 μm for bacitracin F to 1050 μm for bacitracin B. The mechanism of PDI inhibition by bacitracin is unknown. Here, we show, by MALDI-TOF/TOF MS, a direct interaction of bacitracin with PDI, involving disulfide bond formation between an open thiol form of the bacitracin thiazoline ring and cysteines in the substrate-binding domain of PDI.  相似文献   

9.
10.
The dodecapeptide bacitracin A is the major constitutent of a family of antibacterial peptides produced by Bacillus licheniformis. The non-ribosomal biosynthesis of bacitracin has been studied in cell-free extracts. Bacitracin synthetase has been fractionated on Sephadex G 200 column into two fractions; both fractions were required for bacitracin biosynthesis. On the other hand, on a Sepharose affinity chromatography column, using L-leucine as ligand, three fractions were obtained; all three were required for bacitracin biosynthesis. During bacitracin synthesis, the enzyme components contain a number of thioester bound peptides. The nature of the peptides suggested that the synthesis proceeds towards the C-terminal end of the molecule. It is assumed that by sequential addition of thioester-bound amino acids, bacitracin A could be synthesized on the surface of the enzyme containing phosphopantetheine.  相似文献   

11.
Whole cells of Bacillus sp., a bacitracin-producing bacteria, were immobilized in polyacrylamide gel. The continuous production of bacitracin by an immobilized whole-cell-containing air-bubbled reactor was examined with 0.5% peptone solution. The bacitracin productivity (28 units/ml/hr) obtained with this system was higher than that with a batch system. The effluent bacitracin concentration increased with increasing aeration rate and reached a steady-state maximum above the aeration rate of 3.0 liter/min. A high bacitracin productivity was retained for at least eight days when the gel was washed with sterilized saline at a flow rate of 250 ml/hr for 2 hr once a day. The half-life of the immobilized whole-cell system was about 10 days. Bacitracin productivity by the immobilized whole-cell reactor was higher than that by a conventional continuous fermentation process at high dilution rates.  相似文献   

12.
The antibiotic bacitracin, a known inhibitor of insulin degradation by both isolated cells and subcellular organelles, inhibited the ability of purified glutathione-insulin transhydrogenase to split insulin into its constituent A and B chains. This inhibition was demonstrated by measuring the formation of insulin degradative products that were both soluble in 5% trichloroacetic acid and chromatographed as the separate chains of insulin on Sephadex G-50. At concentrations of 90 and 300 μM, bacitracin inhibited 50 and 90%, respectively, of the degrading activity of the purified enzyme. Similarly, degradation by crude liver lysates was inhibited 50 and 90% by 70 and 250 μM bacitracin, respectively. Kinetic studies indicated that this inhibition was by a complex mechanism that decreased both the Vmax and affinity of the enzyme for insulin. These data raise the possibility that the inhibition of glutathione-insulin transhydrogenase by bacitracin could account for part or all of the effects of this antibiotic on inhibition of insulin degradation by target cells.  相似文献   

13.
Bacitracin, as purchased from biochemical supply companies, is a mixture of more than 30 different substances. The major antibiotic isoforms A and B account for about 60% of the mixture. A newly identified impurity in some, but not all, of the bacitracin lots is a powerful subtilisin-type protease capable of cleaving many proteins including protein disulfide isomerase (PDI), myosin, and a variety of artificial substrates Thus, it is important for investigators who use bacitracin as a protease or other enzyme inhibitor to determine if the bacitracin they are using is contaminated with a protease enzyme. If it is present, they may have to reinterpret their results and retest with an enzyme-free bacitracin reagent.  相似文献   

14.
The bacitracin resistance of Bacillus licheniformis, a producer of bacitracin, is mediated by the ABC transporter Bcr. Bacillus subtilis cells carrying bcr genes on high-copy number plasmids developed collateral detergent sensitivity, as did human cells with overexpressed multidrug resistance P-glycoprotein. Resistance against bacitracin and sensitivity of resistant cells to detergents were shown to be inseparable phenomena associated with the membrane part of Bcr transporter, namely protein BcrC. A fused protein, consisting of ATP-binding protein BcrA and membrane component BcrC was constructed. It resembled a half molecule of P-glycoprotein and was capable of providing a significant degree of antibiotic resistance and detergent sensitivity.  相似文献   

15.
A small open reading frame from the Escherichia coli chromosome, bcrC(EC), encodes a homologue to the BcrC subunit of the bacitracin permease from Bacillus licheniformis. We show that disruption of the chromosomal bcrC(EC) gene causes bacitracin sensitivity and, conversely, that BcrC(EC) confers bacitracin resistance when expressed from a multicopy plasmid.  相似文献   

16.
Bacitracin preparations are shown to induce penicillinase (β-lactamase I) formation in strain 569 of Bacillus cereus. At high bacitracin concentrations (2–4 mg/ml) the level of induced enzyme obtained reaches a maximum which is comparable to that induced by optimal concentrations (1–2 mcg/ml) of β-lactam antibiotics. Penicillinase formation induced by short exposure to bacitracin, continues at a normal rate after all free bacitracin has been removed. The inducing activity of bacitracin is highly, but not completely, resistant to β-lactamase and can be entirely eliminated by prolonged treatment with penicillinase of B. cereus. The site of induction by bacitracin is, however, different from that mediating induction by β-lactam antibiotics. The inducing component has been isolated by thin layer chromatography; it seems to be closely related to, but not identical with, bacitracin A,B or F.  相似文献   

17.
18.
杆菌肽是一种主要由芽胞杆菌产生的广谱性抗生素,目前作为兽药广泛应用于畜禽养殖领域。前体氨基酸供应不足可能是限制微生物发酵高产杆菌肽的重要因素。文中以杆菌肽工业生产菌株——地衣芽胞杆菌Bacillus licheniformis DW2为出发菌株,研究l-半胱氨酸供给模块强化对杆菌肽合成的影响。首先,构建了l-半胱氨酸合成酶基因cysK强化表达菌株,杆菌肽效价相比于对照菌株提高了9.47%。接着,为提高l-半胱氨酸合成前体供给,对l-丝氨酸乙酰转移酶基因cysE和硫代硫酸盐/硫酸盐胞内转运蛋白基因cysP进行强化,杆菌肽产量分别提高了7.23%和8.52%。随后,结果表明转运蛋白TcyP负责从胞外向胞内转运胱氨酸,强化表达TcyP后胞内l-半胱氨酸浓度和杆菌肽效价分别提高了29.19%和7.79%。通过组合代谢工程育种,在整合表达了基因cysK基础上,利用强启动子PbacA分别替换基因cysP、cysE和tcyP原始启动子,得到工程菌株CYS4 (DW2::cysK-PbacA(cysP)- PbacA(cysE)-PbacA(tcyP)),杆菌肽效价达到910.02 U/mL,相比于出发菌株DW2 (747.71 U/mL) 提高了21.10%。最后,通过3 L发酵罐小试实验,进一步证实了强化l-半胱氨酸有利于杆菌肽合成。研究表明,强化胞内l-半胱氨酸供给水平是提高地衣芽胞杆菌中杆菌肽产量的有效策略,为杆菌肽工业生产提供了一株具有良好应用前景的菌株。  相似文献   

19.
1. Bacitracin synthetase, a three-component enzyme complex which catalyzes synthesis of the dodecapeptide bacitracin A, has been prepared from Bacillus licheniformis strains ATCC 10716, AL and SB 319. During synthesis of bacitracin, the amino acids (smaller amounts) and peptides are covalently bound to the enzyme complex. The nature of the bindings suggest that the amino acids and peptides are thioester linked. 2. The peptides, identified by thin-layer chromatography after performic acid liberation were Ile-Cys, Ile-Cys-Leu, Ile-Cys-Leu-Glu, Ile-Cys-Leu-Glu, Ile-Cys-Leu-Glu-Ile, Ile-Cys-Leu-Glu-Ile-Lys-Orn, Ile-Cys-Leu-Glu-Ile-Ile-Orn-Ile, Ile-Cys-L-EU-Glu-Ile-Lys-Orn-Ile-Phe, Ile-Cys-Leu-Glu-Ile-L-YS-Orn-Ile-Phe-His-Phe-His and Ile-Cys-Leu-Glu-Ile-Lys-Orn-Ile-Phe-His-Asp. 3. The labelled peptides covalently bound to bacitracin synthetase were intermediates in bacitracin synthesis. 4. Chain growth is initiated on one enzyme component (A) by the addition of isoleucine and cysteine. The sequential addition of the other amino acids proceeds in the C-terminal direction until the pentapeptide is formed. Further addition of amino acids and production of bacitracin are obtained by adding the other enzyme components (B and C) to the incubation mixture.  相似文献   

20.
A variant strain was developed fromMicrococcus luteus ATCC 10240 for the purpose of bioassay analysis of bacitracin in the presence of chlortetracycline (CTC). Strain EN5 resulted from four sequential mutation steps, using quantitative resistance to CTC and retained bacitracin sensitivity as a selective criterion. Strain EN5 was tested for bioassay response, stability, and identity. The strain measured bacitracin activity with no interference from 40 g ml–1 added CTC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号