首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 2,4-diaryl-2,3,4,5-tetrahydro- (36-40) and 2,4-diaryl-2,3-dihydro-1,5-benzothiazepines (25-35) have been synthesized from the corresponding chalcones 1-24. Both the benzothiazepines and chalcones were evaluated as DPPH free-radical scavengers and as inhibitors of cholinesterases, urease, and alpha-glucosidase. Compounds 2, 5, 6, 7, 10, 13, 18, 21, 36a, 37a, 37b, and 39a showed significant cholinesterase inhibiting activities. Among the 15 dihydro-1,5-benzothiazepines, 26, 32, and 35 exhibited significant radical-scavenging activities; and six tetrahydro-1,5-benzothiazepines (35, 36a, 36b, 37a, 37b, and 39a) were found to be inhibitors of AChE and BChE. Compounds 22, 25, 26, 33, 35, 36a, 37b, and 39a inhibited urease, and 25 and 27-31 were found to be potent inhibitors of alpha-glucosidase.  相似文献   

2.
Chalcones 1-20, a new class of glycosidase inhibitors, were synthesized, and their glycosidase inhibitory activities were investigated. Non-aminochalcones 1-12 had no inhibitory activity, however, aminochalcones 13-20 had strong glycosidase (alpha-glucosidase, alpha-amylase, and beta-amylase) inhibitory activities. In particular, sulfonamide chalcones 17-20 had more potent alpha-glucosidase inhibitory activity than aminated chalcone 13-16. 4'-(p-Toluenesulfonamide)-3,4-dihydroxy chalcone 20 (IC(50)=0.4microM) was the best inhibitor against alpha-glucosidase, and these sulfonamide chalcones showed non-competitive inhibition.  相似文献   

3.
Acarbose analogues, containing cellobiose and lactose structures, were prepared by reaction of the two disaccharides with acarbose and Bacillus stearothermophilus maltogenic amylase. The kinetics for the inhibition by the two analogues was studied for beta-glucosidase, beta-galactosidase, cyclomaltodextrin glucanosyltransferase (CGTase), and alpha-glucosidase. Both analogues were potent competitive inhibitors for beta-glucosidase, with K(I) values in the range of 0.04-2.44 microM, and the lactose analogues were good uncompetitive inhibitors for beta-galactosidase, with K(I) values in the range of 159-415 microM, while acarbose was not an inhibitor for either enzyme at 10 and 5 mM, respectively. Both analogues were also potent mixed inhibitors for CGTase, with K(I) values in the range of 0.1-9.3 microM. The lactose analogue was a 6.4-fold better competitive inhibitor for alpha-glucosidase than was acarbose.  相似文献   

4.
A series of novel xanthone derivatives with extended pi-systems, that is, benzoxanthones 2-4, and their structurally perturbed analogs 5-9 have been designed and synthesized as alpha-glucosidase inhibitors. Their inhibitory activities toward yeast's alpha-glucosidase were evaluated with the aim to enrich the structure-activity relationship. The results indicated that benzoxanthones 2-4 were capable of inhibiting in vitro yeast's alpha-glucosidase 17- to 28-fold more strongly than xanthone derivative 1 that has smaller conjugated pi-system. Benzoxanthone 8, bearing angularly fused aromatic rings, and reduced benzoxanthone 5 showed decreased activities, strongly suggesting that linearly conjugated pi-systems play a crucial role in the inhibition process. O-Methylation of 3-OH of benzoxanthone 2 and nitration at C4 position led to a large decrease in the activity. This indicates that 3-OH of benzoxanthone was crucial to the inhibitory activity, primarily as an H-bonding donor. The present results suggest that pi-pi stacking effect and H-bonding make substantial contributions to elicit the inhibitory activities of this general class of inhibitors.  相似文献   

5.
F. Ye  Z. Shen  M. Xie 《Phytomedicine》2002,9(2):161-166
Alpha-glucosidase inhibitors are oral antidiabetic drugs. A traditional Chinese medical herb, Sangzhi (Ramulus mori), appears to have properties similar to those of alpha-glucosidase inhibitors. The effects of an aqueous extract of Shangzhi (SZ) were studied in normal and alloxan diabetic rats and mice, and these results compared with those for acarbose, an alpha-glucosidase inhibitor. In our grade-dose studies, SZ was found to lower and prolong the zenith of blood glucose concentration (ZBG) after sucrose or starch loading and stabilize blood glucose levels in fasting normal and alloxan diabetic mice. After 2 weeks of SZ administration with high-calorie chow or a normal diet, the fasting and non-fasting blood glucose concentrations in alloxan diabetic mice and rats were decreased. In alloxan rats, the blood fructosamine concentration was lowered. Results for acarbose and SZ were similar. These indicate that SZ has alpha-glucosidase inhibitory effects.  相似文献   

6.
Liver X receptors (LXR), which were originally reported as oxysterol-activated nuclear receptors, were recently found to recognize glucose as a physiological ligand. On this basis, we have already developed novel LXR antagonists based upon alpha-glucosidase inhibitors derived from thalidomide. Here, to clarify the relationship between alpha-glucosidase inhibition and LXR modulation, we investigate the alpha-glucosidase-inhibitory activity of typical LXR ligands and the LXR-modulating activity of typical alpha-glucosidase inhibitors. Although there were some exceptions, co-existence of LXR-regulatory and alpha-glucosidase-inhibitory activities seemed to be rather general among the examined compounds. The LXR ligands were found to be non-competitive alpha-glucosidase inhibitors, suggesting that it might be possible to separate the two activities. To test this idea, we focused on riccardin C, a naturally occurring LXR ligand, which we found here to be a potent alpha-glucosidase inhibitor as well. Structural development of riccardin C afforded novel LXR antagonists lacking alpha-glucosidase-inhibitory activity, 19c and 19f, and a LXRalpha-selective antagonist, 22.  相似文献   

7.
Novel alpha-glucosidase inhibitors with a tetrachlorophthalimide skeleton were prepared and their structure-activity relationships were analyzed. Among them, N-phenyl-4,5,6,7-tetrachlorophthalimide (CPOP: 2) and N-(4-phenylbutyl)-4,5,6,7-tetrachlorophthalimide (CP4P: 6) showed very potent inhibitory activity, being more potent than 1-deoxynojirimycin (dNM: 1). Mechanistic studies revealed that CPOP (2) and CP4P (6) inhibit alpha-glucosidase non-competitively and competitively, respectively.  相似文献   

8.
Discovery of alpha-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of diabetes and the other carbohydrate mediated diseases. We have been able to identify 13 novel alpha-glucosidase inhibitors by means of a computer-aided drug design protocol involving homology modeling of the target protein and the virtual screening with docking simulations under consideration of the effects of ligand solvation in the binding free energy function. Because the newly discovered inhibitors are structurally diverse and reveal a significant potency with IC(50) values lower than 50 microM, all of them can be considered for further development by structure-activity relationship studies or de novo design methods. Structural features relevant to the interactions of the newly identified inhibitors with the active site residues of alpha-glucosidase are discussed in detail.  相似文献   

9.
Discovery of alpha-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of diabetes and the other carbohydrate-mediated diseases. We have identified four novel alpha-glucosidase inhibitors by means of a drug design protocol involving the structure-based virtual screening under consideration of the effects of ligand solvation in the scoring function and in vitro enzyme assay. Because the newly identified inhibitors reveal in vivo antidiabetic activity as well as a significant potency with more than 70% inhibition of the catalytic activity of alpha-glucosidase at 50 microM, all of them seem to deserve further development to discover new drugs for diabetes. Structural features relevant to the interactions of the newly identified inhibitors with the active site residues of alpha-glucosidase are discussed in detail.  相似文献   

10.
Glycosidase inhibitors as antiviral and/or antitumor agents.   总被引:5,自引:0,他引:5  
Glycoprotein processing inhibitors prevent the normal processing of N-linked glycoproteins by inhibiting specific glycosidases involved in these reactions. Thus, a number of compounds are now known that inhibit alpha-glucosidase I and alpha-glucosidase II and therefore prevent the removal of glucoses from the high-mannose chains. Some of these compounds are more potent inhibitors of one or the other of these glucosidases. There are also a number of inhibitors that affect one of the processing alpha-mannosidases (i.e. mannosidase I or mannosidase II). These compounds; especially the glucosidase inhibitors, have been valuable tools to help us understand the role of carbohydrate in viral envelope glycoprotein function. Such processing inhibitors have also been used with various tumorigenic cell lines to determine the function of N-linked glycoproteins in cancer.  相似文献   

11.
Bacillus stearothermophilus maltogenic amylase hydrolyzes the first glycosidic linkage of acarbose to give acarviosine-glucose. In the presence of carbohydrate acceptors, acarviosine-glucose is primarily transferred to the C-6 position of the acceptor. When d-glucose is the acceptor, isoacarbose is formed. Acarbose, acarviosine-glucose, and isoacarbose were compared as inhibitors of alpha-glucosidase, alpha-amylase, and cyclomaltodextrin glucanosyltransferase. The three inhibitors were found to be competitive inhibitors for alpha-glucosidase and mixed noncompetitive inhibitors for alpha-amylase and cyclomaltodextrin glucanosyltransferase. The K(i) values were dependent on the type of enzyme and their source. Acarviosine-glucose was a potent inhibitor for baker's yeast alpha-glucosidase, inhibiting 430 times more than acarbose, and was an excellent inhibitor for cyclomaltodextrin glucanosyltransferase, inhibiting 6 times more than acarbose. Isoacarbose was the most effective inhibitor of alpha-amylase and cyclomaltodextrin glucanosyltransferase, inhibiting 15.2 and 2.0 times more than acarbose, respectively.  相似文献   

12.
Diabetes mellitus is one of the most prevalant diseases of adults. Agents with alpha-glucosidase inhibitory activity have been useful as oral hypoglycemic drugs for the control of hyperglycemia in patients with type 2; noninsulin-dependent, diabetes mellitus (NIDDM). Investigation of some medicinal herbs: Urtica dioica, Taraxacum officinale, Viscum album, and Myrtus communis with alpha-glucosidase inhibitor activity was conducted to identify a prophylactic effect for diabetes in vitro. All plants showed differing potent alpha-glucosidase inhibitory activity. However, Myrtus communis strongly inhibited the enzyme (IC50 = 38 microg/mL). The inhibitory effect of these plants and some common antidiabetic drugs against the enzyme source (baker's yeast, rabbit liver, and small intestine) were also searched. Approximately all inhibitors used in this study showed quite different inhibitory activities, according to alpha-glucosidase origins. Furthermore, subsequent separation of the active material from Myrtus communis by HPLC showed that only one fraction acted as an a-glucosidase inhibitor.  相似文献   

13.
Genistein, a soy isoflavone, is a potent alpha-glucosidase inhibitor.   总被引:1,自引:0,他引:1  
D S Lee  S H Lee 《FEBS letters》2001,501(1):84-86
Genistein is an isoflavone that is known to be contained in soybean. It was proved that genistein plays a pivotal role in homeostasis in the human body. In the course of screening for useful alpha-glucosidase inhibitors, we isolated and identified genistein as a candidate for alpha-glucosidase inhibitor from fermentation broths of a Streptomyces sp. Genistein was shown to be a reversible, slow-binding, non-competitive inhibitor of yeast alpha-glucosidase with a K(i) value of 5.7x10(-8) M when the enzyme mixture was pretreated with genistein. These results show a possibility that genistein could be a useful tool for metabolic disorders.  相似文献   

14.
The amino acid composition of two forms of alpha-glucosidase from the yeast Saccharomyces cerevisiae-II was established and the values of Km, V, kcat and kcat/Km for maltose, maltotriose and p-nitrophenyl-alpha-D-glucopyranoside (PNPG) were determined. PNPG possessed a much higher affinity for the enzyme as compared to sucrose, maltose and maltotriose. The value of V decreased in the following order: PNPG greater than sucrose greater than maltose greater than greater than maltotriose. No differences between the kinetic parameters of individual forms of alpha-glucosidase were observed. Glucose, fructose and methyl-alpha-glucoside act as competitive inhibitors. The two forms of alpha-glucosidase under study have an identical pH optimum and thermal stability.  相似文献   

15.
The kinetics of N-linked oligosaccharide processing and the structures of the processing intermediates have been examined in normal parental BW5147 mouse lymphoma cells and the alpha-glucosidase II-deficient PHAR2.7 mutant cells. The mutant cells accumulated glucosylated intermediates but were able to deglucosylate and process about 40% of their oligosaccharides to complex-type. This processing was not due to residual alpha-glucosidase II activity since the alpha-glucosidase inhibitors 1-deoxynojirimycin (DNJ) and N-butyl-DNJ did not prevent it. Parent cells also showed alpha-glucosidase II-independent processing in the presence of DNJ and N-butyl-DNJ. Membrane preparations from both parent and mutant cells had endo alpha-mannosidase activity, that is, split Glc1,2Man9GlcNAc to Glc1,2Man plus Man8GlcNAc, indicating that this was a candidate for an alternate route to complex oligosaccharide formation in the mutant cells. A balance study in which the cellular glycoproteins, intracellular water soluble saccharides, and saccharides secreted into the medium were isolated and analyzed from [2-3H]mannose-labeled mutant cells showed that the cells formed the di- and trisaccharides Glc1Man and Glc2Man in amounts equivalent to the deglucosylated oligosaccharides found in the cellular glycoproteins. This result shows unequivocally that the alpha-glucosidase II-deficient mutant cells use endo alpha-mannosidase as a bypass route for N-linked oligosaccharide processing.  相似文献   

16.
Lec23 Chinese hamster ovary (CHO) cells have been shown to possess a unique lectin resistance phenotype and genotype compared with previously isolated CHO glycosylation mutants (Stanley, P., Sallustio, S., Krag, S. S., and Dunn, B. (1990) Somatic Cell Mol. Genet. 16, 211-223). In this paper, a biochemical basis for the lec23 mutation is identified. The carbohydrates associated with the G glycoprotein of vesicular stomatitis virus (VSV) grown in Lec23 cells (Lec23/VSV) were found to possess predominantly oligomannosyl carbohydrates that bound strongly to concanavalin A-Sepharose, eluted 3 sugar eq beyond a Man9GlcNAc marker oligosaccharide on ion suppression high pressure liquid chromatography, and were susceptible to digestion with jack bean alpha-mannosidase. Monosaccharide analyses revealed that the oligomannosyl carbohydrates contained glucose, indicating a defect in alpha-glucosidase activity. This was confirmed by further structural characterization of the Lec23/VSV oligomannosyl carbohydrates using purified rat mammary gland alpha-glucosidase I, jack bean alpha-mannosidase, and 1H NMR spectroscopy at 500 MHz. [3H]Glucose-labeled Glc3Man9GlcNAc was prepared from CHO/VSV labeled with [3H]galactose in the presence of the processing inhibitors castanospermine and deoxymannojirimycin. Subsequently, [3H]Glc2Man9GlcNAc was prepared by purified alpha-glucosidase I digestion of [3H]Glc3Man9GlcNAc. When these oligosaccharides were used as alpha-glucosidase substrates it was revealed that Lec23 cells are specifically defective in alpha-glucosidase I, a deficiency not previously identified among mammalian cell glycosylation mutants.  相似文献   

17.
The methanolic extract of rhizome of Himalayan rhubarb Rheum emodi displayed mild yeast as well as mammalian intestinal alpha-glucosidase inhibitory activity. However, further fractionation of active extract led to the isolation of several potent molecules in excellent yields, displaying varying degrees of inhibition on two test models of alpha-glucosidase. Rhapontigenin, desoxyrhapontigenin, chrysophanol-8-O-beta-d-glucopyranoside, torachrysone-8-O-beta-d-glucopyranoside displayed potent yeast alpha-glucosidase inhibition. However chrysophanol-8-O-beta-d-glucopyranoside, desoxyrhaponticin and torachrysone-8-O-beta-d-glucopyranoside displayed potent to moderate mammalian alpha-glucosidase inhibitory activity. Other compounds displayed mild activity on both the tests. Except desoxyrhapontigenin and rhapontigenin that increased Vmax, other compounds including crude extract decreased the Vmax significantly (p<0.02) in yeast alpha-glucosidase test. Further kinetic analysis on mammalian alpha-glucosidase inhibition showed that chrysophanol-8-O-beta-d-glucopyranoside, desoxyrhaponticin and torachrysone-8-O-beta-d-glucopyranoside may be classified as mixed-noncompetitive inhibitors. However, desoxyrhapontigenin and rhapontigenin may be classified as modulators of enzyme activity. Presence and position of glycoside moiety in compounds appear important for better inhibition of mammalian alpha-glucosidase. This is the first report assigning particularly, mammalian intestinal alpha-glucosidase inhibitory activity to these compounds. Chrysophanol-8-O-beta-d-glucopyranoside, desoxyrhaponticin, desoxyrhapontigenin and rhapontigenin have been isolated in substantial yields from R. emodi for the first time. Therefore, these compounds may have value in the treatment and prevention of hyperglycemia associated diabetes mellitus.  相似文献   

18.

Diabetes mellitus is a multifactorial global health disorder that is rising at an alarming rate. Cardiovascular diseases, kidney damage and neuropathy are the main cause of high mortality rates among individuals with diabetes. One effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes is to target alpha-amylase and alpha-glucosidase, enzymes that catalyzes starch hydrolysis in the intestine. At present, approved inhibitors for these enzymes are restricted to acarbose, miglitol and voglibose. Although these inhibitors retard glucose absorption, undesirable gastrointestinal side effects impede their application. Therefore, research efforts continue to seek novel inhibitors with improved efficacy and minimal side effects. Natural products of plant origin have been a valuable source of therapeutic agents with lesser toxicity and side effects. The anti-diabetic potential through alpha-glucosidase inhibition of plant-derived molecules are summarized in this review. Eight molecules (Taxumariene F, Akebonoic acid, Morusin, Rhaponticin, Procyanidin A2, Alaternin, Mulberrofuran K and Psoralidin) were selected as promising drug candidates and their pharmacokinetic properties and toxicity were discussed where available.

  相似文献   

19.
Considerable interest has been attracted in xanthone and its derivatives because of their large variety of pharmacological activities. In this project, a series of hydroxylxanthones and their acetoxy and alkoxy derivatives were synthesized and evaluated as alpha-glucosidase inhibitors, aimed at clarifying the structure-activity correlation. The results indicated that these xanthone derivatives were capable of inhibiting in vitro alpha-glucosidase with moderate to good activities. Among them, polyhydroxylxanthones exhibited the highest activities and thus may be exploitable as a lead compound for the development of potent alpha-glucosidase inhibitors.  相似文献   

20.
Wang Y  Ma L  Li Z  Du Z  Liu Z  Qin J  Wang X  Huang Z  Gu L  Chen AS 《FEBS letters》2004,576(1-2):46-50
Inhibition of metal ions and synergetic inhibition of metal ions/genistein on alpha-glucosidase activity has been investigated. We have examined the inhibitory effect of Cu2+, Ni2+, Mg2+, Fe2+, Hg2+, Zn2+, Ca2+, Pb2+, Ag+, V5+, V4+ and Mn2+ ions. The results show that the nature of the inhibition was reversible, slow-binding, non-competitive, and the Ki values of some ions such as Cu2+, Ni2+ and Zn2+ range from 10(-5) to 10(-6) M. Moreover, synergetic inhibitory effect of metal ions and genistein on alpha-glucosidase were studied with kinetics method. It is concluded that the inhibitory effect was much greater when both of them were added to the reactant solution simultaneously than that they were added, respectively, which suggests that the inhibitors seem to bind to the different sites of alpha-glucosidase at the same time. Furthermore, the mechanism of the synergetic inhibition was examined by spectrophotometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号