首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SC Chafe  JB Pierce  D Mangroo 《PloS one》2012,7(8):e42501
NTF2 is a cytosolic protein responsible for nuclear import of Ran, a small Ras-like GTPase involved in a number of critical cellular processes, including cell cycle regulation, chromatin organization during mitosis, reformation of the nuclear envelope following mitosis, and controlling the directionality of nucleocytoplasmic transport. Herein, we provide evidence for the first time that translocation of the mammalian NTF2 from the nucleus to the cytoplasm to collect Ran in the GDP form is subjected to regulation. Treatment of mammalian cells with polysorbitan monolaurate was found to inhibit nuclear export of tRNA and proteins, which are processes dependent on RanGTP in the nucleus, but not nuclear import of proteins. Inhibition of the export processes by polysorbitan monolaurate is specific and reversible, and is caused by accumulation of Ran in the cytoplasm because of a block in translocation of NTF2 to the cytoplasm. Nuclear import of Ran and the nuclear export processes are restored in polysorbitan monolaurate treated cells overproducing NTF2. Moreover, increased phosphorylation of a phospho-tyrosine protein and several phospho-threonine proteins was observed in polysorbitan monolaurate treated cells. Collectively, these findings suggest that nucleocytoplasmic translocation of NTF2 is regulated in mammalian cells, and may involve a tyrosine and/or threonine kinase-dependent signal transduction mechanism(s).  相似文献   

2.
3.
Nucleocytoplasmic shuttling activity of the African swine fever virus p37 protein, a major structural protein of this highly complex virus, has been recently reported. The systematic characterization of the nuclear export ability of this protein constituted the major purpose of the present study. We report that both the N- and C-terminal regions of p37 protein are actively exported from the nucleus to the cytoplasm of yeast and mammalian cells. Moreover, experiments using leptomycin B and small interfering RNAs targeting the CRM1 receptor have demonstrated that the export of p37 protein is mediated by both the CRM1-dependent and CRM1-independent nuclear export pathways. Two signals responsible for the CRM1-mediated nuclear export of p37 protein were identified at the N terminus of the protein, and an additional signal was identified at the C-terminal region, which mediates the CRM1-independent nuclear export. Interestingly, site-directed mutagenesis revealed that hydrophobic amino acids are critical to the function of these three nuclear export signals. Overall, our results demonstrate that two distinct pathways contribute to the strong nuclear export of full-length p37 protein, which is mediated by three independent nuclear export signals. The existence of overlapping nuclear export mechanisms, together with our observation that p37 protein is localized in the nucleus at early stages of infection and exclusively in the cytoplasm at later stages, suggests that the nuclear transport ability of this protein may be critical to the African swine fever virus replication cycle.  相似文献   

4.
Starvation promotes nuclear accumulation of the hsp70 Ssa4p in yeast cells   总被引:6,自引:0,他引:6  
Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy, and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of stationary phase cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. In starving cells, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or beta-galactosidase to nuclei. To determine whether nuclear accumulation of Star-beta-galactosidase depends on a specific nuclear carrier, we have analyzed its distribution in mutant yeast strains that carry a deletion of a single beta-importin gene. With this assay we have identified Nmd5p as a beta-importin required to concentrate Star-beta-galactosidase in nuclei when cells enter stationary phase.  相似文献   

5.
Heat shock cognate protein 70 (Hsc70) serves nuclear transport of several proteins as a molecular chaperone. We have recently identified a novel variant of human Hsc70, heat shock cognate protein 54 (Hsc54), that lacks amino acid residues 464-616 in the protein binding and variable domains of Hsc70. In the present study, we examined nucleocytoplasmic localization of Hsc70 and Hsc54 by using green fluorescent protein (GFP) fusions. GFP-Hsc70 is localized in both the cytoplasm and the nucleus at 37 degrees C and accumulated into the nucleolus/nucleus after heat shock, whereas GFP-Hsc54 always remained exclusively in the cytoplasm under these conditions. Mutation studies indicated that 20 amino acid residues of nuclear localization-related signals, which are missing in Hsc54 but are retained in Hsc70, are required for proper nuclear localization of Hsc70. We further found that Hsc54 contains a functional leucine-rich nuclear export signal (NES, (394)LDVTPLSL(401)) which is differently situated from the previously proposed NES in Saccharomyces cerevisiae Ssb1p. The cytoplasmic localization of Hsc54 was impaired by a mutation in NES as well as by a nuclear export inhibitor, leptomycin B, suggesting that Hsc54 is actively exported from the nucleus to the cytoplasm through a CRM1-dependent mechanism. In contrast, the nucleocytoplasmic localization of Hsc70 was not affected by the same mutation of NES or leptomycin B. These results suggest that the nuclear localization-related signal could functionally mask NES leading to prolonged retention of Hsc70 in the nucleus. An additional mechanism for unmasking the NES may regulate nucleocytoplasmic trafficking of Hsc70.  相似文献   

6.
U Stochaj  R Rassadi  J Chiu 《FASEB journal》2000,14(14):2130-2132
Stress modifies all aspects of cellular physiology, including the targeting of macromolecules to the nucleus. To determine how distinct types of stress affect classical nuclear protein import, we followed the distribution of NLS-GFP, a reporter protein containing a classical nuclear localization sequence (NLS) fused to green fluorescent protein GFP. Nuclear accumulation of NLS-GFP requires import to be constitutively active; inhibition of import redistributes NLS-GFP throughout the nucleus and cytoplasm. In the yeast Saccharomyces cerevisiae, starvation, heat shock, ethanol and hydrogen peroxide rapidly inhibited classical nuclear import, whereas osmotic stress had no effect. To define the mechanisms underlying the inhibition of classical nuclear import, we located soluble components of the nuclear transport apparatus. Failure to accumulate NLS-GFP in the nucleus always correlated with a redistribution of the small GTPase Gsp1p. Whereas predominantly nuclear under normal conditions, Gsp1p equilibrated between nucleus and cytoplasm in cells exposed to starvation, heat, ethanol or hydrogen peroxide. Furthermore, analysis of yeast strains carrying mutations in different nuclear transport factors demonstrated a role for NTF2, PRP20 and MOG1 in establishing a Gsp1p gradient, as conditional lethal alleles of NTF2 and PRP20 or a deletion of MOG1 prevented Gsp1p nuclear accumulation. On the basis of these results, we now propose that certain types of stress release Gsp1p from its nuclear anchors, thereby promoting a collapse of the nucleocytoplasmic Gsp1p gradient and inhibiting classical nuclear protein import.  相似文献   

7.
Yeast SUMO (Smt3) and its mammalian ortholog SUMO-1 are ubiquitin-like proteins that can reversibly be conjugated to other proteins. Among the substrates for SUMO modification in vertebrates are RanGAP1 and RanBP2/Nup358, two proteins previously implicated in nucleocytoplasmic transport. Sumoylated RanGAP1 binds to the nuclear pore complex via RanBP2/Nup358, a giant nucleoporin, which was recently reported to act as a SUMO E3 ligase on some nuclear substrates. However, no direct evidence for a role of the SUMO system in nuclear transport has been obtained so far. By the use of conditional yeast mutants, we examined nuclear protein import in vivo. We show here that cNLS-dependent protein import is impaired in mutants with defective Ulp1 and Uba2, two enzymes involved in the SUMO conjugation reaction. In contrast, other transport pathways such as rgNLS-mediated protein import and mRNA export are not affected. Furthermore, we find that the yeast importin-alpha subunit Srp1 accumulates in the nucleus of ulp1 and uba2 strains but not the importin-beta subunit Kap95, indicating that a lack of Srp1 export might impair cNLS import. In summary, our results provide evidence that SUMO modification in yeast, as has been suspected for vertebrates, plays an important role in nucleocytoplasmic trafficking.  相似文献   

8.
Proteinase inhibitor 9 (PI-9) is a human serpin present in the cytoplasm of cytotoxic lymphocytes and epithelial cells. It inhibits the cytotoxic lymphocyte granule proteinase granzyme B (graB) and is thought to protect cytotoxic lymphocytes and bystander cells from graB-mediated apoptosis. Following uptake into cells, graB promotes DNA degradation, rapidly translocating to the nucleus, where it binds a nuclear component. PI-9 should therefore be found in cytotoxic lymphocyte and bystander cell nuclei to ensure complete protection against graB. Here we demonstrate by microscopy and subcellular fractionation experiments that PI-9 is present in the nuclei of human cytotoxic cells, endothelial cells, and epithelial cells. We also show that the related serpins, PI-6, monocyte neutrophil elastase inhibitor (MNEI), PI-8, plasminogen activator inhibitor 2 (PAI-2), and the viral serpin CrmA exhibit similar nucleocytoplasmic distributions. Because these serpins lack classical nuclear localization signals and are small enough to diffuse through nuclear pores, we investigated whether import occurs actively or passively. Large (approximately 70 kDa) chimeric proteins comprising PI-9, PI-6, PI-8, MNEI, or PAI-2 fused to green fluorescent protein (GFP) show similar nucleocytoplasmic distributions to the parent proteins, indicating that nuclear import is active. By contrast, CrmA-GFP is excluded from nuclei, indicating that CrmA is not actively imported. In vitro nuclear transport assays show that PI-9 accumulates at a rate above that of passive diffusion, that it requires cytosolic factors but not ATP, and that it does not bind an intranuclear component. Furthermore, PI-9 is exported from nuclei via a leptomycin B-sensitive pathway, implying involvement of the export factor Crm1p. We conclude that the nucleocytoplasmic distribution of PI-9 and related serpins involves a nonconventional nuclear import pathway and Crm1p.  相似文献   

9.
Epidermal keratinocyte differentiation is accompanied by differential regulation of E2F genes, including up-regulation of E2F-5 and its concomitant association with the retinoblastoma family protein p130. This complex appears to play a role in irreversible withdrawal from the cell cycle in differentiating keratinocytes. We now report that keratinocyte differentiation is also accompanied by changes in E2F-5 subcellular localization, from the cytoplasm to the nucleus. To define the molecular determinants of E2F-5 nuclear import, we tested its ability to enter the nucleus in import assays in vitro using digitonin-permeabilized cells. We found that E2F-5 enters the nucleus through mediated transport processes that involve formation of nuclear pore complexes. It has been proposed that E2F-4 and E2F-5, which lack defined nuclear localization signal (NLS) consensus sequences, enter the nucleus in association with NLS-containing DP-2 or pRB family proteins. However, we show that nuclear import of E2F-5 only requires the first N-terminal 56 amino acid residues and is not dependent on interaction with DP or pRB family proteins. Because E2F-5 is predominantly cytoplasmic in undifferentiated keratinocytes and in other intact cells, we also examined whether this protein is subjected to active nuclear export. Indeed, E2F-5 is exported from the nucleus through leptomycin B-sensitive, CRM1-mediated transport, through a region corresponding to amino acid residues 130-154. This region excludes the DNA- and the p130-binding domains. Thus, the subcellular distribution of E2F-5 is tightly regulated in intact cells, through multiple functional domains that direct nucleocytoplasmic shuttling of this protein.  相似文献   

10.
The nuclear pore complex is the gateway of macromolecular trafficking between the nucleus and the cytoplasm. Although its composition is well characterized in yeast and mammalian systems, little is known about the plant nuclear pore. Several recent reports describe complex whole-organism phenotypes based on mutations in plant nucleoporins. The pathways affected include plant-microbe interactions, auxin response, cold-stress tolerance and flowering-time regulation. The effects are probably based, at least in part, on changes in protein import and/or RNA export (including regulatory small RNAs). Here, we review these new findings while comparing and contrasting them with what is known about nucleoporin functions from non-plant organisms, including nucleoporin activities not linked to nucleocytoplasmic transport.  相似文献   

11.
Nuclear protein transport processes have largely been studied using in vitro semi‐intact cell systems where high concentrations of nuclear localizing substrates are used, and cytoplasmic components such as the microtubule (MT) network, are either absent or damaged. Here we use the fluorescence recovery after photobleaching (FRAP) technique to analyze the nucleocytoplasmic flux of distinct fluorescently tagged proteins over time in living cultured cells. FRAP was performed in different parts of the cell to analyze the kinetics of nucleocytoplasmic trafficking and intranuclear/cytoplasmic mobility of the tumor suppressor Rb protein and a SV40 large tumor antigen (T‐ag) derivative containing the nuclear localization sequence (NLS), both fused to green fluorescent protein (GFP). The results indicate that proteins carrying the T‐ag NLS are highly mobile in the nucleus and cytoplasm. Rb, in contrast, is largely immobile in both cellular compartments, with similar nuclear import and export kinetics. Rb nuclear export was CRM‐1‐mediated, with its reduced mobility in the cytoplasm in part due to association with MTs. Overall our results show that nuclear and cytoplasm retention modulates the rates of nuclear protein import and export in intact cells. J. Cell. Biochem. 107: 1160–1167, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Microtubule arrays are remodeled as cells proceed through the cell cycle. It is important to understand how remodeling is regulated in time and space. In fission yeast, the conserved microtubule associated TACC/TOG complex plays an important role in organizing microtubules throughout the cell cycle. Here we show that this complex undergoes nucleocytoplasmic shuttling through the nuclear import and export signals located in the TACC protein Mia1p/Alp7p. When the Crm1p-dependent nuclear export signal of Mia1p is disabled, Mia1p accumulates in the nucleus while its partner protein Alp14p/TOG is restricted to the cytoplasm. This leads to defects in assembly of both interphase arrays and the mitotic spindle. Artificial targeting of Alp14p to the nucleus partially rescues the mitotic spindle defects caused by lack of Mia1p nuclear export. Interestingly, the nuclear export sequence of Mia1p appears to overlap with the Alp14p binding site. We propose that intricate regulation of the subcellular distribution of TACC/TOG complexes drives microtubule array remodeling as cells progress through the cell cycle.  相似文献   

13.
Spinocerebellar ataxia type-3, also known as Machado-Joseph Disease (MJD), is one of many inherited neurodegenerative disorders caused by polyglutamine-encoding CAG repeat expansions in otherwise unrelated genes. Disease protein misfolding and aggregation, often within the nucleus of affected neurons, characterize polyglutamine disorders. Several evidences have implicated the nucleus as the primary site of pathogenesis for MJD. However, the molecular determinants for the nucleocytoplasmic transport of human ataxin-3 (Atx3), the protein which is mutated in patients with MJD, are not characterized.In order to characterize the nuclear shuttling activity of Atx3, we performed yeast nuclear import assays and found that Atx3 is actively imported into the nucleus, by means of a classical nuclear localizing sequence formed by a cluster of lysine and arginine residues. On the other hand, when active nuclear export was inhibited using leptomycin B, a specific inhibitor of the nuclear export receptor CRM1, both endogenous Atx3 and transfected GFP-Atx3 accumulated inside the nucleus of a subpopulation of COS-7 cells, whereas both proteins are normally predominant in the cytoplasm.Additionally, using a Rev(1.4)-GFP nuclear export assay, we performed an extensive analysis of six putative aliphatic nuclear export motifs identified in Atx3 amino acid sequence. Although none of the tested peptide sequences were found to drive nuclear export when isolated, we have successfully mapped the region of Atx3 responsible for its CRM1-independent nuclear export activity. Curiously, the N-terminal Josephin domain alone is exported into the cytoplasm, but the nuclear export activity of Atx3 is significantly enhanced in a longer construct that is truncated after the two ubiquitin interaction motifs, upstream from the polyQ tract.Our data show that Atx3 is actively imported to and exported from the cell nucleus, and that its nuclear export activity is dependent on a motif located at its N-terminal region. Since pathological Atx3 aggregates in the nucleus of affected neurons in MJD, and there is in vivo evidence that nuclear localization of Atx3 is required for the manifestation of symptoms in MJD, defects in the nucleocytoplasmic shuttling activity of the protein may be involved in the nuclear accumulation and aggregation of expanded Atx3.  相似文献   

14.
Parathyroid hormone-related protein is responsible for hypercalcemia induced by various tumors. The similarity of its N-terminus to that of parathyroid hormone enables parathyroid hormone-related protein to share parathyroid hormone's signaling properties, but the rest of the molecule possesses distinct functions including a role in the nucleus/nucleolus in reducing apoptosis and enhancing cell proliferation. We have previously shown that parathyroid hormone-related protein nuclear import is mediated by importin β1. Here we use fluorescence recovery after photobleaching for the first time to show that, in living cells, parathyroid hormone-related protein is exported from the nucleus in a leptomycin B-sensitive manner, implicating CRM1 as the parathyroid hormone-related protein nuclear export receptor. Leptomycin B treatment significantly reduced the rate of nuclear export 4 −10-fold, thereby increasing parathyroid hormone-related protein concentration in the nucleus/nucleolus about 2-fold. Intriguingly, this also led to a 2-fold reduced nuclear import rate. Inhibiting the nuclear export of a protein able to shuttle between nucleus and cytoplasm through distinct receptors thus can also affect nuclear import, indicating that the subcellular localization of a protein containing distinct nuclear import and export signals is the product of an integrated system. Although there have been several recent studies examining the dynamics of intranuclear transport using fluorescence recovery after photobleaching, this represents, to our knowledge, the first use of the technique to examine the kinetics of nucleocytoplasmic flux in living cells.  相似文献   

15.
16.
The active transport of proteins into and out of the nucleus is mediated by specific signals, the nuclear localization signal (NLS) and nuclear export signal (NES), respectively. The best characterized NLS is that of the SV40 large T antigen, which contains a cluster of basic amino acids. The NESs were first identified in the protein kinase inhibitor (PKI) and HIV Rev protein, which are rich in leucine residues. The SV40 T-NLS containing transport substrates are carried into the nucleus by an importin alpha/beta heterodimer. Importin alpha recognizes the NLS and acts as an adapter between the NLS and importin beta, whereas importin beta interacts with importin alpha bound to the NLS, and acts as a carrier of the NLS/importin alpha/beta trimer. It is generally thought that importin alpha and beta are part of a large protein family. The leucine rich NES-containing proteins are exported from the nucleus by one of the importin beta family molecules, CRM1/exportin 1. A Ras-like small GTPase Ran plays a crucial role in both import/export pathways and determines the directionality of nuclear transport. It has recently been demonstrated in living cells that Ran actually shuttles between the nucleus and the cytoplasm and that the recycling of Ran is essential for the nuclear transport. Furthermore, it has been shown that nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP. This review largely focuses on the issue concerning the functional divergence of importin alpha family molecules and the role of Ran in nucleocytoplasmic protein transport.  相似文献   

17.
The signal recognition particle (SRP) targets nascent secretory proteins to the ER, but how and where the SRP assembles is largely unknown. Here we analyze the biogenesis of yeast SRP, which consists of an RNA molecule (scR1) and six proteins, by localizing all its components. Although scR1 is cytoplasmic in wild-type cells, nuclear localization was observed in cells lacking any one of the four SRP "core proteins" Srp14p, Srp21p, Srp68p, or Srp72p. Consistently, a major nucleolar pool was detected for these proteins. Sec65p, on the other hand, was found in both the nucleoplasm and the nucleolus, whereas Srp54p was predominantly cytoplasmic. Import of the core proteins into the nucleolus requires the ribosomal protein import receptors Pse1p and Kap123p/Yrb4p, which might, thus, constitute a nucleolar import pathway. Nuclear export of scR1 is mediated by the nuclear export signal receptor Xpo1p, is distinct from mRNA transport, and requires, as evidenced by the nucleolar accumulation of scR1 in a dis3/rrp44 exosome component mutant, an intact scR1 3' end. A subset of nucleoporins, including Nsp1p and Nup159p (Rat7p), are also necessary for efficient translocation of scR1 from the nucleus to the cytoplasm. We propose that assembly of the SRP requires import of all SRP core proteins into the nucleolus, where they assemble into a pre-SRP with scR1. This particle can then be targeted to the nuclear pores and is subsequently exported to the cytoplasm in an Xpo1p-dependent way.  相似文献   

18.
19.
Ciufo LF  Brown JD 《Current biology : CB》2000,10(20):1256-1264
BACKGROUND: The movement of macromolecules through the nuclear pores requires energy and transport receptors that bind both cargo and nuclear pores. Different molecules/complexes often require different transport receptors. The signal recognition particle (SRP) is a conserved cytosolic ribonucleoprotein that targets proteins to the endoplasmic reticulum. Previous studies have shown that the export of SRP RNA from the nucleus requires trans-acting factors and that SRP may be at least partly assembled in the nucleus, but little else is known about how it is assembled and exported into the cytoplasm. RESULTS: Of the six proteins that constitute the yeast SRP, we found that all except Srp54p were imported into the nucleus. Four of these had nucleolar pools. The same four proteins are required for stability of the yeast SRP RNA scR1, suggesting that they assemble with the RNA in the nucleus to form a central core SRP. This core SRP was a competent export substrate. Of the remaining components, Sec65p entered the nucleus and was assembled onto the core particle there, whereas Srp54p was solely cytoplasmic. The export of SRP from the nucleus required the transport receptor Xpo1p/Crm1p and Yrb2p, both components of the pathway that exports leucine-rich nuclear export signal (NES)-containing proteins from the nucleus. CONCLUSIONS: The SRP is assembled in the nucleus into a complex lacking only Srp54p. It is then exported through the NES pathway into the cytoplasm where Srp54p binds to it. This transport route for a ribonucleoprotein complex is so far unique in yeast.  相似文献   

20.
To identify components involved in the nuclear export of ribosomes in yeast, we developed an in vivo assay exploiting a green fluorescent protein (GFP)-tagged version of ribosomal protein L25. After its import into the nucleolus, L25-GFP assembles with 60S ribosomal subunits that are subsequently exported into the cytoplasm. In wild-type cells, GFP-labeled ribosomes are only detected by fluorescence in the cytoplasm. However, thermosensitive rna1-1 (Ran-GAP), prp20-1 (Ran-GEF), and nucleoporin nup49 and nsp1 mutants are impaired in ribosomal export as revealed by nuclear accumulation of L25-GFP. Furthermore, overexpression of dominant-negative RanGTP (Gsp1-G21V) and the tRNA exportin Los1p inhibits ribosomal export. The pattern of subnuclear accumulation of L25-GFP observed in different mutants is not identical, suggesting that transport can be blocked at different steps. Thus, nuclear export of ribosomes requires the nuclear/cytoplasmic Ran-cycle and distinct nucleoporins. This assay can be used to identify soluble transport factors required for nuclear exit of ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号