首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In agricultural systems, polyphagous beetles and spiders are abundant components of the beneficial arthropod community. Although data on the dietary ranges of these groups is increasing, remarkably little is understood regarding how individuals interact with their prey at small spatial scales. We demonstrate the utility of a spatially-explicit network model that integrates predator behaviour using predator-prey co-occurrences. Three co-occurrence matrices, one each for June, July and August, were generated using Vortis suction sample data collected from an 80 point grid imposed on a field of winter wheat. Heuristic predator-prey linkages, based on positive spatial co-occurrence, were imposed on these three matrices to create networks. It was found that primary consumers were highly aggregated and showed a strong tendency to co-occur. This contrasted with patterns of predator–predator or predator–prey co-occurrences that either aggregated to their prey or were weak and more scattered. These patterns could not be explained by either competition for resources or body size differences. Procrustean methods indicated that the networks were temporally dynamic, consistently achieving rates of turnover >60%. A negative relationship was found between decreasing predator–prey co-occurrence in the network and the number of prey positives in the guts of those predators. For large polyphagous beetles, the closer they were to their prey at the field scale, the more likely they were to have eaten them. This simple underlying relationship suggests that spatial co-occurrence networks can be used to predict feeding behaviour and could make a valuable contribution to food web structuring.  相似文献   

2.
Understanding the strength and diversity of predator‐prey interactions among species is essential to understand ecosystem consequences of population‐level variation. Directly quantifying the predatory behaviour of wild fishes at large spatial scales (>100 m) in the open sea is fraught with difficulties. To date the only empirical approach has been to search for correlations in the abundance of predators and their putative prey. As an example we use this approach to search for predators of the keystone crown‐of‐thorns starfish. We show that this approach is unlikely to detect predator–prey linkages because the theoretical relationship is non‐linear, resulting in multiple possible prey responses for single given predator abundance. Instead we suggest some indication of the strength and ecosystem importance of a predator–prey relationship can be gained by using the abundance of both predators and their putative prey to parameterize functional response models.  相似文献   

3.
William A Mitchell 《Oikos》2009,118(7):1073-1083
Behavioral games between predators and prey often involve two sub-games: 'pre-encounter' games affecting the rate of encounter between predators and prey (e.g. predator–prey space games, Sih 2005 ), and 'post-encounter' games that influence the outcome of encounters (e.g. waiting games at prey refugia, Hugie 2003 , and games of vigilance, Brown et al. 1999 ). Most models, however, focus on only one or the other of these two sub-games.
I investigated a multi-behavioral game between predators and prey that integrated both pre-encounter and post-encounter behaviors. These behaviors included landscape-scale movements by predators and prey, a type of prey vigilance that increases immediately after an encounter and then decays over time ('ratcheting vigilance'), and predator management of prey vigilance. I analyzed the game using a computer-based evolutionary algorithm. This algorithm embedded an individual-based model of ecological interactions within a dynamic adaptive process of mutation and selection. I investigated how evolutionarily stable strategies (ESS) varied with the predators' learning ability, killing efficiency, density and rate of movement. I found that when predators learn prey location, random prey movement can be an ESS. Increased predator killing efficiency reduced prey movement, but only if the rate of predator movement was low. Predators countered ratcheting vigilance by delaying their follow-up attacks; however, this delay was reduced in the presence of additional predators. The interdependence of pre-and post-encounter behaviors revealed by the evolutionary algorithm suggests an intricate co-evolution of multi-behavioral predator–prey behavioral strategies.  相似文献   

4.
Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator–prey system. We analysed the spatial distribution of wolf ( Canis lupus ) predation on elk ( Cervus elaphus ) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator–prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape.  相似文献   

5.
In this paper we explore variation in the predator-prey interaction between mink Mustela vison and muskrat Ondatra zibethicus across Canada based on 25 years of mink (predator) and muskrat (prey) data from the Hudson's Bay Company. We show that predator–prey interactions have stronger signatures in the west of Canada than in the east. In particular, we show that the observed phase plot trajectories of mink and muskrat rotate significantly clock-wise, consistent with predator–prey theory. We also investigate four phases of the mink muskrat interaction sequence (predator crash phase, prey recovery phase, etc.) and show that they are all consistent with a strong coupling in the west, whereas the presence of generalist predators and alternative preys can explain deviations from this pattern in the east.  相似文献   

6.
The vertebrate predators of post-metamorphic anurans were quantified and the predator–prey relationship was investigated by analysing the relative size of invertebrate predators and anurans. More than 100 vertebrate predators were identified (in more than 200 reports) and classified as opportunistic, convenience, temporary specialized and specialized predators. Invertebrate predators were classified as solitary non-venomous, venomous and social foragers according to 333 reviewed reports. Each of these categories of invertebrate predators was compared with the relative size of the anurans, showing an increase in the relative size of the prey when predators used special predatory tactics. The number of species and the number of families of anurans that were preyed upon did not vary with the size of the predator, suggesting that prey selection was not arbitrary and that energetic constraints must be involved in this choice. The relatively low predation pressure upon brachycephalids was related to the presence of some defensive strategies of its species. This compounding review can be used as the foundation for future advances in vertebrate predator–prey interactions.  相似文献   

7.
Evan Weiher 《Oikos》2003,101(2):311-316
Behavioral responses of prey to their predators can critically alter community dynamics. Whether or not a prey responds, clearly depends on the effectiveness of that response. The effectiveness on the other hand is predicted to depend on predator behavior. Actively searching predators can render the behavioral responses in their prey ineffective. Nevertheless, most studies investigating the optimal reaction of prey treated predators as immobile elements of the environment. I experimentally manipulated activity of poolfrog ( Rana lessonae ) tadpoles by keeping them at low and high food levels, and exposed them to three species of invertebrate predators ( Aeshna cyanea, Anax imperator , and Dytiscus marginalis ), whose activity also was manipulated through different food levels. Satiated, less active predators were more likely to kill hungry, more active tadpoles, but hungry predators killed hungry and satiated tadpoles about equally often. This result suggests that reducing their activity is a more effective strategy for tadpoles if the predators themselves are less active. On the other hand, against hungry, highly motivated predators, the behavioral avoidance strategies were essentially ineffective. Antipredator behavior is generally thought to stabilize the dynamics of predator–prey systems. The results presented here, however, suggest that the community dynamical consequences of antipredator behavior also critically depend on decisions made by predators.  相似文献   

8.
The larval amphibian community of temporary pond ecosystems has served as a model for studies in community ecology, with a majority of this work being conducted in mesocosms. Recent research has suggested that mesocosms may overestimate ecological effects; therefore, experimental studies conducted under field conditions are required to gauge the results of mesocosm studies. To assess a species interaction under more natural conditions, we conducted a series of field experiments examining the predator–prey interaction between beetle larvae ( Dytiscus sp.; predator) and larval wood frogs Rana sylvatica (prey) in central Pennsylvania, USA. Quantitative sampling of woodland ponds indicated that beetle larvae of the genus Dytiscus were the most common predator of tadpoles. In a field enclosure experiment, dytiscids were effective predators of tadpoles in the pond environment. Moreover, tadpoles avoided areas in a pond containing caged dytiscids, demonstrating that tadpoles recognize the chemical stimuli of predators in complex environments. The results of this study are consistent with data from prior laboratory and mesocosm studies and suggest that these venues can produce reliable interpretations of predator–prey dynamics in this community.  相似文献   

9.
David E. Wooster 《Oecologia》1998,115(1-2):253-259
Recent theoretical work suggests that predator impact on local prey density will be the result of interactions between prey emigration responses to predators and predator consumption of prey. Whether prey increase or decrease their movement rates in response to predators will greatly influence the impact that predators have on prey density. In stream systems the type of predator, benthic versus water-column, is expected to influence whether prey increase or decrease their movement rates. Experiments were conducted to examine the response of amphipods (Gammarus minus) to benthic and water-column predators and to examine the interplay between amphipod response to predators and predator consumption of prey in determining prey density. Amphipods did not respond to nor were they consumed by the benthic predator. Thus, this predator had no impact on amphipod density. In contrast, amphipods did respond to two species of water-column predators (the predatory fish bluegills, Lepomis macrochirus, and striped shiners, Luxilus chrysocephalus) by decreasing their activity rates. This response led to similar positive effects on amphipod density at night by both species of predatory fish. However, striped shiners did not consume many amphipods, suggesting their impact on the whole amphipod “population” was zero. In contrast, bluegills consumed a significant number of amphipods, and thus had a negative impact on the amphipod “population”. These results lend support to theoretical work which suggests that prey behavioral responses to predators can mask the true impact that predators have on prey populations when experiments are conducted at small scales. Received: 21 March 1997 / Accepted: 15 December 1997  相似文献   

10.
While the majority of studies on dispersal effects on patterns of coexistence among species in a metacommunity have focused on resource competitors, dispersal in systems with predator–prey interactions may provide very different results. Here, we use an analytical model to study the effect of dispersal rates on coexistence of two prey species sharing a predator (apparent competition), when the traits of that predator vary. Specifically, we explore the range in immigration rates where apparent competitors are able to coexist, and how that range changes with predator selectivity and efficiency. We find that if the inferior apparent competitor has a higher probability of being consumed, it will require less immigration to invade and to exclude the superior prey as the predator becomes more opportunistic. However, if the inferior apparent competitor has a lower probability of being consumed (and lower growth rates), higher immigration is required for the inferior prey to invade and exclude the superior prey as the predator becomes more opportunistic. We further find that the largest range of immigration rates where prey coexist occurs when predator selectivity is intermediate (i.e. they do not show much bias towards consuming one species or the other). Increasing predator efficiency generally reduces the immigration rates necessary for the inferior apparent competitor to invade and exclude the superior apparent competitor, but also reduces the range of immigration rates where the two apparent competitors can coexist. However, when the superior apparent competitor has a higher probability of being consumed, increased predator efficiency can increase the range of parameters where the species can coexist. Our results are consistent with some of the variation observed in the effect of dispersal on prey species richness in empirical systems with top predators.  相似文献   

11.
We propose a scaled version of the Rosenzweig–MacArthur model using both Type I and Type II functional responses that incorporates the size dependence of interaction rates. Our aim is to link the energetic needs of organisms with the dynamics of interacting populations, for which survival is a result of a game-theoretic struggle for existence. We solve the scaled model of predator–prey dynamics and predict population level characteristics such as the scaling of coexistence size ranges and the optimal predator–prey size ratio. For a broad class of such models, the optimal predator–prey size ratio given available prey of a fixed size is constant. We also demonstrate how scaling predictions of prey density differ under resource limitation vs. predator drawdown. Finally, we show how evolution of predator size can destabilize population dynamics, compare scaling of predator–prey cycles to previous work, as well as discuss possible extensions of the model to multispecies communities.  相似文献   

12.
Functionally redundant predation and functionally complementary predation are both widespread phenomena in nature. Functional complementary predation can be found, for example, when predators feed on different life stages of their prey, while functional redundant predation occurs when different predators feed on all life stages of a shared prey. Both phenomena are common in nature, and the extent of differential life-stage predation depends mostly on prey life history; complementary predation is expected to be more common on metamorphosing prey species, while redundant predation is thought to be higher on non-metamorphosing species. We used an ordinary differential equation model to explore the effect of varying degree of complementary and redundant predation on the dynamic properties of a system with two predators that feed on an age-structured prey. Our main finding was that predation on one stage (adult or juvenile) resulted in a more stable system (i.e., it is stable for a wider range of parameters) compared to when the two predators mix the two prey developmental stages in their diet. Our results demonstrate that predator–prey dynamics depends strongly on predators' functionality when predator species richness is fixed. Results also suggest that systems with metamorphosing prey are expected to be more diverse compared to systems with non-metamorphosing prey.  相似文献   

13.
Intra‐guild predation (IGP) – where a top predator (IGPred) consumes both a basal resource and a competitor for that resource (IGPrey) – has become a fundamental part of understanding species interactions and community dynamics. IGP communities composed of intraguild predators and prey have been well studied; however, we know less about IGP communities composed of predators, pathogens, and resources. Resource quality plays an important role in community dynamics and may influence IGP dynamics as well. We conducted a meta‐analysis on predator–pathogen–resource communities to determine whether resource quality mediated by the pathogen affected predator life‐history traits and if these effects met the theoretical constraints of IGP communities. To do this, we summarized results from studies that investigated the use of predators and pathogens to control insect pests. In these systems, the predators are the IGPred and pathogens are the IGPrey. We found that consumer longevity, fecundity, and survival decreased by 26%, 31% and 13% respectively, when predators consumed pathogen‐infected prey, making the infected prey a low quality resource. Predators also significantly preferred healthy prey over infected prey. When we divided consumers by enemy type, strict predators (e.g. wolf spiders) had no preference while parasitoids preferred healthy prey. Our results suggest that communities containing parasitoids and pathogens may rarely exhibit intraguild predation; whereas, communities composed of strict predators and pathogens are more likely dominated by IGP dynamics. In these latter communities, the consumption of low and high quality resources suggests that IGP communities composed of strict predators, pathogens and prey should naturally persist, supporting IGP theory. Synthesis We investigated how consuming pathogen‐infected prey influence important life‐history parameters of insect predators. Pathogens are used in a variety of biocontrol programs, especially to control crop pests. We found that true predators (i.e. wolf spiders) have no preference for healthy or infected prey and have reduced fecundity, survival and longevity consuming infected prey. However, parasitoids avoided infected prey when possible. In biocontrol programs with multiple control agents, parasitoids and pathogens would do a better job controlling pests as predators would reduce the amount of pathogen available and have reduced fitness from consuming infected prey. However, theory suggests that true predators, prey and pathogens may coexist long term.  相似文献   

14.
A mesocosm experiment indicated that water transparency influenced antipredator behaviour in young-of-the-year perch Perca fluviatilis , which partly contradicts another study by showing that high transparency decreases rather than increases perch antipredatory use of vegetated habitats when predators are also free to choose habitat. The present study emphasizes the importance of simultaneously considering both prey and predator habitat-choice behaviours when evaluating predator–prey interactions in relation to water visibility  相似文献   

15.
The arms race of adaptation and counter adaptation in predator–prey interactions is a fascinating evolutionary dynamic with many consequences, including local adaptation and the promotion or maintenance of diversity. Although such antagonistic coevolution is suspected to be widespread in nature, experimental documentation of the process remains scant, and we have little understanding of the impact of ecological conditions. Here, we present evidence of predator–prey coevolution in a long-term experiment involving the predatory bacterium Bdellovibrio bacteriovorus and the prey Pseudomonas fluorescens , which has three morphs (SM, FS, and WS). Depending on experimentally applied disturbance regimes, the predator–prey system followed two distinct evolutionary trajectories, where the prey evolved to be either super-resistant to predation (SM morph) without counter-adaptation by the predator, or moderately resistant (FS morph), specialized to and coevolving with the predator. Although predation-resistant FS morphs suffer a cost of resistance, the evolution of extreme resistance to predation by the SM morph was apparently unconstrained by other traits (carrying capacity, growth rate). Thus we demonstrate empirically that ecological conditions can shape the evolutionary trajectory of a predator–prey system.  相似文献   

16.
The high Arctic has the world's simplest terrestrial vertebrate predator–prey community, with the collared lemming being the single main prey of four predators, the snowy owl, the Arctic fox, the long-tailed skua, and the stoat. Using a 20-year-long time series of population densities for the five species and a dynamic model that has been previously parameterized for northeast Greenland, we analyzed the population and community level consequences of the ongoing and predicted climate change. Species' responses to climate change are complex, because in addition to the direct effects of climate change, which vary depending on species' life histories, species are also affected indirectly due to, e.g., predator–prey interactions. The lemming–predator community exemplifies these complications, yet a robust conclusion emerges from our modeling: in practically all likely scenarios of how climate change may influence the demography of the species, climate change increases the length of the lemming population cycle and decreases the maximum population densities. The latter change in particular is detrimental to the populations of the predators, which are adapted to make use of the years of the greatest prey abundance. Therefore, climate change will indirectly reduce the predators' reproductive success and population densities, and may ultimately lead to local extinction of some of the predator species. Based on these results, we conclude that the recent anomalous observations about lack of cyclic lemming dynamics in eastern Greenland may well be the first signs of a severe impact of climate change on the lemming–predator communities in Greenland and elsewhere in the high Arctic.  相似文献   

17.
In many size‐dependent predator–prey systems, hatching phenology strongly affects predator–prey interaction outcomes. Early‐hatched predators can easily consume prey when they first interact because they encounter smaller prey. However, this process by itself may be insufficient to explain all predator–prey interaction outcomes over the whole interaction period because the predator–prey size balance changes dynamically throughout their ontogeny. We hypothesized that hatching phenology influences predator–prey interactions via a feedback mechanism between the predator–prey size balance and prey consumption by predators. We experimentally tested this hypothesis in an amphibian predator–prey model system. Frog tadpoles Rana pirica were exposed to a predatory salamander larva Hynobius retardatus that had hatched 5, 12, 19 or 26 days after the frog tadpoles hatched. We investigated how the salamander hatch timing affected the dynamics of prey mortality, size changes of both predator and prey, and their subsequent life history (larval period and size at metamorphosis). The predator–prey size balance favoured earlier hatched salamanders, which just after hatching could successfully consume more frog tadpoles than later hatched salamanders. The early‐hatched salamanders grew rapidly and their accelerated growth enabled them to maintain the predator‐superior size balance; thus, they continued to exert strong predation pressure on the frog tadpoles in the subsequent period. Furthermore, frog tadpoles exposed to the early‐hatched salamanders were larger at metamorphosis and had a longer larval period than other frog tadpoles. These results suggest that feedback between the predator‐superior size balance and prey consumption is a critical mechanism that strongly affects the impacts of early hatching of predators in the short‐term population dynamics and life history of the prey. Because consumption of large nutrient‐rich prey items supports the growth of predators, a similar feedback mechanism may be common and have strong impacts on phenological shifts in size‐dependent trophic relationships.  相似文献   

18.
Theoretical work on intraguild predation suggests that if a top predator and an intermediate predator share prey, the system will be stable only if the intermediate predator is better at exploiting the prey, and the top predator gains significantly from consuming the intermediate predator. In mammalian carnivore systems, however, there are examples of top predator species that attack intermediate predator species, but rarely or never consume the intermediate predator. We suggest that top predators attacking intermediate predators without consuming them may not only reduce competition with the intermediate predators, but may also increase the vigilance of the intermediate predators or alter the vigilance of their shared prey, and that this behavioral response may help to maintain the stability of the system. We examine two models of intraguild predation, one that incorporates prey vigilance, and a second that incorporates intermediate predator vigilance. We find that stable coexistence can occur when the top predator has a very low consumption rate on the intermediate predator, as long as the attack rate on the intermediate predator is relatively large. However, the system is stable when the top predator never consumes the intermediate predator only if the two predators share more than one prey species. If the predators do share two prey species, and those prey are vigilant, increasing top predator attack rates on the intermediate predator reduces competition with the intermediate predator and reduces vigilance by the prey, thereby leading to higher top predator densities. These results suggest that predator and prey behavior may play an important dynamical role in systems with intraguild predation.  相似文献   

19.
Social predators benefit from cooperation in the form of increased hunting success, but may be at higher risk of disease infection due to living in groups. Here, we use mathematical modeling to investigate the impact of disease transmission on the population dynamics benefits provided by group hunting. We consider a predator–prey model with foraging facilitation that can induce strong Allee effects in the predators. We extend this model by an infectious disease spreading horizontally and vertically in the predator population. The model is a system of three nonlinear differential equations. We analyze the equilibrium points and their stability as well as one- and two-parameter bifurcations. Our results show that weakly cooperating predators go unconditionally extinct for highly transmissible diseases. By contrast, if cooperation is strong enough, the social behavior mediates conditional predator persistence. The system is bistable, such that small predator populations are driven extinct by the disease or a lack of prey, and large predator populations survive because of their cooperation even though they would be doomed to extinction in the absence of group hunting. We identify a critical cooperation level that is needed to avoid the possibility of unconditional predator extinction. We also investigate how transmissibility and cooperation affect the stability of predator–prey dynamics. The introduction of parasites may be fatal for small populations of social predators that decline for other reasons. For invasive predators that cooperate strongly, biocontrol by releasing parasites alone may not be sufficient.  相似文献   

20.
Smee DL  Ferner MC  Weissburg MJ 《Oecologia》2008,156(2):399-409
Many studies have shown that nonlethal predator effects such as trait-mediated interactions (TMIs) can have significant impacts on the structure and function of communities, but the role that environmental conditions play in modulating the scale and magnitude of these effects has not been carefully investigated. TMIs occur when prey exhibit behavioral or physiological responses to predators and may be more prevalent when abiotic conditions increase prey reactions to consumers. The purpose of this study was to determine if turbulence would alter the distance over which prey in aquatic systems respond to chemical cues emitted by predators in nature, thus changing the scales over which nonlethal predator effects occur. Using hard clams and blue crabs as a model predator–prey system, we investigated the effects of turbulence on clam reactive distance to predatory blue crabs in the field. Results suggest that turbulence diminishes clam reactions to predators and that the environmental context must be considered when predicting the extent of indirect predator effects in natural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号