首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site-directed mutants of Escherichia coli fumarate reductase in which FrdB Cys204, Cys210, and Cys214 were individually replaced by Ser and in which Val207 was replaced by Cys were constructed and overexpressed in a strain of E. coli lacking a wild-type copy of fumarate reductase and succinate dehydrogenase. The consequences of these mutations on bacterial growth, enzymatic activity, and the EPR properties of the constituent iron-sulfur clusters were investigated. The FrdB Cys204Ser, Cys210Ser, and Cys214Ser mutations result in enzymes with negligible activity that have dissociated from the membrane and consequently are incapable of supporting cell growth under conditions requiring a functional fumarate reductase. EPR studies indicate that these effects are associated with loss of both the [3Fe-4S] and [4Fe-4S] clusters, centers 3 and 2, respectively. In contrast, the FrdB Val207Cys mutation results in a functional membrane-bound enzyme that is able to support growth under anaerobic and aerobic conditions. However, EPR studies indicate that the indigenous [3Fe-4S]+,0 cluster (Em = -70 mV), center 3, has been replaced by a much lower potential [4Fe-4S]2+,+ cluster (Em = -350 mV), indicating that the primary sequence of the polypeptide determines the type of clusters assembled. The results of these studies afford new insights into the role of centers 2 and 3 in mediating electron transfer from menaquinol, the residues that ligate these clusters, and the intercluster magnetic interactions in the wild-type enzyme.  相似文献   

2.
L-Serine deaminases catalyze the deamination of L-serine, producing pyruvate and ammonia. Two families of these proteins have been described and are delineated by the cofactor that each employs in catalysis. These are the pyridoxal 5'-phosphate-dependent deaminases and the deaminases that are activated in vitro by iron and dithiothreitol. In contrast to the enzymes that employ pyridoxal 5'-phosphate, detailed physical and mechanistic characterization of the iron-dependent deaminases is limited, primarily because of their extreme instability. We report here the characterization of L-serine deaminase from Escherichia coli, which is the product of the sdaA gene. When purified anaerobically, the isolated protein contains 1.86 +/- 0.46 eq of iron and 0.670 +/- 0.019 eq of sulfide per polypeptide and displays a UV-visible spectrum that is consistent with a [4Fe-4S] cluster. Reconstitution of the protein with iron and sulfide generates considerably more of the cluster, and treatment of the reconstituted protein with dithionite gives rise to an axial EPR spectrum, displaying g axially = 2.03 and g radially = 1.93. M?ssbauer spectra of the (57)Fe-reconstituted protein reveal that the majority of the iron is in the form of [4Fe-4S](2+) clusters, as evidenced by the typical M?ssbauer parameters-isomer shift, delta = 0.47 mm/s, quadrupole splitting of Delta E(Q) = 1.14 mm/s, and a diamagnetic (S = 0) ground state. Treatment of the dithionite-reduced protein with L-serine results in a slight broadening of the feature at g = 2.03 in the EPR spectrum of the protein, and a dramatic loss in signal intensity, suggesting that the amino acid interacts directly with the cluster.  相似文献   

3.
We have used EPR spectroscopy, redox potentiometry, and protein crystallography to characterize the [4Fe-4S] cluster (FS0) of the Escherichia coli nitrate reductase A (NarGHI) catalytic subunit (NarG). FS0 is clearly visible in the crystal structure of NarGHI [Bertero, M. G., et al. (2003) Nat. Struct. Biol. 10, 681-687] but has novel coordination comprising one His residue and three Cys residues. At low temperatures (<15 K), reduced NarGHI exhibits a previously unobserved EPR signal comprising peaks at g = 5.023 and g = 5.556. We have assigned these features to a [4Fe-4S](+) cluster with an S = (3)/(2) ground state, with the g = 5.023 and g = 5.556 peaks corresponding to subpopulations exhibiting DeltaS = (1)/(2) and DeltaS = (3)/(2) transitions, respectively. Both peaks exhibit midpoint potentials of approximately -55 mV at pH 8.0 and are eliminated in the EPR spectrum of apomolybdo-NarGHI. The structure of apomolybdo-NarGHI reveals that FS0 is still present but that there is significant conformational disorder in a segment of residues that includes one of the Cys ligands. On the basis of these observations, we have assigned the high-spin EPR features of reduced NarGHI to FS0.  相似文献   

4.
Biotin synthase (BioB) converts dethiobiotin into biotin by inserting a sulfur atom between C6 and C9 of dethiobiotin in an S-adenosylmethionine (SAM)-dependent reaction. The as-purified recombinant BioB from Escherichia coli is a homodimeric molecule containing one [2Fe-2S](2+) cluster per monomer. It is inactive in vitro without the addition of exogenous Fe. Anaerobic reconstitution of the as-purified [2Fe-2S]-containing BioB with Fe(2+) and S(2)(-) produces a form of BioB that contains approximately one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per monomer ([2Fe-2S]/[4Fe-4S] BioB). In the absence of added Fe, the [2Fe-2S]/[4Fe-4S] BioB is active and can produce up to approximately 0.7 equiv of biotin per monomer. To better define the roles of the Fe-S clusters in the BioB reaction, M?ssbauer and electron paramagnetic resonance (EPR) spectroscopy have been used to monitor the states of the Fe-S clusters during the conversion of dethiobiotin to biotin. The results show that the [4Fe-4S](2+) cluster is stable during the reaction and present in the SAM-bound form, supporting the current consensus that the functional role of the [4Fe-4S] cluster is to bind SAM and facilitate the reductive cleavage of SAM to generate the catalytically essential 5'-deoxyadenosyl radical. The results also demonstrate that approximately (2)/(3) of the [2Fe-2S] clusters are degraded by the end of the turnover experiment (24 h at 25 degrees C). A transient species with spectroscopic properties consistent with a [2Fe-2S](+) cluster is observed during turnover, suggesting that the degradation of the [2Fe-2S](2+) cluster is initiated by reduction of the cluster. This observed degradation of the [2Fe-2S] cluster during biotin formation is consistent with the proposed sacrificial S-donating function of the [2Fe-2S] cluster put forth by Jarrett and co-workers (Ugulava et al. (2001) Biochemistry 40, 8352-8358). Interestingly, degradation of the [2Fe-2S](2+) cluster was found not to parallel biotin formation. The initial decay rate of the [2Fe-2S](2+) cluster is about 1 order of magnitude faster than the initial formation rate of biotin, indicating that if the [2Fe-2S] cluster is the immediate S donor for biotin synthesis, insertion of S into dethiobiotin would not be the rate-limiting step. Alternatively, the [2Fe-2S] cluster may not be the immediate S donor. Instead, degradation of the [2Fe-2S] cluster may generate a protein-bound polysulfide or persulfide that serves as the immediate S donor for biotin production.  相似文献   

5.
Fumarate reductase from Escherichia coli functions both as an anaerobic fumarate reductase and as an aerobic succinate dehydrogenase. A site-directed mutation of E. coli fumarate reductase in which FrdB Pro-159 was replaced with a glutamine or histidine residue was constructed and overexpressed in a strain of E. coli lacking a functional copy of the fumarate reductase or succinate dehydrogenase complex. The consequences of these mutations on bacterial growth, assembly of the enzyme complex, and enzymatic activity were investigated. Both mutations were found to have no effect on anaerobic bacterial growth or on the ability of the enzyme to reduce fumarate compared with the wild-type enzyme. The FrdB Pro-159-to-histidine substitution was normal in its ability to oxidize succinate. In contrast, however, the FrdB Pro-159-to-Gln substitution was found to inhibit aerobic growth of E. coli under conditions requiring a functional succinate dehydrogenase, and furthermore, the aerobic activity of the enzyme was severely inhibited upon incubation in the presence of its substrate, succinate. This inactivation could be prevented by incubating the mutant enzyme complex in an anaerobic environment, separating the catalytic subunits of the fumarate reductase complex from their membrane anchors, or blocking the transfer of electrons from the enzyme to quinones. The results of these studies suggest that the succinate-induced inactivation occurs by the production of hydroxyl radicals generated by a Fenton-type reaction following introduction of this mutation into the [3Fe-4S] binding domain. Additional evidence shows that the substrate-induced inactivation requires quinones, which are the membrane-bound electron acceptors and donors for the succinate dehydrogenase and fumarate reductase activities. These data suggest that the [3Fe-4S] cluster is intimately associated with one of the quinone binding sites found n fumarate reductase and succinate dehydrogenase.  相似文献   

6.
Nicotinamide adenine dinucleotide (NAD) derives from quinolinic acid which is synthesized in Escherichia coli from l-aspartate and dihydroxyacetone phosphate through the concerted action of l-aspartate oxidase and the [4Fe-4S] quinolinate synthase (NadA). Here, we addressed the question of the identity of the cluster ligands. We performed in vivo complementation experiments as well as enzymatic, spectroscopic and structural in vitro studies using wild-type vs. Cys-to-Ala mutated NadA proteins. These studies reveal that only three cysteine residues, the conserved Cys113, Cys200 and Cys297, are ligands of the cluster. This result is in contrast to the previous proposal that pointed the three cysteines of the C(291)XXC(294)XXC(297) motif. Interestingly, we demonstrated that Cys291 and Cys294 form a disulfide bridge and are important for activity.  相似文献   

7.
8.
9.
The fumarate reductase complex and soluble enzyme from Escherichia coli have been investigated by low temperature magnetic circular dichroism and electron paramagnetic resonance spectroscopies. The results confirm the presence of one [2Fe-2S] cluster and show that the high potential iron-sulfur center is a 3Fe cluster of the type found in bacterial ferredoxins. Since the 3Fe cluster is present in catalytically competent enzyme and does not appear to be involved in any type of cluster conversion under reducing conditions, we conclude that it is an intrinsic component of the functional enzyme. The significance of the results is discussed in relation to the published amino acid sequence and the iron-sulfur cluster composition of bacterial fumarate reductases.  相似文献   

10.
Rothery RA  Blasco F  Weiner JH 《Biochemistry》2001,40(17):5260-5268
We have investigated the functional relationship between three of the prosthetic groups of Escherichia coli nitrate reductase A (NarGHI): the two hemes of the membrane anchor subunit (NarI) and the [3Fe-4S] cluster of the electron-transfer subunit (NarH). In two site-directed mutants (NarGHI(H56R) and NarGHI(H205Y)) that lack the highest potential heme of NarI (heme b(H)), a large negative DeltaE(m,7) is elicited on the NarH [3Fe-4S] cluster, suggesting a close juxtaposition of these two centers in the holoenzyme. In a mutant retaining heme b(H), but lacking heme b(L) (NarGHI(H66Y)), there is no effect on the NarH [3Fe-4S] cluster redox properties. These results suggest a role for heme b(H) in electron transfer to the [3Fe-4S] cluster. Studies of the pH dependence of the [3Fe-4S] cluster, heme b(H), and heme b(L) E(m) values suggest that significant deprotonation is only observed during oxidation of the latter heme (a pH dependence of -36 mV pH(-1)). In NarI expressed in the absence of NarGH [NarI(DeltaGH)], apparent exposure of heme b(H) to the aqueous milieu results in both it and heme b(L) having E(m) values with pH dependencies of approximately -30 mV pH(-1). These results are consistent with heme b(H) being isolated from the aqueous milieu and pH effects in the holoenzyme. Optical spectroscopy indicates that inhibitors such as HOQNO and stigmatellin bind and inhibit oxidation of heme b(L) but do not inhibit oxidation of heme b(H). Fluorescence quench titrations indicate that HOQNO binds with higher affinity to the reduced form of NarGHI than to the oxidized form. Overall, the data support the following model for electron transfer through the NarI region of NarGHI: Q(P) site --> heme b(L) --> heme b(H) --> [3Fe-4S] cluster.  相似文献   

11.
Duan X  Yang J  Ren B  Tan G  Ding H 《The Biochemical journal》2009,417(3):783-789
Although the NO (nitric oxide)-mediated modification of iron-sulfur proteins has been well-documented in bacteria and mammalian cells, specific reactivity of NO with iron-sulfur proteins still remains elusive. In the present study, we report the first kinetic characterization of the reaction between NO and iron-sulfur clusters in protein using the Escherichia coli IlvD (dihydroxyacid dehydratase) [4Fe-4S] cluster as an example. Combining a sensitive NO electrode with EPR (electron paramagnetic resonance) spectroscopy and an enzyme activity assay, we demonstrate that NO is rapidly consumed by the IlvD [4Fe-4S] cluster with the concomitant formation of the IlvD-bound DNIC (dinitrosyl-iron complex) and inactivation of the enzyme activity under anaerobic conditions. The rate constant for the initial reaction between NO and the IlvD [4Fe-4S] cluster is estimated to be (7.0+/-2.0)x10(6) M(-2) x s(-1) at 25 degrees C, which is approx. 2-3 times faster than that of the NO autoxidation by O2 in aqueous solution. Addition of GSH failed to prevent the NO-mediated modification of the IlvD [4Fe-4S] cluster regardless of the presence of O2 in the medium, further suggesting that NO is more reactive with the IlvD [4Fe-4S] cluster than with GSH or O2. Purified aconitase B [4Fe-4S] cluster from E. coli has an almost identical NO reactivity as the IlvD [4Fe-4S] cluster. However, the reaction between NO and the endonuclease III [4Fe-4S] cluster is relatively slow, apparently because the [4Fe-4S] cluster in endonuclease III is less accessible to solvent than those in IlvD and aconitase B. When E. coli cells containing recombinant IlvD, aconitase B or endonuclease III are exposed to NO using the Silastic tubing NO delivery system under aerobic and anaerobic conditions, the [4Fe-4S] clusters in IlvD and aconitase B, but not in endonuclease III, are efficiently modified forming the protein-bound DNICs, confirming that NO has a higher reactivity with the [4Fe-4S] clusters in IlvD and aconitase B than with O2 or GSH. The results suggest that the iron-sulfur clusters in proteins such as IlvD and aconitase B may constitute the primary targets of the NO cytotoxicity under both aerobic and anaerobic conditions.  相似文献   

12.
13.
The Escherichia coli DNA repair enzyme MutY plays an important role in the recognition and repair of 7, 8-dihydro-8-oxo-2'-deoxyguanosine:2'-deoxyadenosine (OG:A) mismatches in DNA [Michaels et al. (1992) Proc. Natl. Acad. Sci. U.S. A. 89, 7022-7025]. MutY prevents DNA mutations resulting from the misincorporation of A opposite OG by using N-glycosylase activity to remove the adenine base. An interesting feature of MutY is that it contains a [4Fe-4S]2+ cluster that has been shown to play an important role in substrate recognition [Porello, S. L., Cannon, M. J., David, S. S. (1998) Biochemistry 37, 6465-6475]. Herein, we have used site-directed mutagenesis to individually replace the cysteine ligands to the [4Fe-4S]2+ cluster of E. coli MutY with serine, histidine, and alanine. The extent to which the various mutations reduce the levels of protein overexpression suggests that coordination of the [4Fe-4S]2+ cluster provides stability to MutY in vivo. The ability of the mutated enzymes to bind to a substrate analogue DNA duplex and their in vivo activity were evaluated. Remarkably, the effects are both substitution and position dependent. For example, replacement of cysteine 199 with histidine provides a mutated enzyme that is expressed at high levels and exhibits DNA binding and in vivo activity similar to the WT enzyme. These results suggest that histidine coordination to the iron-sulfur cluster may be accommodated at this position in MutY. In contrast, replacement of cysteine 192 with histidine results in less efficient DNA binding and in vivo activity compared to the WT enzyme without affecting levels of overexpression. The results from the site-directed mutagenesis suggest that the structural properties of the iron-sulfur cluster coordination domain are important for both substrate DNA recognition and the in vivo activity of MutY.  相似文献   

14.
Agar JN  Krebs C  Frazzon J  Huynh BH  Dean DR  Johnson MK 《Biochemistry》2000,39(27):7856-7862
Iron-sulfur cluster biosynthesis in both prokaryotic and eukaryotic cells is known to be mediated by two highly conserved proteins, termed IscS and IscU in prokaryotes. The homodimeric IscS protein has been shown to be a cysteine desulfurase that catalyzes the reductive conversion of cysteine to alanine and sulfide. In this work, the time course of IscS-mediated Fe-S cluster assembly in IscU was monitored via anaerobic anion exchange chromatography. The nature and properties of the clusters assembled in discrete fractions were assessed via analytical studies together with absorption, resonance Raman, and M?ssbauer investigations. The results show sequential cluster assembly with the initial IscU product containing one [2Fe-2S](2+) cluster per dimer converting first to a form containing two [2Fe-2S](2+) clusters per dimer and finally to a form that contains one [4Fe-4S](2+) cluster per dimer. Both the [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU are reductively labile and are degraded within minutes upon being exposed to air. On the basis of sequence considerations and spectroscopic studies, the [2Fe-2S](2+) clusters in IscU are shown to have incomplete cysteinyl ligation. In addition, the resonance Raman spectrum of the [4Fe-4S](2+) cluster in IscU is best interpreted in terms of noncysteinyl ligation at a unique Fe site. The ability to assemble both [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU supports the proposal that this ubiquitous protein provides a scaffold for IscS-mediated assembly of clusters that are subsequently used for maturation of apo Fe-S proteins.  相似文献   

15.
Resonance Raman spectroscopy has been used to investigate the Fe-S stretching modes of the [4Fe-4S]2+ cluster in the oxidized iron protein of Clostridium pasteurianum nitrogenase. The results are consistent with a cubane [4Fe-4S] cluster having effective Td symmetry with cysteinyl coordination for each iron. In accord with previous optical and EPR studies [(1984) Biochemistry 23, 2118-2122], treatment with the iron chelator alpha, alpha'-dipyridyl in the presence of MgATP is shown to effect cluster conversion to a [2Fe-2S]2+ cluster. Resonance Raman data also indicate that partial conversion to a [2Fe-2S]2+ cluster is induced by thionine-oxidation in the presence of MgATP in the absence of an iron chelator. This result suggests new explanations for the dramatic change in the CD spectrum that accompanies MgATP-binding to the oxidized Fe protein and the anomalous resonance Raman spectra of thionine-oxidized Clostridium pasteurianum bidirectional hydrogenase.  相似文献   

16.
Different strategies have been used to express synthetic genes all encoding Clostridium pasteurianum 2[4Fe-4S] ferredoxin (Fd) in Escherichia coli. The polypeptide can be produced as the C-terminal addition to a hybrid Cro::Protein A fusion protein lacking the metallic centers. The incorporation of the [4Fe-4S] clusters into the cleaved apoFd cannot be carried out in the same conditions as those affording holoFd from purified C. pasteurianum apoFd. In contrast, fully functional Fds can be produced from non-fused synthetic genes under the dependence of strong promoters. The yields of recombinant Fd, although sufficient to purify significant quantities of protein, are limited by the very short half-life of the 2[4Fe-4S] Fd in E. coli, irrespective of the expression system used. These features are characteristic of 2[4Fe-4S] Fds when compared with the far more stable recombinant rubredoxin, and probably other small iron-sulfur proteins which have already been produced in high yields. The reasons for the high turnover of 2[4Fe-4S] Fds are discussed.  相似文献   

17.
18.
19.
Beef heart aconitase, as isolated under aerobic conditions, is inactive and contains a [3Fe-4S]1+ cluster. On incubation at pH greater than 9.5 (or treatment with 4-8 M urea) the color of the protein changes from brown to purple. This purple form is stable and can be converted back in good yield to the active [4Fe-4S]2+ form by reduction in the presence of iron. Active aconitase is converted to the purple form at alkaline pH only after oxidative inactivation. The Fe/S2- ratio of purple aconitase is 0.8, indicating the presence of [3Fe-4S] clusters. The number of SH groups readily reacting with 5,5'-dithiobis(2-nitrobenzoic acid) is increased from approximately 1 in the enzyme as isolated to 7-8 in the purple form, indicating a partial unfolding of the protein. On conversion of inactive aconitase to the purple form, the EPR signal at g = 2.01 (S = 1/2) is replaced by signals at g = 4.3 and 9.6 (S = 5/2). M?ssbauer spectroscopy shows that purple aconitase has high-spin ferric ions, each residing in a tetrahedral environment of sulfur atoms. The three iron sites are exchange-coupled to yield a ground state with S = 5/2. Analysis of the data within a spin coupling model shows that J13 congruent to J23 and 2 J12 less than J13, where the Jik describe the antiferromagnetic (J greater than 0) exchange interactions among the three iron pairs. Comparison of our data with those reported for synthetic Fe-S clusters (Hagen, K. S., Watson, A. D., and Holm, R. H., (1983) J. Am. Chem. Soc. 105, 3905-3913) shows that purple aconitase contains a linear [3Fe-4S]1+ cluster, a structural isomer of the S = 1/2 cluster of inactive aconitase. Our studies also show that protein-bound [2Fe-2S] clusters can be generated under conditions where partial unfolding of the protein occurs.  相似文献   

20.
Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase (MtAPR) is an iron-sulfur protein and a validated target to develop new antitubercular agents, particularly for the treatment of latent infection. The enzyme harbors a [4Fe-4S](2+) cluster that is coordinated by four cysteinyl ligands, two of which are adjacent in the amino acid sequence. The iron-sulfur cluster is essential for catalysis; however, the precise role of the [4Fe-4S] cluster in APR remains unknown. Progress in this area has been hampered by the failure to generate a paramagnetic state of the [4Fe-4S] cluster that can be studied by electron paramagnetic resonance spectroscopy. Herein, we overcome this limitation and report the EPR spectra of MtAPR in the [4Fe-4S](+) state. The EPR signal is rhombic and consists of two overlapping S = ½ species. Substrate binding to MtAPR led to a marked increase in the intensity and resolution of the EPR signal and to minor shifts in principle g values that were not observed among a panel of substrate analogs, including adenosine 5'-diphosphate. Using site-directed mutagenesis, in conjunction with kinetic and EPR studies, we have also identified an essential role for the active site residue Lys-144, whose side chain interacts with both the iron-sulfur cluster and the sulfate group of adenosine 5'-phosphosulfate. The implications of these findings are discussed with respect to the role of the iron-sulfur cluster in the catalytic mechanism of APR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号