首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Cytochrome P-450, NADPH-cytochrome c reductase, benzo(a)-pyrene hydroxylase (AHH), 7-ethoxycoumarin-O-deethylase (7-ECOD), epoxide hydrolase (EH), UDP-glucuronyltransferase (UDPGT) and glutathione S-transferase (GSHST) activities in sturgeon (Acipenser baeri) have been measured and partially characterized. 2. Cytochrome P-450-dependent monoxygenase (MO), EH, and conjugation reactions were detected in liver and to a lesser extent in kidney and gills. 3. Hepatic enzyme activities in the sturgeon were equally high or higher than in rainbow trout liver, with the exception of UDPGT whose activity was 14% of that in trout liver. 4. The MO and EH activities displayed the expected pH maxima of 7.5, whereas transferases were relatively independent of the pH in the 6.5-7.5 range. 5. The temperature optima for MO and EH were close to those reported in other fish species, whereas for conjugation reactions the temperature optima were 45 and 60 degrees C for GSHST and UDPGT respectively.  相似文献   

2.
Normal reproductive development depends on the interplay of steroid hormones with their receptors at specific tissue sites. The concentrations of hormone ligands in the circulation and at target sites are maintained through coordinated regulation on steroid biosynthesis and degradation. Changed bioavailability of steroids, through alteration of steroidogenesis or biotransformation rates, leads to changes in endocrine function. Steroid hormones lose their receptor reactivity in most cases when they are bound to binding proteins, while metabolic conversion can result in either active or inactive metabolites. Hydroxylation by cytochrome P450 (CYP) enzymes and conjugation with glucuronide and sulfate are among the major hepatic pathways of steroid inactivation. The expression of these biotransformation enzymes can be induced by many xenobiotics. The barbiturate phenobarbital and the environmental toxicant 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) are among the well characterized inducers for the CYP 2B and 3A enzymes and selected conjugation enzymes. The induction of the steroid biotransformation enzymes is partly mediated through the activation of a group of nuclear receptors including the glucocorticoid receptor, the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the peroxisome proliferator activated receptors (PPAR). Drug or chemical-induced increases in hepatic enzyme activities are often a basis for drug-drug interactions that lead to enhanced elimination and reduced therapeutic efficacy of steroidal drugs. The effects of enzyme induction on endogenous steroid clearance, along with its possible consequence, are less well understood. While enzyme induction by xenobiotics may increase clearance of the endogenous steroid, regulatory mechanisms for steroid homeostasis may adapt and compensate for altered clearance.  相似文献   

3.
When male rats were given a single dose of cadmium (Cd) (3.58 mg CdCl2·H2O/kg, ip) 72 hr prior to sacrifice, the testicular 7-ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) activities toward the substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (EAA), 1,2-epoxy-3-(p-nitrophenoxy)-propane (EPNP), and cumene hydroperoxide (CHPx) decreased significantly as compared to controls. Cd also inhibited reduced glutathione (GSH) level while increasing the lipid peroxidation (LP) level significantly. When the animals were given a single dose of nickel (Ni) (59.5 mg NiCl2·6H2O/kg, ip) 16 hr prior to sacrifice, significant decreases were observed in EROD and GST activities toward CDNB, EAA, EPNP, and CHPx, and GSH level. No significant alterations were noted in DCNB GST activity and LP level by Ni. For the combined treatment, rats received the single dose of Ni 56 hr after the single dose of Cd and were killed 16 hr later. In these animals, lesser depressions were observed on EROD activity and LP level than those of Cd alone. The combination of metals significantly inhibited GST activities and GSH level but not to a greater degree than noted by Cd or Ni alone. Plasma testosterone levels of Cd-, Ni-, and combination-treated rats decreased significantly compared to controls. The strongest depression was achieved by Cd alone. Cd, both alone and in combination with Ni, increased the tissue Ni uptake significantly. Ni, however, did not produce such an effect on the tissue uptake of Cd in either case. Cd treatment caused interstitial edema and coagulation necrosis in seminiferous tubules and also caused fibrinoidal necrosis in vascular endothelium. Ni treatment did not produce any pathological testicular alterations compared to controls. Combined treatment produced fewer pathological alterations (i.e., only interstitial edema) than that of Cd treatment. These results reveal that the combination of Cd and Ni does not have a synergistic effect on testicular xenobiotic metabolizing enzymes, and in contrast, Ni has an ameliorating effect on pathological disturbances caused by Cd alone in the rat testis.  相似文献   

4.
5.
Adult Fischer-344 rats which underwent administration of azoxymethane were fed diets containing soybean curd refuse (SCR) or a high-molecular-weight fraction of soy protein digest (HMF), or Hammarsten casein (CAS) as a protein source over a period of 34 weeks. All the living rats of each group at 22, 28 or 34 weeks were endoscopically inspected for tumor incidence in the colon. SCR turned out to be comparable to HMF in anti-tumorigenicity, or rather better than HMF.  相似文献   

6.
Cancer chemoprevention is related to classical epidemiology and involves the use of agents that inhibit, delay, or reverse the carcinogenesis that occurs as a result of accumulation of mutations and increased proliferation. Betulinic acid is known for its cytotoxic effects against a panel of cancer cell lines. In the present study, interactions of betulinic acid (BA) with xenobiotic metabolizing enzymes including mixed function oxidases (cytochrome b5, P420, P450, NADPH cytochrome P450 reductase, and NADH cytochrome b5 reductase), phase II enzymes (GST, DT-diaphorase, γ-glutamyl transpeptidase), LDH, antioxidative enzymes (glutathione reductase, SOD, catalase, ascorbate peroxidase, and guaiacol peroxidase), and lipid peroxidation are studied alone as well as in the presence of 7,12 dimethylbenzanthracene (DMBA)—a potent carcinogen using Sprague Dawley female rats. The effect of BA on reduced glutathione content and protein content is also taken into consideration. It has been found that administration of BA decreased the level of mixed function oxidases that are involved in the conversion of carcinogen to electrophile, elevated the level of phase II enzymes which participated in the removal of electrophiles by sulfation, conjugation etc. It has been found that BA effectively removed or neutralized the reactive species by the action of phase II enzymes and such an effect was reflected from the specific activities of antioxidative enzymes which were found to be lower as compared to positive control (DMBA-treated group) and in some cases even that of untreated control. BA was also found to have a pronounced effect in protecting the animals from lipid peroxidation as evident from the reduced levels of TBARS, conjugated diene, and lipid hydroperoxide formation. This study highlights the role of BA in modulating the activities of xenobiotic and antioxidative enzymes that have putative roles in cancer initiation and proliferation.  相似文献   

7.
《Free radical research》2013,47(12):1416-1424
Abstract

Long-term exposure to cypermethrin induces the nigrostriatal dopaminergic neurodegeneration in adult rats and its pre-exposure in the critical periods of brain development enhances the susceptibility during adulthood. Monoamine transporters, xenobiotic metabolizing enzymes and oxidative stress play critical roles in the nigrostriatal dopaminergic neurodegeneration. The study was undertaken to investigate the effects of cypermethrin on DAT, VMAT 2, CYP2E1, GST Ya, GST Yc and GSTA4-4 expressions, CYP2E1 and GST activities and lipid peroxidation in the nigrostriatal system of adult rats with/without post-natal exposure to cypermethrin. Cypermethrin reduced VMAT 2 and increased CYP2E1 expressions without causing significant change in DAT. Although GSTA4-4 mRNA expression and lipid peroxidation were increased, no significant changes were observed in GST Ya and GST Yc expressions and total GST activity. The results obtained demonstrate that long-term exposure to cypermethrin modulates VMAT 2, CYP2E1, GSTA4-4 expressions and lipid peroxidation, which could contribute to the nigrostriatal dopaminergic neurodegeneration.  相似文献   

8.
Vascular calcification (VC) is highly associated with increased morbidity and mortality in patients with advanced chronic kidney disease. Paracrine/autocrine factors such as vasoactive peptides are involved in VC development. Here, we investigated the expression of the novel peptide C-type natriuretic peptide (CNP) in the vasculature, tested its ability to prevent VC in vivo and in vitro, and examined the mechanism involved. Rat aortic VC was induced by vitamin D3 plus nicotine (VDN). CNP (500 ng/kg/h) was administered by mini-osmotic pump. Calcification was examined by von Kossa staining; CNP and cyclic guanosine monophosphate (cGMP) contents were detected by radioimmunoassay, and mRNA and protein levels were examined by real-time PCR and Western blot analysis in aortas and calcified vascular smooth muscle cells (VSMCs). VDN-treated rat aortas showed higher CNP content and decreased expression of its receptor natriuretic peptide receptor B, along with increased vascular calcium deposition and alkaline phosphatase (ALP) activity. Low CNP levels were accompanied by increased vascular calcium deposition and ALP activity in VDN-treated rats when compared to vehicle treatment, which was further confirmed in cultured VSMCs. Administration of CNP greatly reduced VC in VDN-treated aortas compared with controls, which was confirmed in calcified VSMCs. The decrease in alpha-actin expression was ameliorated by CNP in vitro. Moreover, protein expression levels of osteopontin (OPN) were significantly up-regulated in calcified aortas, and CNP increased OPN expression in calcified aortas. Furthermore, CNP downregulated OPN and bone morphogenic protein 2 (BMP-2) expression in calcified aortas and VSMCs. Modulation of OPN and BMP-2 expression by CNP and the beneficial effects of CNP on calcified VSMCs were blocked significantly by protein kinase G inhibitor H7. Impaired local endogenous CNP and its receptor system may be associated with increased mineralization in vivo in rat aortas with VC, and administration of CNP inhibits VC development in vivo and in vitro, at least in part, via a cGMP/PKG pathway.  相似文献   

9.
The objectives of the present work were to determine the influence of hypophysectomy and/or peroxisome proliferators (PP) on certain xenobiotic-metabolizing enzyme activities, i.e. glutathione transferases (GST), glutathione peroxidase (GPX), phenol sulphotransferases (pSULT), phenol UDP-glucuronosyl transferases (pUGT), catalase, NADP(H) quinone oxidoreductase (QR) and epoxide hydrolases (EH) in the rat testes. Adult male rats, hypophysectomized and their sham-operated controls, were treated for 10 days with clofibrate (0.5%), perfluorooctanoic acid (0.05%, PFOA), acetylsalicylic acid (1%, ASA) and di(2-ethylhexyl)phthalate (2%, DEHP) in their diet. The results show that, in addition to both body and testis weight, hypophysectomy caused dramatic changes in most of the xenobiotic-metabolizing enzyme activities, which have been measured here. The most pronounced effects were seen in cytosolic QR (2.2-fold increase), pUGT (95% reduction), pSULT (75% reduction), mitochondrial catalase (75% reduction), microsomal EH (70% reduction) and microsomal GST (55% reduction). Treatment with PP, i.e. perfluorooctanoic acid (PFOA), clofibrate, acetyl salicylic acid (ASA) and di(2-ethylhexyl)phthalate (DEHP) showed varied effects on the xenobiotic-metabolizing enzyme activities, the highest effects (10-60% reduction) were seen in sham-operated animals. These effects were not so pronounced or were not seen in hypophysectomized rats except for the case of PFOA treatment, which caused increases of enzyme activities. The highest increases were seen with microsomal GST (70%), GPX (75%) and cytosolic EH (75%). It is concluded from these experiments that the regulation of several xenobiotic-metabolizing enzymes in the rat testis is affected by the pituitary and/or pituitary hormones and that different peroxisome proliferators have variable effects on the levels of these xenobiotic-metabolizing enzymes. The general trend of reduction in enzyme activities implies that the testis is less protected under conditions that can perturb hormonal status.  相似文献   

10.
多聚磷酸盐及其代谢酶的研究进展   总被引:1,自引:0,他引:1  
Shi TY  Wang HL  Xie JP 《生理科学进展》2011,42(3):181-187
多聚磷酸盐(polyP)是由几个到几百个无机磷酸盐单体通过高能磷酸键聚合而成的线性多聚体,广泛分布于自然界和生物体.本文总结了polyP在生物体中的重要功能,包括基因表达和调控、DNA的摄取、微生物的运动性、对胁迫和饥饿的应答、病原菌的毒性以及对细胞凋亡、血液凝固、细胞钙化、线粒体功能的调节,需要polyP的酶有内切酶、葡萄糖激酶、NAD激酶和AMP磷酸转移酶等.本文对调控polyP的多聚磷酸盐激酶(polyphosphate kinase,ppk)和外切聚磷酸酶(exopolyphosphatase,PPX )的生化性质和结构也进行了总结.同时,结合我们的研究工作,重点分析了结核分枝杆菌中PPX的同源蛋白和可能的生物化学活性.  相似文献   

11.
Total glutathione content, glutathione peroxidase, glutathione transferase and glutathione reductase activities have been measured in 12 species of yeasts. All the strains tested contained glutathione, though in different amounts, as well as the above mentioned enzymes. To discriminate between the selenium-dependent and the selenium-independent form, glutathione peroxidase activity has been measured with both H2O2 and cumene hydroperoxide. Rhodotorula glutinis appeared to be the only strain in which the selenium-dependent form was not found, but this yeast exhibited the highest level of selenium-independent glutathione peroxidase activity as compared to the other strains.  相似文献   

12.
Individual variability in xenobiotic metabolism has been associated with susceptibility to developing complex diseases. Genes involved in xenobiotic metabolism have been evaluated in association studies; the difficulty of obtaining accurate gene frequencies in mixed populations makes interpretation of the results difficult. We sought to estimate population parameters for the cytochrome P450 and glutathione S-transferase gene families, thus contributing to studies using these genes as markers. We describe the frequencies of six genes (CYP1A1, CYP2D6, CYP2E1, GSTM1, GSTT1, and GSTP1) and estimate population parameters in 115 Euro-descendants and 196 Afro-descendants from Curitiba, South of Brazil. PCR-based methods were used for genotyping, and statistical analysis were performed by AMOVA with ARLEQUIN software. The mutant allele frequencies in the Afro-descendants and Euro-descendants, respectively, were: CYP1A1*2A = 30.1% and 15.2%; CYP2D6*4 = 14.5% and 21.5%; CYP2E1*5B = 7.9% and 5%; GSTP1*B = 37.8% and 28.3%. The null genotype frequencies were: GSTM1*0 = 36.8% and 46.1%; GSTT1*0 = 24.2% and 17.4%.  相似文献   

13.
Metabolic activation and inactivation of potential genotoxic agents occur by Phase I and Phase II enzymes in multiple interactions. An expanding body of literature demonstrates that ethnic differences in breast cancer incidence may be partly caused by host genetic factors particularly genetic polymorphisms of these carcinogen-metabolizing enzymes. The present case-control study aimed at identification of such low penetrance breast cancer susceptibility genes in 224 Indian women and to investigate the potential effects of their polymorphisms on sporadic breast cancer risk. The main objective of the study was to evaluate the effects of genetic polymorphisms of the xenobiotic metabolizing genes CYP1A1, GSTM1 and GSTT1 on breast cancer risk by PCR-RFLP and DNA sequencing. Our results showed a significant association between CYP1A1 m1, m2 polymorphisms and breast cancer risk; however there was a lack of association between GSTM1 null deletion and breast cancer. The associations of CYP1A1, GSTM1 and GSTT1 genotypes with breast cancer risk were more pronounced among the pre-menopausal patients. Combined genotype analysis revealed the CYP1A1 m2 ValVal-GSTM1 homozygous null deletion genotype combinations to be associated with the highest risk of breast cancer (OR=10.3, 95% CI=1.2-86.1). Correlations with clinicopathological factors and treatment outcome were also analyzed for predicting disease free survival by univariate and multivariate analysis. Significant differences in disease free survival between the wild and polymorphic genotypes were observed only for CYP1A1 m2, GSTT1 genotypes. Our results based on the analysis of functionally relevant polymorphisms in these low penetrance genes may provide a better model that would exhibit additive effects on individual susceptibility to breast cancer. Such genotype analysis resulting in a high-risk profile holds considerable promise for individualizing screening and therapeutic intervention in breast cancer. Hence, the present study may provide strong supportive evidence for genetic interactions in the etiology of breast cancer.  相似文献   

14.
Nonsynonymous single nucleotide polymorphisms (nsSNPs) in coding regions can lead to amino acid changes that might alter the protein’s function and account for susceptibility to disease and altered drug/xenobiotic response. Many nsSNPs have been found in genes encoding human phase II metabolizing enzymes; however, there is little known about the relationship between the genotype and phenotype of nsSNPs in these enzymes. We have identified 923 validated nsSNPs in 104 human phase II enzyme genes from the Ensembl genome database and the NCBI SNP database. Using PolyPhen, Panther, and SNAP algorithms, 44%–59% of nsSNPs in phase II enzyme genes were predicted to have functional impacts on protein function. Predictions largely agree with the available experimental annotations. 68% of deleterious nsSNPs were correctly predicted as damaging. This study also identified many amino acids that are likely to be functionally critical, but have not yet been studied experimentally. There was significant concordance between the predicted results of Panther and PolyPhen, and between SNAP non-neutral predictions and PolyPhen scores. Evolutionarily non-neutral (destabilizing) amino acid substitutions are thought to be the pathogenetic basis for the alteration of phase II enzyme activity and to be associated with disease susceptibility and drug/xenobiotic toxicity. Furthermore, the molecular evolutionary patterns of phase II enzymes were characterized with regards to the predicted deleterious nsSNPs.  相似文献   

15.
Xenobiotic Phase I and Phase II reactions in hepatocytes occur sequentially and cooperatively during the metabolism of various chemical compounds including drugs. In order to investigate the sequential metabolism of 7-ethoxycoumarin (7EC) as model substrate in vitro, xenobiotic metabolizing enzymes, rat cytochrome P450 1A1 (P450 1A1) and UDP-glucuronosyltransferase 1A6 (UGT1A6) were co-expressed in Saccharomyces cerevisiae AH22. Rat P450 1A1 and yeast NADPH-P450 reductase were expressed on a multicopy plasmid (pGYR1) in the yeast. Rat UGT1A6 cDNA with a yeast alcohol dehydrogenase I promoter and terminator was integrated into yeast chromosomal DNA to achieve the stable expression. Co-expression of P450 1A1 and UGT1A6 in yeast microsomes was confirmed by immunoblot analysis. Protease treatment of the microsomes showed the correct topological orientation of UGT to the membranes. The metabolism of 7EC to 7-hydroxycoumarin (7HC) and its glucuronide in yeast microsomes was analyzed by reverse phase HPLC. In a co-expression system containing 7EC, NADPH and UDP-glucuronic acid, glucuronide formation was detected after a lag phase, following the accumulation of 7HC. In the case of P450 1A1 and UGT1A6, efficient coupling of hydroxylation and glucuronidation in 7EC metabolism was not observed in the co-expression system. This P450 and UGT co-expression system in yeast allows the sequential biotransformation of xenobiotics to be simulated in vitro.  相似文献   

16.
During the formation of fruit bodies in the basidiomycete Schizophyllum commune, there are changes in the specific activities of the enzymes utilizing glucose 6-phosphate. These include a 50% increase in the relative amount of glucose-6-phosphate dehydrogenase followed by a decrease in this enzyme and a 90% decrease in phosphoglucomutase activity. This results in a 10-fold change in the relationship between these two enzymes during development. The activities in several mutants were examined and abnormal enzyme levels were found in some cases. The activity of 6-phosphogluconate dehydrogenase was also examined, and its contribution to the assay of the other enzymes was determined.  相似文献   

17.
Many endogenous and xenobiotic chemicals are metabolized to epoxides which may be enzymatically hydrated, via microsomal epoxide hydrolase (mEH), to less reactive dihydrodiol derivatives. On the basis of the reported rabbit mEH amino acid sequence [F. S. Heinemann and J. Ozols (1984) J. Biol. Chem. 259, 797-804], we constructed a 35 base oligonucleotide which was used to screen rabbit liver cDNA libraries. Overlapping rabbit mEH clones were isolated and the full-length cDNA sequence of 1653 bp was determined. The rabbit nucleotide sequence has a high degree of similarity (greater than 75%) with cDNA sequences reported for rat and human mEH. Northern blot analyses with fragments of the rabbit cDNA demonstrate that mEH messenger RNA (mRNA) is expressed constitutively in the liver and induced following exposure to phenobarbital or polychlorinated biphenyls. Constitutive expression of mEH mRNA is also observed in rabbit kidney, testes, and lung. Using benzo[alpha]pyrene-4,5-oxide as substrate, mEH enzymatic activity is shown to correlate closely with tissue levels of mEH mRNA. Southern blot analyses of rabbit DNA suggest that the mEH gene exists as a single copy per haploid genome. The mEH amino acid sequences of the human and rat were compared to that of the deduced rabbit protein in order to analyze the degree of conservation and hydropathy profiles in these species. This comparison permitted the formulation of a computer-assisted model of mammalian mEH as it may relate to the microsomal membrane.  相似文献   

18.
The glycogen content of muscle was correlated with the activity of glycogen synthase and glycogen phosphorylase from the parasitic roundworm Ascaris suum maintained in vitro. Adult female worms were maintained in the laboratory in a perfusion system during periods of starvation and feeding. During starvation, the levels of glucogen decreased at a rate of 0.1 to 0.2 mumoles/min/g wet weight of muscle-cuticle. During this time, 95% of the glycogen synthase (E.C. 2.4.1.11) was in the active D-form, and 48% of the phosphorylase (E.C. 2.4.1.1) was in the active a-form. Upon feeding, the rate of incorporation of glycosyl residues into glycogen proceeded at a rate of 0.75 to 1.0 mumoles/min/g muscle-cuticle. Glycogen synthase was 22% in the active I-form and phosphorylase a-levels remained virtually unchanged at 41% as compared with the starved worm. Total levels of both enzymes remained constant over the starvation-feeding period with 3.9 units/g phosphorylase and 0.4 units/g glycogen synthase. The apparent Km value for the substrate UDPG for glycogen synthase was 0.22 +/- 0.02 mM. For glycogen phosphorylase the Km value for G-1-P was 1.76 +/- 0.38 mM.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号