首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active transport of NaCl across thick ascending limb (TAL) epithelium is accomplished by Na(+),K(+),2Cl(-) cotransporter (NKCC2). The activity of NKCC2 is determined by vasopressin (AVP) or intracellular chloride concentration and includes its amino-terminal phosphorylation. Co-expressed Tamm-Horsfall protein (THP) has been proposed to interact with NKCC2. We hypothesized that THP modulates NKCC2 activity in TAL. THP-deficient mice (THP(-/-)) showed an increased abundance of intracellular NKCC2 located in subapical vesicles (+47% compared with wild type (WT) mice), whereas base-line phosphorylation of NKCC2 was significantly decreased (-49% compared with WT mice), suggesting reduced activity of the transporter in the absence of THP. Cultured TAL cells with low endogenous THP levels and low base-line phosphorylation of NKCC2 displayed sharp increases in NKCC2 phosphorylation (+38%) along with a significant change of intracellular chloride concentration upon transfection with THP. In NKCC2-expressing frog oocytes, co-injection with THP cRNA significantly enhanced the activation of NKCC2 under low chloride hypotonic stress (+112% versus +235%). Short term (30 min) stimulation of the vasopressin V2 receptor pathway by V2 receptor agonist (deamino-cis-D-Arg vasopressin) resulted in enhanced NKCC2 phosphorylation in WT mice and cultured TAL cells transfected with THP, whereas in the absence of THP, NKCC2 phosphorylation upon deamino-cis-D-Arg vasopressin was blunted in both systems. Attenuated effects of furosemide along with functional and structural adaptation of the distal convoluted tubule in THP(-/-) mice supported the notion that NaCl reabsorption was impaired in TAL lacking THP. In summary, these results are compatible with a permissive role for THP in the modulation of NKCC2-dependent TAL salt reabsorptive function.  相似文献   

2.
Summary Tamm-Horsfall protein (THP) has been previously detected in cells of the thick ascending limb of Henle's loop (TAL) of different mammalian species using immunocytochemical methods. A nearly complete identity between THP and uromodulin, an immunosuppressive glycoprotein present in the urine of pregnant females, has been established recently. This paper describes the cellular location of THP mRNA by high-resolution in situ hybridization using a [35S]-labeled human uromodulin cRNA (antisense-) probe of a length of 665 base pairs. Control experiments were performed using an mRNA (sense-) probe of the same length. The probe was hybridized to frozen sections of the rat kidney. THP mRNA distribution in the kidney was found to be homologous to the immunocytochemical labeling pattern: Autoradiographic signal was present along the entire length of the TAL including the post-macula segment which leads to the distal convoluted tubule. Tubular cells of the macula densa were negative. Labeling intensity of the TAL epithelium was found to increase from the origin of the TAL at the transition between inner and outer medulla to its end beyond the macula densa. Labeling of the medullary segment in the inner stripe was weak, whereas outer medullary and cortical segments very strongly expressed THP mRNA. The glomerulus, the portions of the nephron proximal to the TAL, the distal convoluted tubule as well as the collecting duct system were negative.  相似文献   

3.
Tamm-Horsfall protein (THP) has been previously detected in cells of the thick ascending limb of Henle's loop (TAL) of different mammalian species using immunocytochemical methods. A nearly complete identity between THP and uromodulin, an immunosuppressive glycoprotein present in the urine of pregnant females, has been established recently. This paper describes the cellular location of THP mRNA by high-resolution in situ hybridization using a [35S]-labeled human uromodulin cRNA (antisense-) probe of a length of 665 base pairs. Control experiments were performed using an mRNA (sense-) probe of the same length. The probe was hybridized to frozen sections of the rat kidney. THP mRNA distribution in the kidney was found to be homologous to the immunocytochemical labeling pattern: Autoradiographic signal was present along the entire length of the TAL including the post-macula segment which leads to the distal convoluted tubule. Tubular cells of the macula densa were negative. Labeling intensity of the TAL epithelium was found to increase from the origin of the TAL at the transition between inner and outer medulla to its end beyond the macula densa. Labeling of the medullary segment in the inner stripe was weak, whereas outer medullary and cortical segments very strongly expressed THP mRNA. The glomerulus, the portions of the nephron proximal to the TAL, the distal convoluted tubule as well as the collecting duct system were negative.  相似文献   

4.
Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). Mutations in the CFTR gene may result in a defective protein processing that leads to changes in function and regulation of this chloride channel. Despite of the expression of CFTR in the kidney, patients with CF do not present major renal dysfunction, but it is known that both the urinary excretion of proteins and renal capacity to concentrate and dilute urine are altered in these patients. CFTR mRNA is expressed in all nephron segments of rat and human, and this abundance is more prominent in renal cortex and outer medulla renal areas. CFTR protein was detected in apical surface of both proximal and distal tubules of rat kidney but not in the outer medullary collecting ducts. Studies have demonstrated that CFTR does not only transport Cl but also ATP. ATP transport by CFTR could be involved in the control of other ion transporters such as Na+ (ENaC) and K+ (renal outer medullary potassium) channels, especially in TAL and CCD. In the kidney, CFTR also might be involved in the endocytosis of low-molecular-weight proteins by proximal tubules. This review is focused on the CFTR function and structure, its role in the renal physiology, and its modulation by hormones involved in the control of extracellular fluid volume.  相似文献   

5.
Human Tamm-Horsfall glycoprotein (THP) is synthesised in the thick ascending limb of Henle and convoluted distal tubules, inserted into luminal cell-surface by the glycosyl-phosphatidylinositol (GPI)-anchor and excreted in urine at a rate of 50-100 mg per day. Up to date there is no indication on the way in which THP is excreted into the urinary fluid. In this study, we examined by Western blotting THP from human kidney in comparison to urinary THP. As expected for a GPI-anchored protein, THP was recovered from the kidney lysate in a Triton X-100 insoluble form, which moved in a sucrose gradient to a zone of low density. The apparent molecular weight of kidney THP appeared greater than that of urinary THP, but no difference in the electrophoretic mobility was observed when the former was subjected to GPI-specific phospholipase-C treatment, strongly suggesting that a proteolytic cleavage at the juxtamembrane-ectodomain of kidney THP is responsible for the urinary excretion.  相似文献   

6.
The kidney is a target organ for thyroid hormone action and a variety of renal transport processes are altered in response to impaired thyroid functions. To investigate the effect of thyroid hormone on the expression of the renal proximal tubular high-affinity-type H(+)-peptide cotransporter (PEPT2) in rats, hypothyroidism was induced in animals by administration of methimazole (0.05%) via drinking water. After 7 weeks of treatment, hypothyroidism was confirmed by determining serum free T(3) and free T(4) concentrations. Northern blotting was used to examine the expression of PEPT2 mRNA in kidney tissues from hypothyroid rats compared to control rats. Hypothyroidism resulted in an increased level of total renal PEPT2 mRNA (121.1+/-3.3% vs. control 100+/-2.8%; p=0.008). The mRNA results were confirmed by immuno-blotting, which demonstrated significantly increased protein levels (162% vs. control 100%; p<0.01). Immunohistochemistry also revealed increased PEPT2 protein levels in the proximal tubules of treated compared to non-treated rats. In summary, PEPT2 is the first proximal tubule transporter protein that shows increased expression in states of hypothyreosis. As PEPT2 reabsorbs filtered di- and tripeptides and peptide-like drugs, the present findings may have important implications in nutritional amino acid homeostasis and for drug dynamics in states of altered thyroid function.  相似文献   

7.
The nuclear receptor family orchestrates many functions related to reproduction, development, metabolism, and adaptation to the circadian cycle. The majority of these receptors are expressed in the kidney, but their exact quantitative localization in this ultrastructured organ remains poorly described, making it difficult to elucidate the renal function of these receptors. In this report, using quantitative PCR on microdissected mouse renal tubules, we established a detailed quantitative expression map of nuclear receptors along the nephron. This map can serve to identify nuclear receptors with specific localization. Thus, we unexpectedly found that the estrogen-related receptor β (ERRβ) is expressed predominantly in the thick ascending limb (TAL) and, to a much lesser extent, in the distal convoluted tubules. In vivo treatment with an ERR inverse agonist (diethylstilbestrol) showed a link between this receptor family and the expression of the Na+,K+-2Cl cotransporter type 2 (NKCC2), and resulted in phenotype presenting some similarities with the Bartter syndrom (hypokalemia, urinary Na+ loss and volume contraction). Conversely, stimulation of ERRβ with a selective agonist (GSK4716) in a TAL cell line stimulated NKCC2 expression. All together, these results provide broad information regarding the renal expression of all members of the nuclear receptor family and have allowed us to identify a new regulator of ion transport in the TAL segments.  相似文献   

8.
Tamm-Horsfall protein (THP) is a glycoprotein expressed exclusively in thick ascending limbs (TAL) of the kidney. We recently described a novel protective role of THP against acute kidney injury (AKI) via downregulation of inflammation in the outer medulla. Our current study investigates the mechanistic relationships among the status of THP, inflammation, and tubular injury. Using an ischemia-reperfusion model in wild-type and THP-/- mice, we demonstrate that it is the S3 proximal segments but not the THP-deficient TAL that are the main targets of tubular injury during AKI. The injured S3 segments that are surrounded by neutrophils in THP-/- mice have marked overexpression of neutrophil chemoattractant MIP-2 compared with wild-type counterparts. Neutralizing macrophage inflammatory protein-2 (MIP-2) antibody rescues S3 segments from injury, decreases neutrophil infiltration, and improves kidney function in THP-/- mice. Furthermore, using immunofluorescence volumetric imaging of wild-type mouse kidneys, we show that ischemia alters the intracellular translocation of THP in the TAL cells by partially shifting it from its default apical surface domain to the basolateral domain, the latter being contiguous to the basolateral surface of S3 segments. Concomitant with this is the upregulation, in the basolateral surface of S3 segments, of the scavenger receptor SRB-1, a putative receptor for THP. We conclude that TAL affects the susceptibility of S3 segments to injury at least in part by regulating MIP-2 expression in a THP-dependent manner. Our findings raise the interesting possibility of a direct role of basolaterally released THP on regulating inflammation in S3 segments.  相似文献   

9.
Na(+)-K(+)-2Cl(-) cotransporter (NKCC2)-mediated NaCl reabsorption in the thick ascending limb (TAL) is stimulated by AVP via V2 receptor/PKA/cAMP signaling. This process is antagonized by locally produced eicosanoids such as 20-HETE or prostaglandin E(2), which are synthesized in a phospholipase A(2)-dependent reaction cascade. Using microarray-based gene expression analysis, we found evidence for an AVP-dependent downregulation of the calcium-independent isoform of PLA(2), iPLA(2)β, in the outer medulla of rats. In the present study, we therefore examined the contribution of iPLA(2)β to NKCC2 regulation. Immunoreactive iPLA(2)β protein was detected in cultured mTAL cells as well as in the entire TAL of rodents and humans with the exception of the macula densa. Administration of the V2 receptor-selective agonist desmopressin (5 ng/h; 3 days) to AVP-deficient diabetes insipidus rats increased outer medullary phosphorylated NKCC2 (pNKCC2) levels more than twofold in association with a marked reduction in iPLA(2)β abundance (-65%; P < 0.05), thus confirming microarray results. Inhibition of iPLA(2)β in Sprague-Dawley rats with FKGK 11 (0.5 μM) or in mTAL cells with FKGK 11 (10 μM) or (S)-bromoenol lactone (5 μM) for 1 h markedly increased pNKCC2 levels without affecting total NKCC2 expression. Collectively, these data indicate that iPLA(2)β acts as an inhibitory modulator of NKCC2 activity and suggest that downregulation of iPLA(2)β may be a relevant step in AVP-mediated urine concentration.  相似文献   

10.
The present study describes the intracellular distribution of Tamm-Horsfall protein (THP) in rat kidney. The localization was determined by immunoelectron microscopy using the protein A-gold technique. Various fixation and embedding protocols were evaluated for this purpose. Brief perfusion fixation (3 min) with 1% glutaraldehyde and embedding in a highly hydrophilic glycol methacrylate-polyester mixture were most appropriate for antigen-antibody recognition and structural preservation. The overall tissue distribution of THP was evaluated by indirect immunofluorescence microscopy; reaction was strong along the entire thick ascending limb of the loop of Henle (TAL) with enhanced fluorescence in the apical cytoplasm. On the electron microscopic level immunogold labelling was concentrated over numerous membrane-bound vesicles which form a compartment in the apical cytoplasm. The Golgi region was consistently labelled, whereas the plasma membranes revealed only sporadic labelling at the luminal side, and basolateral membranes were mostly unlabelled. Quantitative evaluation of the gold labelling, which was separately done for the inner stripe, outer stripe and cortical TAL, consistently showed the highest particle density in the apical cytoplasm. Middle and basal levels in the TAL cells were only moderately labelled. The results are discussed with respect to the current opinion which describes THP as a membrane glycoprotein. We speculate that the accumulation of THP in the apical vesicular compartment of TAL cells indicates a storage site of the protein, possibly prior to extrusion via exocytosis of the vesicle contents.  相似文献   

11.
The kidney plays an essential role in blood pressure regulation by controlling short-term and long-term NaCl and water balance. The thick ascending limb of the loop of Henle (TAL) reabsorbs 25-30% of the NaCl filtered by the glomeruli in a process mediated by the apical Na(+)-K(+)-2Cl(-) cotransporter NKCC2, which allows Na(+) and Cl(-) entry from the tubule lumen into TAL cells. In humans, mutations in the gene coding for NKCC2 result in decreased or absent activity characterized by severe salt and volume loss and decreased blood pressure (Bartter syndrome type 1). Opposite to Bartter's syndrome, enhanced NaCl absorption by the TAL is associated with human hypertension and animal models of salt-sensitive hypertension. TAL NaCl reabsorption is subject to exquisite control by hormones like vasopressin, parathyroid, glucagon, and adrenergic agonists (epinephrine and norepinephrine) that stimulate NaCl reabsorption. Atrial natriuretic peptides or autacoids like nitric oxide and prostaglandins inhibit NaCl reabsorption, promoting salt excretion. In general, the mechanism by which hormones control NaCl reabsorption is mediated directly or indirectly by altering the activity of NKCC2 in the TAL. Despite the importance of NKCC2 in renal physiology, the molecular mechanisms by which hormones, autacoids, physical factors, and intracellular ions regulate NKCC2 activity are largely unknown. During the last 5 years, it has become apparent that at least three molecular mechanisms determine NKCC2 activity. As such, membrane trafficking, phosphorylation, and protein-protein interactions have recently been described in TALs and heterologous expression systems as mechanisms that modulate NKCC2 activity. The focus of this review is to summarize recent data regarding NKCC2 regulation and discuss their potential implications in physiological control of TAL function, renal physiology, and blood pressure regulation.  相似文献   

12.
Liver-specific ZP domain-containing protein (LZP) was recently identified as a secreted protein that is specifically expressed in liver. However, the physiological effects of LZP are largely unknown. In this study, we found that LZP was detectable in mouse kidneys, testes, ovaries and heart, in addition to liver. LZP was localized in the spermatid cells of testes, corpus luteum cells of ovaries, and cardiac muscle cells of heart. But the protein mainly anchored on the apical membrane of the thick ascending limb of the loop of Henle (TAL) cell in mouse kidney. In rat kidney LZP and Tamm-Horsfall protein (THP) were co-localized in TAL. The in vivo interaction between LZP and THP was confirmed in kidney and urine by co-immunoprecipitation assay, and the in vitro interaction was detected by GST pull-down assay, implying that the interaction could be independent on N-linked glycosylated modification of LZP. Surprisingly, LZPs with intramolecular disulfide bridges could self-interact, and then self-aggregate into spheres of varying sizes, but not polymerize into filaments. The finding that LZP might act as a new partner of THP would provide novel insights into renal functions related to THP and LZP, such as the urothelial permeability barrier and the host defense against the adhesion of pathogens.  相似文献   

13.
The P2Y(2) receptor (P2Y2-R) antagonizes sodium reabsorption in the kidney. Apart from its effect in distal nephron, hypothetically, P2Y(2)-R may modulate activity/abundances of sodium transporters/channel subunits along the nephron via antagonism of aldosterone or vasopressin or interaction with mediators such as nitric oxide (NO), and prostaglandin E(2) (PGE(2)) or oxidative stress (OS). To determine the extent of the regulatory role of P2Y(2)-R in renal sodium reabsorption, in study 1, we fed P2Y(2)-R knockout (KO; n = 5) and wild-type (WT; n = 5) mice a high (3.15%)-sodium diet (HSD) for 14 days. Western blotting revealed significantly higher protein abundances for cortical and medullary bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2), medullary α-1-subunit of Na-K-ATPase, and medullary α-subunit of the epithelial sodium channel (ENaC) in KO vs. WT mice. Molecular analysis of urine showed increased excretion of nitrates plus nitrites (NOx), PGE(2), and 8-isoprostane in the KO, relative to WT mice, supporting a putative role for these molecules in determining alterations of proteins involved in sodium transport along the nephron. To determine whether genotype differences in response to aldosterone might have played a role in these differences due to HSD, in study 2 aldosterone levels were clamped (by osmotic minipump infusion). Clamping aldosterone (with HSD) led to significantly impaired natriuresis with elevated Na/H exchanger isoform 3 in the cortex, and NKCC2 in the medulla, and modest but significantly lower levels of NKCC2, and α- and β-ENaC in the cortex of KO vs. WT mice. This was associated with significantly reduced urinary NOx in the KO, although PGE(2) and 8-isoprostane remained significantly elevated vs. WT mice. Taken together, our results suggest that P2Y(2)-R is an important regulator of sodium transporters along the nephron. Pre- or postreceptor differences in the response to aldosterone, perhaps mediated via prostaglandins or changes in NOS activity or OS, likely play a role.  相似文献   

14.
15.
Summary The present study describes the intracellular distribution of Tamm-Horsfall protein (THP) in rat kidney. The localization was determined by immunoelectron microscopy using the protein A-gold technique. Various fixation and embedding protocols were evaluated for this purpose. Brief perfusion fixation (3 min) with 1% glutaraldehyde and embedding in a highly hydrophilic glycol methacrylate-polyester mixture were most appropriate for antigen-antibody recognition and structural preservation. The overall tissue distribution of THP was evaluated by indirect immunofluorescence microscopy; reaction was strong along the entire thick ascending limb of the loop of Henle (TAL) with enhanced fluorescence in the apical cytoplasm. On the electron microscopic level immunogold labelling was concentrated over numerous membrane-bound vesicles which form a compartment in the apical cytoplasm. The Golgi region was consistently labelled, whereas the plasma membranes revealed only sporadic labelling at the luminal side, and basolateral membranes were mostly unlabelled. Quantitative evaluation of the gold labelling, which was separately done for the inner stripe, outer stripe and cortical TAL, consistently showed the highest particle density in the apical cytoplasm. Middle and basal levels in the TAL cells were only moderately labelled. The results are discussed with respect to the current opinion which describes THP as a membrane glycoprotein. We speculate that the accumulation of THP in the apical vesicular compartment of TAL cells indicates a storage site of the protein, possibly prior to extrusion via exocytosis of the vesicle contents.  相似文献   

16.
Duplicate pairs of isoforms of each of the NKCC2 and the NCC absorptive cation-chloride-cotransporters have been isolated from the European eel. As with mammalian NKCC2, NKCC2alpha isoform mRNA expression was restricted to renal tissues, whereas NKCC2beta isoform expression was present in intestine and urinary bladder. Similar to mammalian NCC, NCCalpha mRNA expression was also found in the kidney, whereas, expression of NCCbeta mRNA was found at low levels in a number of tissues but particularly in intestine. Following 3 weeks of transfer of yellow or silver (adult life stages) eels from freshwater (FW) to seawater (SW), renal mRNA expression of NKCC2alpha did not change whereas NCCalpha expression was reduced although only significantly in silver eels. This suggests that any changes in renal sodium chloride re-absorption in SW-acclimated fish may be due to decreased NCCalpha cotransporter activity rather than the result of suppression of NKCCalpha cotransporter activity. Intestinal mRNA expression of NKCC2beta generally increased following SW acclimation, although maximal increases occurred later in yellow (7 days) than silver (2 days) eels. Average levels of NKCC2beta mRNA abundance in the middle intestine were 89% of those in the anterior, and this was reduced to 44% (of the level in the anterior intestine) in posterior intestine/rectum. Expression of NCCbeta was only found in the posterior intestine/rectum. Together these results suggest intestinal sodium chloride absorption may switch from occurring via NKCCbeta to NCCbeta as imbibed fluid travels down the intestine and the concentration of luminal potassium decreases.  相似文献   

17.
Teddy M. Musselman 《Steroids》2010,75(11):760-765
The Na-K-2Cl cotransporter (NKCC2) regulates sodium transport along the thick ascending limb of Henle's loop and is important in control of sodium balance, renal concentrating ability and renin release. To determine if there are sex differences in NKCC2 abundance and/or distribution, and to evaluate the contribution of ovarian hormones to any such differences, we performed semiquantitative immunoblotting and immunoperoxidase immunohistochemistry for NKCC2 in the kidney of Sprague Dawley male, female and ovariectomized (OVX) rats with and without 17-β estradiol or progesterone supplementation. Intact females demonstrated greater NKCC2 protein in homogenates of whole kidney (334 ± 29%), cortex (219 ± 20%) and outer medulla (133 ± 9%) compared to males. Ovarian hormone supplementation to OVX rats regulated NKCC2 in the outer medulla only, with NKCC2 protein abundance decreasing slightly in response to progesterone but increasing in response to 17-β estradiol. Immunohistochemistry demonstrated prominent NKCC2 labeling in the apical membrane of thick ascending limb cells. Kidney section NKCC2 labeling confirmed regionalized regulation of NKCC2 by ovarian hormones. Localized regulation of NKCC2 by ovarian hormones may have importance in controlling sodium and water balance over the lifetime of women as the milieu of sex hormones varies.  相似文献   

18.
The thick ascending limb of the loop of Henle (TAL) reabsorbs ~30% of filtered NaCl but is impermeable to water. The observation that little water traverses the TAL indicates an absence of water channels at the apical membrane. Yet TAL cells swell when peritubular osmolality decreases indicating that water channels must be present in the basolateral side. Consequently, we hypothesized that the water channel aquaporin-1 (AQP1) facilitates water flux across the basolateral membrane of TALs. Western blotting revealed AQP1 expression in microdissected rat and mouse TALs. Double immunofluorescence showed that 95 ± 2% of tubules positive for the TAL-specific marker Tamm-Horsfall protein were also positive for AQP1 (n = 6). RT-PCR was used to demonstrate presence of AQP1 mRNA and the TAL-specific marker NKCC2 in microdissected TALs. Cell surface biotinylation assays showed that 23 ± 3% of the total pool of AQP1 was present at the TAL basolateral membrane (n = 7). To assess the functional importance of AQP1 in the basolateral membrane, we measured the rate of cell swelling initiated by decreasing peritubular osmolality as an indicator of water flux in microdissected TALs. Water flux was decreased by ~50% in Aqp1 knockout mice compared with wild-types (4.0 ± 0.8 vs. 8.9 ± 1.7 fluorescent U/s, P < 0.02; n = 7). Furthermore, arginine vasopressin increased TAL AQP1 expression by 135 ± 17% (glycosylated) and 41 ± 11% (nonglycosylated; P < 0.01; n =5). We conclude that 1) the TAL expresses AQP1, 2) ~23% of the total pool of AQP1 is localized to the basolateral membrane, 3) AQP1 mediates a significant portion of basolateral water flux, and 4) AQP1 is upregulated in TALs of rats infused with dDAVP. AQP1 could play an important role in regulation of TAL cell volume during changes in interstitial osmolality, such as during a high-salt diet or water deprivation.  相似文献   

19.
Increased expression of transforming growth factor beta-1 (TGF-beta 1) and glucose transporter (GLUT1) has been implicated in the genesis of diabetic nephropathy. The aim of this study was to evaluate GLUT1 protein levels in the renal cortex of a rat model of diabetes as well as its relationship to urinary albumin and TGF-beta1. Streptozotocin-injected rats (n = 13) and controls (n = 13) were compared for their urinary albumin, and TGF-beta 1 and for renal cortical and medullar GLUT1 protein abundance. GLUT1 protein content was determined by optical densitometry after Western blotting using an anti-GLUT1 antibody; urinary albumin was measured using electroimmunoassay, urinary TGF-beta 1 using ELISA. Forty-five days of diabetes resulted in increased albuminuria (p < 0.05), urinary TGF-beta 1 (p < 0.05) and GLUT1 protein abundance (p < 0.05). There was a positive correlation between urinary TGF-beta 1 and plasma glucose levels (r = 0.65, p < 0.05) and albuminuria (r = 0.72, p < 0.05). We concluded that 45 days of diabetes result in incipient diabetic nephropathy and increased cortical GLUT1 protein abundance. We speculate that the higher cortical GLUT1 protein levels in diabetes may amplify the effects of hyperglycemia in determining higher intracellular glucose in mesangial cells, thereby contributing to diabetes-related kidney damage.  相似文献   

20.
A SPAK isoform switch modulates renal salt transport and blood pressure   总被引:2,自引:0,他引:2  
The renal thick ascending limb (TAL) and distal convoluted tubule (DCT) play central roles in salt homeostasis and blood pressure regulation. An emerging model suggests that bumetanide- and thiazide-sensitive NaCl transporters (NKCC2 and NCC) along these segments are phosphorylated and activated by WNK kinases, via SPAK and OSR1. Here, we show that a kidney-specific SPAK isoform, which lacks the kinase domain, inhibits phosphorylation of NCC and NKCC2 by full-length SPAK in?vitro. Kidney-specific SPAK is highly expressed along the TAL, whereas full-length SPAK is more highly expressed along the DCT. As predicted from the differential expression, SPAK knockout in animals has divergent effects along TAL and DCT, with increased phosphorylated NKCC2 along TAL and decreased phosphorylated NCC along DCT. In mice, extracellular fluid volume depletion shifts SPAK isoform abundance to favor NaCl retention along both segments, indicating that a SPAK isoform switch modulates sodium avidity along the distal nephron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号