首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The secretion of growth hormone (GH) increases acutely during exercise, but whether this is associated with the concomitant alterations in substrate metabolism has not previously been studied. We examined the effects of acute GH administration on palmitate, glucose, and protein metabolism before, during, and after 45 min of moderate-intensity aerobic exercise in eight GH-deficient men (mean age = 40.8 +/- 2.9 yr) on two occasions, with (+GH; 0.4 IU GH) and without GH administered (-GH). A group of healthy controls (n = 8, mean age = 40.4 +/- 4.2 yr) were studied without GH. The GH replacement during exercise on the +GH study mimicked the endogenous GH profile seen in healthy controls. No significant difference in resting free fatty acid (FFA) flux was found between study days, but during exercise a greater FFA flux was found when GH was administered (211 +/- 26 vs. 168 +/- 28 micromol/min, P < 0.05) and remained elevated throughout recovery (P < 0.05). With GH administered, the exercise FFA flux was not significantly different from that observed in control subjects (188 +/- 14 micromol/min), but the recovery flux was greater on the +GH day than in the controls (169 +/- 17 vs. 119 +/- 11 micromol/min, respectively, P < 0.01). A significant time effect (P < 0.01) for glucose rate of appearance from rest to exercise and recovery occurred in the GH-deficient adults and the controls, whereas there were no differences in glucose rate of disappearance. No significant effect across time was found for protein muscle balance. In conclusion, 1) acute exposure to GH during exercise stimulates the FFA release and turnover in GH-deficient adults, 2) GH does not significantly impact glucose or protein metabolism during exercise, and 3) the exercise-induced secretion of GH plays a significant role in the regulation of fatty acid metabolism.  相似文献   

2.
Hypertriglyceridemia is common in individuals with human immunodeficiency (HIV) infection, but the mechanisms responsible for increased plasma triglyceride (TG) concentrations are not clear. We evaluated fatty acid and VLDL-TG kinetics during basal conditions and during a glucose infusion that resulted in typical postprandial plasma glucose and insulin concentrations in six men with HIV-dyslipidemia [body mass index (BMI): 28 +/- 2 kg/m2] and six healthy men (BMI: 26 +/- 2 kg/m2). VLDL-TG secretion and palmitate rate of appearance (Ra) in plasma were measured by using stable-isotope-labeled tracer techniques. Basal palmitate Ra and VLDL-TG secretion rates were greater (P < 0.01 for both) in men with HIV-dyslipidemia (1.04 +/- 0.07 micromol palmitate x kg-1 x min-1 and 5.7 +/- 0.6 micromol VLDL-TG x l plasma-1 x min-1) than in healthy men (0.67 +/- 0.08 micromol palmitate. kg-1 x min-1 and 3.0 +/- 0.5 micromol VLDL-TG x l plasma-1 x min-1). Basal VLDL-TG plasma clearance was lower in men with HIV-dyslipidemia (13 +/- 1 ml/min) than in healthy men (19 +/- 2 ml/min; P < 0.05). Glucose infusion decreased palmitate Ra (by approximately 50%) and the VLDL-TG secretion rate (by approximately 30%) in both groups, but the VLDL-TG secretion rate remained higher (P < 0.05) in subjects with HIV-dyslipidemia. These findings demonstrate that increased secretion of VLDL-TG and decreased plasma VLDL-TG clearance, during both fasting and fed conditions, contribute to hypertriglyceridemia in men with HIV-dyslipidemia. Although it is likely that increased free fatty acid release from adipose tissue contributes to the increase in basal VLDL-TG concentration, other factors must be involved, because insulin-induced suppression of lipolysis and systemic fatty acid availability did not normalize the VLDL-TG secretion rate.  相似文献   

3.
During critical illness glutamine deficiency may develop. Glutamine supplementation can restore plasma concentration to normal, but the effect on glutamine metabolism is unknown. The use of growth hormone (GH) and insulin-like growth factor I (IGF-I) to prevent protein catabolism in these patients may exacerbate the glutamine deficiency. We have investigated, in critically ill patients, the effects of 72 h of treatment with standard parenteral nutrition (TPN; n = 6), TPN supplemented with glutamine (TPNGLN; 0.4 g x kg(-1) x day(-1), n = 6), or TPNGLN with combined GH (0.2 IU. kg(-1). day(-1)) and IGF-I (160 microg x kg (-1) x day(-1)) (TPNGLN+GH/IGF-I; n = 5) on glutamine metabolism using [2-(15)N]glutamine. In patients receiving TPNGLN and TPNGLN+GH/IGF-I, plasma glutamine concentration was increased (338 +/- 22 vs. 461 +/- 24 micromol/l, P < 0.001, and 307 +/- 65 vs. 524 +/- 71 micromol/l, P < 0.05, respectively) and glutamine uptake was increased (5.2 +/- 0.5 vs. 7.4 +/- 0.7 micromol x kg(-1) x min(-1), P < 0.05 and 5.2 +/- 1.1 vs. 7.6 +/- 0.8 micromol x kg(-1) x min(-1), P < 0.05). Glutamine production and metabolic clearance rates were not altered by the three treatments. These results suggest that there is an increased requirement for glutamine in critically ill patients. Combined GH/IGF-I treatment with TPNGLN did not have adverse effects on glutamine metabolism.  相似文献   

4.
Protein loss leading to reduced lean body mass is recognized to contribute to the high levels of morbidity and mortality seen in critical illness. This prospective, randomized, controlled study compared the effects of conventional parenteral nutrition (TPN), glutamine-supplemented (0.4 g.kg-1.day-1) TPN (TPNGLN), and TPNGLN with combined growth hormone (GH, 0.2 IU.kg-1.day-1) and IGF-I (160 microg.kg-1.day-1) on protein metabolism in critical illness. Nineteen mechanically ventilated subjects [64 +/- 3 yr, body mass index (BMI) 23.8 +/- 1.3, kg/m2] were initially studied in the fasting state (study 1) and subsequently after 3 days of nutritional with/without hormonal support (study 2). All had recently been admitted to the ICU and the majority were postemergency abdominal surgery (APACHE II 17.5 +/- 1.0). Protein metabolism was assessed using a primed constant infusion of [1-13C]leucine. Conventional TPN contained mixed amino acids, Intralipid, and 50% dextrose. TPNGLN, unlike TPN alone, resulted in an increase in plasma glutamine concentration ( approximately 50%, P < 0.05). Both TPN and TPNGLN decreased the rate of protein breakdown (TPN 15%, P < 0.002; TPNGLN 16%, P < 0.05), but during these treatments the patients remained in a net negative protein balance. Combined treatment with TPNGLN + GH/IGF-I increased plasma IGF-I levels (10.3 +/- 0.8 vs. 48.1 +/- 9.1 nmol/l, study 1 vs. study 2, P < 0.05), and in contrast to therapy with nutrition alone, resulted in net protein gain (-0.75 +/- 0.14 vs. 0.33 +/- 0.12 g protein.kg-1.day-1, study 1 vs. study 2, P < 0.05). Therapy with GH/IGF-I + TPNGLN, unlike nutrition alone, resulted in net positive protein balance in a group of critically ill patients.  相似文献   

5.
We previously reported that epinephrine stimulates leg free fatty acid (FFA) release in men but not in women. The present studies were conducted to determine whether the same is true during exercise. Six men and six women bicycled for 90 min at 45% of peak O(2) consumption, during which time systemic and leg FFA kinetics ([9, 10-(3)H]palmitate) were measured. The catecholamine and hormonal responses to exercise were not different in men and women. The baseline systemic and leg palmitate release was 94 +/- 15 vs. 114 +/- 5 micromol/min and 16 +/- 2 and 20 +/- 3 micromol/min, respectively, in men and women [P = nonsignificant (NS)]. Systemic and leg palmitate release increased (both P < 0.001) to 251 +/- 18 vs. 212 +/- 16 micromol/min and 73 +/- 19 vs. 80 +/- 12 micromol/min in men and women, respectively, during the last 30 min of exercise (P = NS, men vs. women). We conclude that the systemic and leg adipose tissue lipolytic response to exercise is not different in nonobese men and women.  相似文献   

6.
Human immunodeficiency virus (HIV)-lipodystrophy syndrome (HLS) is characterized by hypertriglyceridemia, low high-density lipoprotein-cholesterol, lipoatrophy, and central adiposity. We investigated fasting lipid metabolism in six men with HLS and six non-HIV-infected controls. Compared with controls, HLS patients had lower fat mass (15.9 +/- 1.3 vs. 22.3 +/- 1.7 kg, P < 0.05) but higher plasma glycerol rate of appearance (R(a)), an index of total lipolysis (964.71 +/- 103.33 vs. 611.08 +/- 63.38 micromol x kg fat(-1) x h(-1), P < 0.05), R(a) palmitate, an index of net lipolysis (731.49 +/- 72.36 vs. 419.72 +/- 33.78 micromol x kg fat(-1) x h(-1), P < 0.01), R(a) free fatty acids (2,094.74 +/- 182.18 vs. 1,470.87 +/- 202.80 micromol x kg fat(-1) x h(-1), P < 0.05), and rates of intra-adipocyte (799.40 +/- 157.69 vs. 362.36 +/- 74.87 micromol x kg fat(-1) x h(-1), P < 0.01) and intrahepatic fatty acid reesterification (1,352.08 +/- 123.90 vs. 955.56 +/- 124.09 micromol x kg fat(-1) x h(-1), P < 0.05). Resting energy expenditure was increased in HLS patients (30.51 +/- 2.53 vs. 25.34 +/- 1.04 kcal x kg lean body mass(-1) x day(-1), P < 0.05), associated with increased non-plasma-derived fatty acid oxidation (139.04 +/- 24.17 vs. 47.87 +/- 18.81 micromol x kg lean body mass(-1) x min(-1), P < 0.02). The lipoatrophy observed in HIV lipodystrophy is associated with accelerated lipolysis. Increased hepatic reesterification promotes the hypertriglyceridemia observed in this syndrome.  相似文献   

7.
Because L-arginine is degraded by hepatic arginase to ornithine and urea and is transported by the regulated 2A cationic amino acid y(+) transporter (CAT2A), hepatic transport may regulate plasma arginine concentration. Groups of rats (n = 6) were fed a diet of either low salt (LS) or high salt (HS) for 7 days to test the hypothesis that dietary salt intake regulates plasma arginine concentration and renal nitric oxide (NO) generation by measuring plasma arginine and ornithine concentrations, renal NO excretion, and expression of hepatic CAT2A, and arginase. LS rats had lower excretion of NO metabolites and cGMP, lower plasma arginine concentration (LS: 83 +/- 7 vs. HS: 165 +/- 10 micromol/l, P < 0.001), but higher plasma ornithine concentration (LS: 82 +/- 6 vs. HS: 66 +/- 4 micromol/l, P < 0.05) and urea excretion. However, neither the in vitro hepatic arginase activity nor the mRNA for hepatic arginase I was different between groups. In contrast, LS rats had twice the abundance of mRNA for hepatic CAT2A (LS: 3.4 +/- 0.4 vs. HS: 1.6 +/- 0.5, P < 0.05). The reduced plasma arginine concentration with increased plasma ornithine concentration and urea excretion during LS indicates increased arginine metabolism by arginase. This cannot be ascribed to changes in hepatic arginase expression but may be a consequence of increased hepatic arginine uptake via CAT2A.  相似文献   

8.
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P 相似文献   

9.
Cortisol's effects on lipid metabolism are controversial and may involve stimulation of both lipolysis and lipogenesis. This study was undertaken to define the role of physiological hypercortisolemia on systemic and regional lipolysis in humans. We investigated seven healthy young male volunteers after an overnight fast on two occasions by means of microdialysis and palmitate turnover in a placebo-controlled manner with a pancreatic pituitary clamp involving inhibition with somatostatin and substitution of growth hormone, glucagon, and insulin at basal levels. Hydrocortisone infusion increased circulating concentrations of cortisol (888 +/- 12 vs. 245 +/- 7 nmol/l). Interstitial glycerol concentrations rose in parallel in abdominal (327 +/- 35 vs. 156 +/- 30 micromol/l; P = 0.05) and femoral (178 +/- 28 vs. 91 +/- 22 micromol/l; P = 0.02) adipose tissue. Systemic [(3)H]palmitate turnover increased (165 +/- 17 vs. 92 +/- 24 micromol/min; P = 0.01). Levels of insulin, glucagon, and growth hormone were comparable. In conclusion, the present study unmistakably shows that cortisol in physiological concentrations is a potent stimulus of lipolysis and that this effect prevails equally in both femoral and abdominal adipose tissue.  相似文献   

10.
On the basis of the finding that plasma glycerol concentration is not controlled by clearance in healthy humans, it has been proposed that elevated plasma free fatty acid (FFA) and glycerol concentrations in cirrhotic subjects are caused by accelerated lipolysis. This proposal has not been validated. We infused 10 volunteers, 10 cirrhotic subjects, and 10 patients after orthotopic liver transplantation (OLT) with [1-(13)C]palmitate and [(2)H(5)]glycerol to compare fluxes (R(a)) and FFA oxidation. Cirrhotic subjects had higher plasma palmitate (52%) and glycerol (33%) concentrations than controls. Palmitate R(a) was faster (1.45+/-0.18 vs. 0.85+/-0.17 micromol x kg(-1) x min(-1)) but glycerol R(a) and clearance slower (1.20+/-0.09 vs. 1.90+/-0.24 micromol x kg(-1) x min(-1) and 21.2+/-1.2 vs. 44.7+/- 4.9 ml x kg(-) x h(-1), respectively) than in controls. After OLT, plasma palmitate and glycerol concentrations and palmitate R(a) did not differ, but glycerol R(a) (1.16+/-0.11 micromol x kg(-1) x min(-1)) and clearance (26.7+/-2.4 ml x kg(-1) x h(-1)) were slower than in controls. We conclude that 1) impaired reesterification, not accelerated lipolysis, elevates FFA in cirrhotic subjects; 2) normalized FFA after OLT masks impaired reesterification; and 3) plasma glycerol concentration poorly reflects lipolytic rate in cirrhosis and after OLT.  相似文献   

11.
To determine the effects of brief food restriction on fatty acid (FA) metabolism, hindlimbs of F344/BN rats fed either ad libitum (AL) or food restricted (FR) to 60% of baseline food intake for 28 days were perfused under hyperglycemic-hyperinsulinemic conditions (20 mM glucose, 1 mM palmitate, 1,000 microU/ml insulin, [3-(3)H]glucose, and [1-(14)C]palmitate). Basal glucose and insulin levels were significantly lower (P < 0.05) in FR vs. AL rats. Palmitate uptake (34.3 +/- 2.7 vs. 24.5 +/- 3.1 nmol/g/min) and oxidation (3.8 +/- 0.2 vs. 2.7 +/- 0.3 nmol.g(-1).min(-1)) were significantly higher (P < 0.05) in FR vs. AL rats, respectively. Glucose uptake was increased in FR rats and was accompanied by significant increases in red and white gastrocnemius glycogen synthesis, indicating an improvement in insulin sensitivity. Although muscle triglyceride (TG) levels were not significantly different between groups, glucose uptake and total preperfusion TG concentration were negatively correlated (r(2) = 0.27, P < 0.05). In conclusion, our results show that under hyperglycemic-hyperinsulinemic conditions, brief FR resulted in an increase in FA oxidative disposal that may contribute to the improvement in insulin sensitivity.  相似文献   

12.
Beta-adrenergic blockade alters whole-body leucine metabolism in humans   总被引:1,自引:0,他引:1  
This study examined the effects of a nonselective beta-blocking agent on whole-body leucine metabolism in humans. Five normal, healthy subjects (4 male, 1 female) underwent a 6-h primed, constant-rate infusion of L-[1-13C]leucine after 5 days of twice daily oral use of 80 mg propranolol and a placebo. Leucine turnover was determined by tracer dilution and leucine oxidation by 13C enrichment of the expired CO2. Propranolol decreased the total daily energy expenditure from 1,945 +/- 177.5 to 1,619 +/- 92.5 kcal/day (P less than 0.05). A fasting associated decrease in blood glucose and an attenuated rise in free fatty acids and ketones were observed during beta-blockade. Propranolol also increased plasma leucine concentrations (73.1 +/- 8.7 to 103.4 +/- 7.3 mumol/l; P less than 0.05) and leucine oxidation (13.2 +/- 1.2 to 17.1 +/- 1.3 mumol.kg-1.h-1; P less than 0.05), although leucine turnover was not significantly altered (100.5 +/- 7.3 vs. 126.0 +/- 12.3 mumol.kg-1.h-1). In addition, the urinary urea nitrogen-to-creatinine ratio was greater during propranolol administration (0.24 +/- 0.04 vs. 0.34 +/- 0.02 mol/g; P less than 0.05). These data suggest that the beta-adrenergic system plays a role in the modulation of whole-body leucine metabolism in humans. Whether these changes are the result of a direct effect on skeletal muscle or an indirect effect mediated by altering the fuel supply to skeletal muscle cannot be discriminated by the present study.  相似文献   

13.
To evaluate the ontogeny of neonatal glucose homeostasis, glucose production and lactate production have been measured in nine prematurely born appropriate for gestational age neonates [birth weight 1985 +/- 100 g, (SEM) gestational age 33.6 +/- 0.7 weeks] and five full term appropriate for gestational age neonates [birth weight 3254 +/- 111 g, gestational age 40.8 +/- 0.4 wks] and compared to six non pregnant, nondiabetic adults [weight of 57.7 +/- 2.2 kg, age 32 +/- 2 years]. Ra glucose (preterm) averaged 27.7 +/- 2.8 mumol.kg-1 min-1 (5.0 +/- 0.5 mg.kg-1 min-1) and Ra glucose (term) averaged 28.9 +/- 3.9 mumol.kg-1 min-1 (5.2 +/- 0.7 mg.kg-1 min-1); both were higher than the Ra glucose of the adult controls (16.1 +/- 2.8 mumol.kg-1 min-1 (2.9 +/- 0.5 mg.kg-1 min-1) (P less than 0.05 vs preterm and P less than 0.05 vs. term). Ra lactate (preterm) averaged 100 +/- 11.9 mumol.kg-1 min-1 (9.1 +/- 1.1 mg.kg-1 min-1) and Ra lactate (term) average 77.2 +/- 13.0 mumol.kg-1 min-1 (7.1 +/- 1.2 mg.kg-1 min-1); both were higher than the Ra lactate of the adult controls 35.9 +/- 6.5 mumol.kg-1 min-1 (3.3 +/- 0.6 mg.kg-1 min-1) (P less than 0.01 vs preterm and P less than 0.05 vs. term). The potential for gluconeogenesis from lactate was estimated by determining the ratio of [Ra Lactate/Ra Glucose]. The [Ra Lactate/Ra Glucose] (preterm) (187 +/- 12 (x10(-2)) was similar to that of the [Ra Lactate/Ra Glucose] (term) (136 +/- 16) (x10(-2)).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Hypertriglyceridemia is considered a cardiovascular risk factor in diabetic and nondiabetic subjects. In this study, we aimed to determine potential regulators of very low density lipoprotein-triglyceride (TG) production. VLDL-TG kinetics were measured in 13 men and 12 women [body mass index [mean (range)]: 24.8 (20.2-35.6) kg/m(2)]. VLDL-TG production was assessed from the plasma decay of a bolus injection of ex vivo labeled VLDL particles ([1-(14)C]triolein-VLDL-TG). Similar VLDL-TG production (micromol/min) was found in men and women. VLDL-TG production was not significantly correlated with palmitate flux ([9,10-(3)H]palmitate) (r = 0.09, P = 0.67) or palmitate concentration (r = -0.29, P = 0.2) but was correlated significantly with fasting insulin concentration (r = 0.46, P < 0.05) and resting energy expenditure (REE) (r = 0.45, P < 0.05). The latter correlation improved when adjusted for sex. The best multivariate model with VLDL-TG production as the dependent variable and REE, body composition, hormones, and substrate levels as independent variables included fasting insulin (P = 0.02) and REE (P = 0.02) (r(2) = 0.32, P < 0.001). We conclude that VLDL kinetics are similar in men and women and that REE and plasma insulin are significant independent predictors of VLDL-TG production. FFA availability and body fat distribution are unrelated to VLDL production. We suggest that REE plays a greater role in VLDL-TG production than previously anticipated. REE and insulin should be taken into account when VLDL-TG production comparisons between groups are made.  相似文献   

15.
Insulin resistance in acromegaly causes glucose intolerance and diabetes, but it is unknown whether it involves protein metabolism, since both insulin and growth hormone promote protein accretion. The effects of acromegaly and of its surgical cure on the insulin sensitivity of glucose and amino acid/protein metabolism were evaluated by infusing [6,6-(2)H(2)]glucose, [1-(13)C]leucine, and [2-(15)N]glutamine during a euglycemic insulin (1 mU x kg(-1) x min(-1)) clamp in 12 acromegalic patients, six studied again 6 mo after successful adenomectomy, and eight healthy controls. Acromegalic patients, compared with postsurgical and control subjects, had higher postabsorptive glucose concentration (5.5 +/- 0.3 vs. 4.9 +/- 0.2 micromol/l, P < 0.05, and 5.1 +/- 0.1 micromol/l) and flux (2.7 +/- 0.1 vs. 2.0 +/- 0.2 micromol x kg(-1) x min(-1), P < 0.01, and 2.2 +/- 0.1 micromol x kg(-1) x min(-1), P < 0.05) and reduced insulin-stimulated glucose disposal (+15 +/- 9 vs. +151 +/- 18%, P < 0.01, and 219 +/- 58%, P < 0.001 from basal). Postabsorptive leucine metabolism was similar among groups. In acromegalic and postsurgical subjects, insulin suppressed less than in controls the endogenous leucine flux (-9 +/- 1 and -12 +/- 2 vs. -18 +/- 2%, P < 0.001 and P < 0.05), the nonoxidative leucine disposal (-4 +/- 3 and -1 +/- 3 vs. -18 +/- 2%, P < 0.01 and P < 0.05), respectively, indexes of proteolysis and protein synthesis, and leucine oxidation (-17 +/- 6% in postsurgical patients vs. -26 +/- 6% in controls, P < 0.05). Within 6 mo, surgery reverses insulin resistance for glucose but not for protein metabolism. After adenomectomy, more leucine is oxidized during hyperinsulinemia.  相似文献   

16.
OBJECTIVE: To investigate the possible contribution of plasma cortisol and growth hormone (GH) as reflected by insulin-like growth factor-I (IGF-I)/insulin-like growth factor-binding protein-3 (IGFBP-3) on insulin action in short-statured children. METHODS: In this study, insulin resistance (HOMA) was determined in 34 normal short-statured (age 9.4 +/- 3.5 years) and in 19 GH-deficient children (age 10.4 +/- 2.2 years). HOMA was examined in relation to fasting plasma cortisol, IGF-I, IGFBP-3 and in addition to birthweight and body mass index (BMI). RESULTS: Birthweight was not correlated to insulin resistance. In GH-deficient children, BMI was significantly augmented and was associated with HOMA (p < 0.02). In both groups of patients, fasting plasma cortisol was related to HOMA (normal: r = 0.295, p < 0.05, GH-deficient: r = 0.495, p < 0.02). Only in normal short-statured children IGF-I (r = 0.338, p < 0.03) and IGFBP-3 (r = 0.493, p < 0.002) were associated with insulin resistance. CONCLUSION: The results indicated that at a young age cortisol contributed to insulin resistance in short-statured children. In normal short-statured children HOMA was associated with IGF-I and IGFBP-3. Possibly GH, a known cause of insulin resistance, contributed to HOMA as IGF-I and IGFBP-3 do not mediate insulin resistance but reflect growth hormone secretion. The results in GH-deficient children supported this conclusion as in the absence of GH insulin resistance was not associated with IGF-I/IGFBP-3.  相似文献   

17.
This study examined the effects of ovariectomy (OVX) and 17beta-estradiol (E(2)) replacement (OVX + E(2)) on renal function in Sprague-Dawley rats. OVX caused a 40% decrease in the fractional excretion of potassium (FE(K(+))) that was prevented by E(2) replacement [Sham, 24.2 +/- 2.9%; OVX, 14.5 +/- 2.1% (P < 0.05 vs. OVX + E(2)); and OVX + E(2), 26.2 +/- 2.7%; n = 7-11] and that corresponded to significant increases in plasma potassium [(in mmol/l): Sham, 3.15 +/- 0.087; OVX, 3.42 +/- 0.048 (P < 0.05 vs. OVX + E(2)); and OVX + E(2), 3.19 +/- 0.11; n = 7-11]. No effects of OVX were detected on plasma levels of sodium and aldosterone. Angiotensin II type 1 receptor (AT(1)R) densities in ovariectomized rats were 1.4-fold and 1.3-fold higher in glomerular [maximum binding capacity (B(max); in fmol/mg protein): Sham, 482 +/- 21; OVX, 666 +/- 20 (P < 0.05 vs. OVX + E(2)); and OVX + E(2), 504 +/- 26; n = 7-11] and proximal tubular [B(max) (in fmol/mg protein): Sham, 721 +/- 16; OVX, 741 +/- 24 (P < 0.05 vs. OVX + E(2)); and OVX + E(2), 569 +/- 23; n = 7-11] membranes compared with E(2) replete animals, respectively. Both the angiotensin-converting enzyme inhibitor captopril and the AT(1)R antagonist losartan prevented the OVX-induced decrease in the FE(K(+)) and the increase in renal AT(1)R densities, suggesting that E(2) deficiency reduces potassium excretion in an ANG II/AT(1)R-dependent manner. These findings may have implications for renal function in postmenopausal women as well as contribute to the reasons underlying the age-induced increase in susceptibility to hypertension-associated disease in women.  相似文献   

18.
Growth hormone (GH) and cortisol are important to ensure energy supplies during fasting and stress. In vitro experiments have raised the question whether GH and cortisol mutually potentiate lipolysis. In the present study, combined in vivo effects of GH and cortisol on adipose and muscle tissue were explored. Seven lean males were examined four times over 510 min. Microdialysis catheters were inserted in the vastus lateralis muscle and in the subcutaneous adipose tissue of the thigh and abdomen. A pancreatic-pituitary clamp was maintained with somatostatin infusion and replacement of GH, insulin, and glucagon at baseline levels. At t = 150 min, administration was performed of NaCl (I), a 2 microg.kg(-1).min(-1) hydrocortisone infusion (II), a 200-microg bolus of GH (III), or a combination of II and III (IV). Systemic free fatty acid (FFA) turnover was estimated by [9,10-3H]palmitate appearance. Circulating levels of glucose, insulin, and glucagon were comparable in I-IV. GH levels were similar in I and II (0.50 +/- 0.08 microg/l, mean +/- SE). Peak levels during III and IV were approximately 9 microg/l. Cortisol levels rose to approximately 900 nmol/l in II and IV. Systemic (i.e., palmitate fluxes, s-FFA, s-glycerol) and regional (interstitial adipose tissue and skeletal muscle) markers of lipolysis increased in response to both II and III. In IV, they were higher and equal to the isolated additive effects of the two hormones. In conclusion, we find that GH and cortisol stimulate systemic and regional lipolysis independently and in an additive manner when coadministered. On the basis of previous studies, we speculate that the mode of action is mediated though different pathways.  相似文献   

19.
Acetate metabolism was studied in patients with insulin resistance. To evaluate the interaction between glucose and acetate metabolism, we measured acetate and glucose turnover with a hyperinsulinemic euglycemic clamp (hot clamp) in obese and diabetic patients with insulin resistance (n = 8) and in a control group with normal insulin sensitivity (n = 6). At baseline, acetate turnover and plasma concentrations were similar between the two groups (group means: 4.3 +/- 0.4 micromol x kg-1 x min-1 and 128.2 +/- 11.1 micromol/l). Acetate concentrations decreased in both groups with hyperinsulinemia but were significantly lower in the insulin-resistant group (20% vs. 12%, P < 0.05). After the hot clamp treatment, acetate turnover increased for the two groups and was higher in the group with normal insulin sensitivity: 8.1 +/- 0.7 vs. 5.5 +/- 0.5 micromol x kg-1 x min-1 (P < 0.001). No change related to insulin action was observed in either group in the percentage of acetate oxidation. This was approximately 70% of overall utilization at baseline and during the clamp. No correlation between glucose and acetate utilization was observed. Our results support the hypothesis that, like glucose metabolism, acetate metabolism is sensitive to insulin.  相似文献   

20.
L-5-oxoproline (L-5-OP) is an intermediate in glutathione synthesis, possibly limited by cysteine availability. Urinary 5-OP excretion has been proposed as a measure of glycine availability. We investigated whether 5 days of dietary sulfur amino acid (SAA-free) or glycine (Gly-free) restriction affects plasma kinetics of 5-OP and urinary excretion of L- and D-5-OP in 6 healthy men. On day 6, L-5-[1-(13)C]oxoproline and [3,3-(2)H(2)]cysteine were infused intravenously for 8 h (3 h fast/5 h fed). In a control study (adequate amino acid mixture), plasma oxoproline fluxes were 37.8 +/- 13.8 (SD) and 38.4 +/- 14.8 micromol x kg(-1) x h(-1); oxidation accounted for 85% of flux. Cysteine flux was 47.9 +/- 8.5 and 43.2 +/- 8.5 micromol x kg(-1) x h(-1) for fast and fed phases, respectively. Urinary excretion of L- and D-5-OP was 70 +/- 34 and 31.1 +/- 13.3 micromol/mmol creatinine, respectively, during days 3-5, and 46.4 +/- 13.9 and 22.4 +/- 8.3 micromol/mmol over the 8-h tracer study. The 5-OP flux for the Gly-free diet was higher (P = 0. 018) and tended to be higher for the SAA-free diet (P = 0.057) when compared with the control diet. Oxidation rates were higher on the Gly-free (P = 0.005) and SAA-free (P = 0.03) diets. Cysteine fluxes were lower on the the Gly-free (P = 0.01) and the SAA-free diets (P = 0.001) compared with the control diet. Rates of L-5-OP excretion were unchanged by withdrawal of SAA or Gly for 5 days but increased on day 6 (P = 0.005 and P = 0.019, respectively). Thus acute changes in the dietary availability of SAA and Gly alter oxoproline kinetics and urinary 5-OP excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号