首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indirect immunofluorescence microscopy has been used to investigate the ultraviolet (UV) radiation induced disruption of the organization of microfilaments, keratin intermediate filaments, and microtubules in cultured human epidermal keratinocytes. Following irradiation, concurrent changes in the organization of the three major cytoskeletal components were observed in cells incubated under low Ca2+ (0.15 mM) conditions. UV irradiation induced a dose-dependent condensation of keratin filaments into the perinuclear region. This collapse of the keratin network was accompanied by the reorganization of microfilaments into rings and a restricted distribution of microtubules, responses normally elicited by exposure to high Ca2+ (1.05 mM) medium. The UV induced alteration of the keratin network appears to disrupt the interactions between keratin and actin, permitting the reorganization of actin filaments in the absence of Ca2+ stimulation. In addition to the perinuclear condensation of keratin filaments, UV irradiation inhibits the Ca2+ induced formation of keratin alignments at the membrane of apposed cells if UV treatment precedes exposure to high Ca2+ medium. Incubation of keratinocytes in high Ca2+ medium for 24 hours prior to irradiation results in the stabilization of membrane associated keratin alignments and a reduced susceptibility of cytoplasmic keratin filaments to UV induced disruption. Unlike results from investigations with isogenic skin fibroblasts, no UV induced disassembly of microtubules was discernible in irradiated human keratinocytes.  相似文献   

2.
We have investigated the effects of various types of collagen and a tumor-promoting phorbol ester on intercellular contacts and the organization of actin in human amnion epithelial FL cells and mouse fibroblast 3T3-A31 cells. Our purpose was to investigate how modulation of interactions between cells and the substratum leads to alterations in intercellular contacts and organization of actin filaments. When cells were cultured on dishes coated with a solution containing type I collagen, but not type IV, changes were induced in the morphology of FL cells and their intercellular contacts. Type I collagen also caused changes in the organization of their actin filaments, although no such effects were observed with 3T3-A31 cells. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA) caused morphological changes, dissociation of groups of cells, and reorganization of actin filaments in cultures of FL and 3T3-A31 cells. It also disrupted the sites of adhesion of FL cells to the substratum. Both type I collagen and TPA rapidly induced spreading of FL cells in the absence of serum. However, cis-hydroxyproline, known to inhibit secretion of collagen, did not suppress the TPA-induced dissociation of groups of FL cells. These results suggest that the interactions with type I collagen of epithelial FL cells, but not of fibroblastic 3T3-A31 cells, tend to disorganize cellular morphology, intercellular contacts, and actin filaments in ways similar to, but not directly related to, the effects of TPA.  相似文献   

3.
Muscarinic receptor-linked increases in intracellular free Ca2+ as measured with quin-2 and Ca2+ release from monolayers of cells have been measured in the human neuroblastoma cell line SH-SY5Y. Induction of differentiation with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to a decrease in the sensitivity of the cells to low concentrations of agonists with respect to the induced increase in cytosolic free Ca2+ and stimulation of Ca2+ efflux. No decrease in agonist binding affinity was observed when the displacement of a labelled antagonist, 3H-NMS, by a non-labelled agonist was studied.  相似文献   

4.
The effect of a tumor-promoting phorbol ester on the binding of fibronectin-coated beads to 3T3-L1 cells was studied to clarify the relationship between the binding of fibronectin to the cells, cell adhesion, and the organization of actin filaments. Interference-reflection microscopy revealed focal contacts of 3T3-L1 cells with the substratum. Stress fibers observed after rhodamine-phalloidin staining were well-developed in the cells. Treatment of the cells for 20 min with 12-O-tetradecanoylphorbol-13-acetate (TPA), but not with phorbol, disrupted focal contacts and caused a reorganization of stress fibers to generate actin ribbons. Treatment of the cells with TPA enhanced the binding of beads coated with human plasma fibronectin to the cells, as observed after incubation for 6 h with the beads. The TPA-induced increase in the percentage of cells with bound beads was dependent on the duration of treatment with TPA and on the concentration of TPA. Treatment of the cells with TPA also enhanced proliferation of cells in a dose-dependent manner. The enhancement of binding of the beads by TPA was suppressed by addition of an adhesion-inhibitory peptide (Gly-Arg-Gly-Asp-Ser-Pro). Treatment with TPA did not enhance nonspecific binding of beads coated with heat-denatured bovine serum albumin. Furthermore, treatment of the cells with phorbol did not enhance the binding of beads coated with fibronectin. These results suggest that TPA specifically enhances the binding of fibronectin-coated beads to 3T3-L1 cells, and that TPA-induced binding of the beads may be related to disruption of focal contacts and reorganization of actin filaments.  相似文献   

5.
Hwang JU  Lee Y 《Plant physiology》2001,125(4):2120-2128
In guard cells of open stomata under daylight, long actin filaments are arranged at the cortex, radiating out from the stomatal pore. Abscisic acid (ABA), a signal for stomatal closure, induces rapid depolymerization of cortical actin filaments and the slower formation of a new type of actin that is randomly oriented throughout the cell. This change in actin organization has been suggested to be important in signaling pathways involved in stomatal closing movement, since actin antagonists interfere with normal stomatal closing responses to ABA. Here we present evidence that the actin changes induced by ABA in guard cells of dayflower (Commelina communis) are mediated by cytosolic calcium levels and by protein phosphatase and protein kinase activities. Treatment of guard cells with CaCl2 induced changes in actin organization similar to those induced by ABA. Removal of extracellular calcium with EGTA inhibited ABA-induced actin changes. These results suggest that Ca2+ acts as a signal mediator in actin reorganization during guard cell response to ABA. A protein kinase inhibitor, staurosporine, inhibited actin reorganization in guard cells treated with ABA or CaCl2, and also increased the population of cells with long radial cortical actin filaments in untreated control cells. A protein phosphatase inhibitor, calyculin A, induced fragmentation of actin filaments in ABA- or CaCl2-treated cells and in control cells, and inhibited the formation of randomly oriented long actin filaments induced by ABA or CaCl2. These results suggest that protein kinase(s) and phosphatase(s) participate in actin remodeling in guard cells during ABA-induced stomatal closure.  相似文献   

6.
Smooth muscle gelsolin, termed smooth muscle 90-kDa protein in our previous paper (Kanno et al. FEBS Lett. 1985; 184:202-206), was purified from bovine aorta. Antibody prepared against smooth muscle gelsolin was used to detect the presence of gelsolin in human lung fibroblast MRC-5 cells permeabilized with Triton X-100 (MRC-5 cell models). These cells contracted in the presence of MgATP and Ca2+ in doses over 1 microM. Immunofluorescence microscopy using phalloidin and antigelsolin antibody showed that gelsolin was distributed along the stress fibers, except for a marginal bundle of cells, when MRC-5 cells were growth-arrested in serum-depleted medium. Making use of immunoblotting and indirect immunofluorescence techniques, we demonstrated that gelsolin is not retained in the MRC-5 cell models. We used purified smooth muscle gelsolin as a specific agent to sever the actin filaments. Preincubation of MRC-5 cell models with gelsolin led to a destruction of stress fibers, in a dose- and Ca2+ -dependent manner. The contractility was also lost, in the same manner described above, thereby indicating that a continuous distribution of actin filaments within the stress fibers is required for cell contraction. Treatment of MRC-5 cells with the Ca2+ ionophore A23187 induced an extracellular Ca2+ -dependent contraction but not a massive destruction of stress fibers, thereby indicating that most of the endogenous gelsolin was inactive under these conditions. Our interpretation of these results is that increases in cytoplasmic Ca2+ concentrations are sufficient for the contraction but may be too transient to activate endogenous gelsolin and thereby disrupt the stress fibers. Indeed, the inhibition of contraction of the MRC-5 cell, as induced by smooth muscle gelsolin, required preincubation in the presence of Ca2+, before the addition of MgATP. These results suggest that destruction of the stress fibers by endogenous gelsolin, which leads to inhibition of cell contraction, may occur if the cytoplasmic Ca2+ is maintained at high concentrations for a few minutes.  相似文献   

7.
Distribution of actin filaments in human malignant keratinocytes was examined by immunofluorescence staining. The primary cultures were obtained from a squamous cell carcinoma, a basal cell carcinoma, and Bowen's disease. Rhodamine-phalloidin staining revealed that actin filaments were occasionally organized to form stress fibers, many short bundles with a ripple appearance, and regular arrays of actin patches. Some of these structures appeared in untransformed keratinocytes as a result of a brief exposure to a tumor promotor, TPA. These findings suggest that regulation of actin functions is involved in neoplastic processes from the very early stages and that alteration is persistent in neoplastic cells.  相似文献   

8.
We have identified an approximately 85-kD protein in chicken erythrocytes which is immunologically, structurally, and functionally related to the gelsolin found in many muscle and nonmuscle cell types. Cell fractionation reveals a Ca2+-dependent partitioning of gelsolin into the soluble cytoplasm and the membrane-associated cytoskeleton of differentiating or mature erythrocytes. Depending on either the presence of Ca2+ during cell lysis or on the preincubation of the intact cells with the Ca2+-ionophore A23187, up to 40% of the total cellular gelsolin is found associated with the membrane skeleton. Expression of gelsolin shows a strong negative regulation during erythroid differentiation. From quantitations of its steady-state molar ratio to actin, gelsolin is abundant in early progenitor cells as revealed from avian erythroblastosis virus- and S13 virus-transformed cells which are arrested at the colony forming unit erythroid (CFU-e) stage of erythroid development. In these cells, which have a rudimentary and unstable membrane skeleton, gelsolin remains quantitatively cytoplasmic, irrespective of the Ca2+ concentration. During chicken embryo development and maturation, the expression of gelsolin decreases by a factor of approximately 10(3) in erythroid cells. This down regulation is independent from that of actin, which is considerably less, and is observed also when S13-transformed erythroid progenitor cells are induced to differentiate under conditions where the actin content of these cells does not change. In mature erythrocytes of the adult the amount of gelsolin is low, and significantly less than required for potentially capping of all membrane-associated actin filaments. We suggest that the gelsolin in erythroid cells is involved in the assembly of the actin filaments present in the membrane skeleton, and that it may provide for a mechanism, by means of its severing action on actin filaments, to extend the meshwork of the spectrin-actin-based membrane skeleton in erythroid cells during erythropoiesis.  相似文献   

9.
Bovine chromaffin cells normally express mostly nonphosphorylated neurofilaments (NFs) in primary culture, and thus provide a unique model for examining the kinase capable of phosphorylating these proteins in situ. The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) which activates protein kinase C induced NF phosphorylation both in the perikaryon and in neuritic extensions of neurite-bearing cells as judged by immunofluorescence using monoclonal anti-NF antibodies which distinguish between phosphorylated and nonphosphorylated epitopes. NF phosphorylation was suppressed by pretreating the cells with sphingosine, an inhibitor of protein kinase C, and was not observed in the presence of the phorbol ester. 4 alpha-phorbol-12,13-didecanoate (PDD) which does not activate protein kinase C, arguing that protein kinase C was responsible for the observed phosphorylation. Immunochemical analysis of cytoskeletal extracts indicated that TPA induced a 3 to 6-fold increase in NF phosphorylation and showed that the 150,000 dalton NF subunit was the principal protein kinase C substrate. In addition to the TPA effect on NF phosphorylation, TPA provoked a reversible membrane ruffling, which eventually resulted in a flattening of chromaffin cells. These morphological alterations were linked with actin patching and the development of stress fibers, respectively. Sphingosine blocked the TPA-induced membrane ruffling and actin patching, and these phenomena were correlated with increased protein kinase C activity. In contrast, there was no change in the localization of microtubules and NFs. The actin reorganization and NF phosphorylation induced by TPA suggest that at least two distinct proteins of the neuronal cytoskeleton are susceptible to the influence of protein kinase C activation. It remains to be established whether protein kinase C plays a role in the regulatory mechanism controlling actin organization and neurofilament phosphorylation during neuronal differentiation.  相似文献   

10.
The effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on the handling of Ca2+ and insulin release were investigated in the clonal insulin-producing cell line RINm5F. The presence of the phorbol ester lowered the free cytoplasmic Ca2+ and suppressed the increase obtained by depolarization with high concentrations of K+. Despite the lowering in cytoplasmic Ca2+ by TPA, there was a concomitant stimulation of insulin release indicating that one feature of protein kinase C activation is to make the secretory system more sensitive to Ca2+. Furthermore, there was no interaction of TPA with the mechanisms responsible for inositol 1,4,5-tris(phosphate) induced Ca2+ release or Ca2+ uptake in permeabilized cells. Although TPA slightly depolarized the RINm5F cells there was no interference with K+-induced depolarization. It is suggested that an additional effect of protein kinase C activation in these cells, is to stimulate the extrusion of Ca2+ over the plasma membrane.  相似文献   

11.
A 92-kDa polypeptide present in rabbit and dog cardiac muscle was purified to homogeneity and some of its properties were investigated using biochemical and cytochemical approaches. The protein was found to be similar, if not identical to macrophage gelsolin; it cross-reacts immunologically with anti-rabbit macrophage gelsolin antibody, has a Ca2+-sensitive shortening effect on the actin filaments as judged by the high shear viscometry and sedimentation experiments, and has a similar amino acid composition. In addition, immunoblot and SDS polyacrylamide gel analysis of cardiac muscle extracts obtained at high and low ionic strength showed that this protein is tightly bound to myofibrils, both in the absence and presence of Ca2+, in ventricular as well as in atrial muscle cells. Indirect immunofluorescence microscopy revealed a striated gelsolin staining pattern analogous to that previously observed for the skeletal muscle gelsolin, suggesting that in the muscle cell this protein is sharing the same localisation as actin. Because of its severing and nucleating properties the gelsolin may play a major role in the organization, assembly and turnover of the thin filaments within the muscle cells.  相似文献   

12.
13.
The effects of medium-chain fatty acids (MCFA) on intracellular calcium (Ca2+) levels and actin filaments in the Caco-2 monolayer were investigated. A site-dependent increase in intracellular Ca2+ levels caused by decanoic acid (C10) at 13 mM was observed by confocal laser scanning microscopy. The area in which the intracellular Ca2+ levels was increased was measured by image analysis, and increased to 11% of the total area of the monolayer within 1 minute. This was maintained for 5 minutes, and decreased thereafter. The other MCFAs did not significantly increase the intracellular Ca2+ levels. Obvious morphological changes of actin filaments were induced by only C10 among C8-C14. The area in which actin filaments were depleted was also quantified, and the increase in area became significant after 40 minutes. The area of the actin-depleted spot corresponded to the area occupied by 5 to 10 cells as well as that in which the intracellular Ca2+ level was increased. The effectiveness of only C10 suggested that the mechanism of the absorption enhancement by C10 would be different from that by the other MCFAs, or that C10 has some additional physiological functions although the mechanism of the enhancement is the same as for the other MCFAs.  相似文献   

14.
Summary We investigated alterations of actin organization due to heat shock and recovery from the collapse in human epidermal keratinocytes. Exposure of keratinocytes to elevated temperature caused the rapid disintegration of actin filaments. With a heat-shock treatment at 45° C for 10 min, actin filaments disappeared and granular actin was distributed diffusely in the cytoplasm. After return to 37° C, recovery of actin organization was observed. Completely disintegrated granular actin assembled to form actin dots, which tended to group. The grouping actin dots often took a circular, semicircular or arched form. Filamentous actin then extended out from the actin dots. Fine short bundles of actin filaments had a rippled appearance or were polygonal in structure, with actin filaments converged at many points. On the seventh day after heat-shock treatment, actin organization had almost returned to the pre-heat-shock condition, with diffusely distributed actin filaments. In previous studies, we observed such aberrant structures in human malignant keratinocytes and human epidermal keratinocytes treated with 12-O-tetradecanoylphorbol-13-acetate. The observations presented here indicate that those structures are not specific to malignancy or to the process of malignant transformation, but represent less mature and aberrant organizations of actin.  相似文献   

15.
By means of cryo-scanning electron microscopy (cryo-SEM) and fluorescent techniques, evidence is provided on how 12-O-tetradecanoylphorbol-13-acetate (TPA) affects Sertoli cell morphology and F-actin and vinculin organization in vitro. In order to visualize the morphological changes, the cells were observed with cryo-SEM. F-actin was localized using rhodamine (TRI)-phalloidin and vinculin using a primary monoclonal antibody and a second TRI-conjugated antibody. The results indicate that after the addition of 10(-7) M TPA, Sertoli cells begin to round up and their cytoplasm is retracted towards a central region. Actin bundle organization is disrupted and vinculin assumes a punctuate distribution throughout the cell. Thus, the reorganization of actin and vinculin and subsequent changes in cell morphology seem to be brought about by TPA affecting not only actin but also the protein vinculin which interacts with actin. A discussion is made concerning the effect of TPA on cytoskeletal reorganization, which is closely related to cell transformation.  相似文献   

16.
Functions of mitochondria depend on their intracellular localization, which often coincides with regions of the highest ATP consumption. Transport of mitochondria along microtubules and actin microfilaments and their anchoring by cytoskeletal structures are regulated by exogenous endogenous factors. Changes in mitochondrial motility induced by protein kinase C activity modulators were studied using video microscopy of live fibroblasts expressing a GFP-tagged mitochondrial marker. Intracellular activation of protein kinase C by 12-O-tetradecanoylphorbol-13-acetate (TPA) significantly enhances mitochondrial mobility, whereas the protein kinase C inhibitor bis-indolylmaleimide fully suppresses it. The activating effect of TPA on mitochondrial movement is not due to rearrangements in the actin cytoskeleton, since it persists in cells treated with latrunculin B disrupting F-actin. No effect of TPA on mitochondrial mobility is observed in MFT-16 cells devoid of intermediate vimentin filaments. The data obtained suggest that protein kinase C regulates the interactions of mitochondria with intermediate filaments.  相似文献   

17.
Studies utilizing cultured muscle cells have shown that myoblast fusion requires extracellular Ca2+ and involves transient coordinated changes in cell membrane topography and cytoskeletal organization. However, neither the mechanisms by which Ca2+ influences these changes nor its cellular sites of action are known. We have investigated the effects of Ca2+ channel modulators and phorbol esters on fusion of embryonic chick myoblasts in culture. Myoblast fusion was inhibited by the Ca2+ channel blockers D600 and nitrendipine and stimulated by the Ca2+ channel activator Bay K 8644. We have obtained evidence that the tumor promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits fusion through activation of protein kinase C. Myoblasts prevented from fusing by Ca2+ channel blockers or TPA display a distinctive elongated morphology that is characteristic of cells prevented from fusion by Ca2+ deprivation. The inhibition of fusion by D600 and TPA is significantly diminished in the presence of the Ca2+ ionophore A23187. TPA arrest of myoblast fusion was found to be accompanied by an increase in phosphorylation of the 20-kDa light chain of cytoplasmic myosin in a dose- and time-dependent manner. The effects of TPA on myoblast fusion and phosphorylation of myosin light chain were mimicked by the cell permeant diacylglycerol sn-1,2-dioctanoylglycerol, a potent activator of protein kinase C. The present results suggest that activators of protein kinase C block fusion by interfering with a Ca2+ signal transduction pathway and that this interference may be associated with a protein kinase C catalyzed inhibitory phosphorylation of myosin light chain.  相似文献   

18.
Tumor promoters are known to induce reorganization of actin, morphological changes and enhancement of proliferation of epidermal cells in vivo. In this study, we have examined the effects of tumor promoters on these events to clarify the role played by the organization of actin filaments in the regulation of the shape and growth of colonies of epithelial cells in culture. Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) caused a change in the shape of colonies of FL and Madin-Darby canine kidney (MDCK) cells within 6 hr. Changes in the shape of colonies were consistent with the morphological change of individual cells and the dissociation of groups of cells in the colonies. Addition of TPA also caused reorganization of actin filaments after 2 hr, and it caused enhancement of proliferation of FL and MDCK cells after 48 hr but did not cause any such changes in KB cells. However, the binding affinities of 4 beta-phorbol 12,13-dibutyrate (PDBu) to FL and MDCK cells were similar to that of PDBu to KB cells. Related tumor promoters such as phorbol 12,13 didecanoate (PDD) and mezerein caused effects similar to those caused by TPA. In contrast, nontumor promoting phorbol esters, such as 4 alpha-PDD and phorbol, had no effect. Cyclic AMP blocked the TPA-induced changes in FL and MDCK cells. These results suggest that TPA-induced reorganization of actin filaments which can be inhibited by cyclic AMP results in changes in the shape of colonies and enhancement of proliferation.  相似文献   

19.
Stimulation of Jurkat T cells with antibodies against the T cell receptor/CD3 complex induces a rise in the intracellular concentration of Ca2+ within seconds. The inositol phosphate-dependent Ca2+ mobilization induced by OKT3 was completely abrogated when Jurkat cells were pretreated for 1 min with the phorbol 12-myristate 13-acetate TPA (10nM), a concentration which activates protein kinase C (PKC). The effects of TPA on the Ca2+ fluxes were insensitive to treatment of the cells with known PKC inhibitors (H-7 and staurosporin) under conditions where the PKC-mediated phosphorylation was blocked. Furthermore, another activator of PKC, mezerein, inhibited the Ca2+ signal induced by OKT3. This inhibition, however, could completely be reversed by pretreatment with H-7 or staurosporine. We conclude that the TPA-mediated inhibition of Ca2+ fluxes in Jurkat T cells largely acts through a PKC-independent pathway.  相似文献   

20.
We studied the properties of actinogelin, a Ca2+-regulated actin cross-linking protein isolated from Ehrlich tumor cells or rat liver. Chicken gizzard alpha-actinin was used as a Ca2+-insensitive control. Actinogelin, which has very high gelation activity under low Ca2+ conditions, was found using electron microscopic or fluorescence studies to induce formation of a characteristic structure in which actin filaments and bundles radiate to (or converge from) all directions from spot-like core structures. A similar structure was induced with actinogelin, even in the presence of 0.7 saturation of tropomyosin. No such structure was detected with actinogelin under high Ca2+ conditions, and only a few were found with gizzard alpha-actinin. Because reconstituted structures are similar to those observed intracellularly, actinogelin may be important in the formation of similar microfilament organization in the cells. It seems also important that these structures are reconstituted with only two purified protein components, i.e., actinogelin and actin. Immunocompetition studies showed that actinogelin and gizzard alpha-actinin partially shared antigenicity, and their molecular shape and peptide maps were similar. Their amino acid compositions [Kuo et al., 1982], subunit and domain structures, and binding sites on actin [Mimura and Asano, 1987] are also very similar. Therefore, it is concluded that actinogelin belongs to alpha-actinin superfamily proteins. Furthermore, the presence of functionally different subfamilies concerned with Ca2+ sensitivity, gelation-efficiency, and others is discussed. Actinogelin, which induces networks of actin filaments, may be classified as high gelation type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号