首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ERRATA     
Effects of coupled solute and water flow in plant roots withspecial reference to Brouwer's experiment. Edwin L. Fiscus. p. 71 Abstract: Line 3 delete ‘interval’ insert‘internal’. p. 73 Materials and Methods: line 6: delete ‘diversion’ insert ‘division’ line 9 equation should read Jv=Lp PRT(C0C1). 74 Last line of figure legend: 10–1 should read 10–11. 75 Line 11: delete ‘seems’ insert ‘seem’. le 1 column heading—106 should read 1011. 77 delete ‘...membrane in series of...’ insert ‘membranein series or...’ Delete final paragraph.  相似文献   

2.
Shoot explants from seedling-derived culture of Eucalyptus ficifoliaF. Muell. cultured on a rooting medium free from indole-3-butyricacid (IBA) develop a root system (Type I) consisting of a fewcomparatively long roots and only small amounts of callus. IBAat 5.0 µM in a rooting medium free from riboflavin inducesthe development, on the shoot explants, of a compact root system(Type II) consisting of callus and many short roots. Riboflavinwhen exposed to light, is able to photo-oxidize IBA; the degreeof photo-oxidation depends on the photon fluence of the lightreceived. The rooting response of the cultures reflects thedegree of photo-oxidation of IBA: concentrations of IBA fromabout 10–4M to 10–6M in the rooting medium induceformation of the Type II root system whilst photo-oxidationof the auxin to concentrations of about 10–8M or lowerinduces the formation of the Type I root system. Thus, exogenousriboflavin and exogenous IBA are linked in a distinct light-induced,riboflavin-mediated change in root morphogenesis. The anatomyof root development in the Type I and Type II root systems wasstudied and factors affecting the development were defined.Characteristics of riboflavin and IBA breakdown in various lightregimes were determined and related to root morphogenesis. Theresults and their implications are discussed. Key words: Auxin photo-oxidation, Riboflavin, Root morphogenesis, Tissue culture  相似文献   

3.
ERRATA     
Page 806, Preparation of Mitochondrial Fraction, line 4: The following should be inserted between ‘centrifugedat’ and ‘20 000 g for’: 3000 for 10 mm. Thesupernatant was centrifuged at The following corrections are required: Page 104, line 20: ‘2-hydroxylation’ should read ‘2-ß3-hydroxylation’ Page 106, line 11: ‘of Ga8’ should read ‘to GA8’ Page 113, last line:‘length 50 µm’ shouldread ‘length 150 µm’ Formula 15 should read: Formula 17 should read: y(0)– y* = ß1V12V2 page 118: Formula 18 should read: Formula 23 should read: Formula 24 should read:   相似文献   

4.
ERRATA     
WARBURG, M. R., 1965. On the water economy of some Australianland snails. Proc. malac. Soc. Lond. 36, 297–305. Page 298: second line from bottom, should read ‘within± 1 µg for Themapupa’. Page 300: Fig. 2 legend, should read ‘Evaporative waterloss from Sinumelon remissum (a), Pleuroxia sp. (b) and Themapupaadelaidae (c)’. Page 300: section 4 heading, should read ‘Continuous curvesfor water loss’. Page 301: second line, for ‘Fig. 9’ read ‘Fig.3’. Page 301: Table 1, last line, for ‘0.120024’ read‘0.12024’. Present address: Israel Institute for Biological Research, Ness-Ziona,Israel.  相似文献   

5.
ERRATUM     
The publishers apologize for the following errors, which appearedin Plant Geosensors by L. J. Audus (pp. 1051–1073): Page 1058, line 9: the expression should read P = (L2/D)/(l/q) Page 1068, paragraph (c) line 11: should read ‘reticulum, which was fairly uniformly peripheralin vertical roots, aggregated on the’  相似文献   

6.
On p. 527 the legend for Table 2 should read: TABLE 2. Measured and simulated dry matter production (g m–2)of Wimmera ryegrass. Data from Donald (1951) and sentence 7 in the text should read: Measured yields (averaged over four replicates and convertedto g m–2), simulated yields and estimated parameters aregiven in Table 3. On p. 528 the legends for Tables 4 and 5 should read: TABLE 4. Measured and simulated dry matter production (g m–2)of maize. Data from Tetio-Kagho and Gardner (1988) TABLE 5. Measured and simulated dry matter production (g m–2)of lucerne. Data from Jarvis (1962), averages of four replicates,planted at two different dates in two successive years and sentence 1 should read: The maximum biomass production (A) of 113 g m–2 of f.wt.corresponds with 6.3 g m–2 of dry matter.  相似文献   

7.
On page 379 in line 7 of the legend to Fig. 4 the closed squareshould be an open square. On page 380, under the heading Survival of pierced seeds, line3 should read ‘...and 94 per cent respectively, aftercooling at 1 °C h–1 to -20 °C with nucleationwicks. Apart from a small lesion...’  相似文献   

8.
Corrigendum     
Due to an apparent fault in the telex system, a number of mistakeswere not corrected in this paper. The corrected lines are givenbelow p. 539: line 17In vivo fluorescence action spectra of chl a p. 541: Figure 2 legend, line 92.5 µW cm–2 at 550nm (0.12 µE m–2 s–1 p. 542: Figure 3 legend, line 5( 89 µE m–2 s–1).Monochromatic beam intensity was 6 µW cm–2 at 550nm (–0.28 µE m–2 s–1), Figure 3 legend, lines 8 and 9with intensity of 3 mW cm–2( 179 µE m–2 s–1) Monochromatic beam intensitywas 7 5 µW cm–2 at 550 nm (0.35 µE m–2s–1). line 6tivity. The match between the spectra of chl a fluorescenceand PSII O2 evolution is lines 23–25fluorescence increasingly deviate from thoseof PSII O2 evolution. We attribute this discrepancy to selectivelight scattering by the algae. This scattering increases substantiallywith decreasing wavelength at that region when using a standardspectrofluorometer p. 543: Figure 4 legend, lines 3 and 4as in Chroomonas, withintensity of 2 mW cm–2 ( 120 µE m–2 s–1).Monochromatic beam intensity was 15 µW cm–2 at 550nm ( 0.7 µE m–2 s–1). line 7:ment types in the oceans. While all photoautotrophicorganisms have chl a (the bulk lines 12 and 13:and Barrett (1983). Our spectral data reflectthe great variability in pigment composition and functionalassociation in the major groups of algae. lines 25 and 26:Hiller, 1983). However, blue-violet and redPSII activity is much lower in cryptomonads than might be expectedfrom their absorption spectra (Haxo and Fork, 1958; Haxo, 1960), p. 544: Table I, column 3, entry 6:R-phycocyanin Table 1 legend, lines 1 and 2:aHaxo and Blinks (1950); bFork(1961); cHaxo et al. (1955); dO'Carra and O'hEocha (1976); cresemblesDelesseria decipiens, Haxo and Blinks (1950, Figure 20); fHaxoand Fork (1969), like lines 1 and 2:I) indicates that these pigments are affiliatedwith PSII, perhaps exclusively, as in the red algae. In Rhodomonas,the peak of activity at 465 nm may be due to chl c absorp- p. 545: line 2:xanthophyll (fucoxanthin in diatoms, peridininin dinoflagellates and chl c. The ac line 7:shown to be similar to those of the much-studied Chlorella(Vidaver, 1966; Ried, 1972). line 14:tivity of PSII in algae. Spectrofluorometers, with theirsuperior sensitivity and stability, line 34:of natural populations, making these spectra more similarto the PSII photosynthesis lines 36 and 37:Large differences between the values of FIIfor different components within the algal population can distortfluorescence spectra, if they do not correspond with dif lines 41 and 42:different components are not similar to eachother. The necessary handling procedures of natural samples,such as filtration (Yentsch and Yentsch, 1979; Neori et al.,1984), p. 546: lines 20 and 21:DOE contract DE-AT03-82ER60031, anda grant to A.N., O.H.H. and F.T.H. from the Foundation for OceanResearch. Travel to the IInd GAP workshop was facilitated by lines 25 and 26:the culture of Chroomonas, J.Lance for helpwith cultures, J. and E.Yguerabide for the use of their spectrofluorometer,C.R.Booth, Y.Blatt and L.Petrosian for technical line 28:This study was in partial fulfilment for a Ph.D. degreeby A.N. line 42:Dutton.H.J., Manning.W.M. and Duggar.B.M. (1943) Chlorophyllfluorescence and energy transfer in the  相似文献   

9.
Abstract line 12: for ‘below 2.03, 0.53 and 0.28 mequiv.K+l–1 respectively’ read ‘below 0.28, 0.53and 2.03 mequiv. K+l–1 respectively.’  相似文献   

10.
A homology model for the A2 domain of von Willebrand factor (VWF) is presented. A large number of target–template alignments were combined into a consensus alignment and used for constructing the model from the structures of six template proteins. Molecular dynamics simulation was used to study the structural and dynamic effects of eight mutations introduced into the model, all associated with type 2A von Willebrand disease. It was found that the group I mutations G1505R, L1540P and S1506L cause significant deviations over multiple regions of the protein, coupled to significant thermal fluctuations for G1505R and L1540P. This suggests that protein instability may be responsible for their intracellular retention. The group II mutations R1597W, E1638K and G1505E caused single loop displacements near the physiologic VWF proteolysis site between Y1605–M1606. These modest structural changes may affect interactions between VWF and the ADAMTS13 protease. The group II mutations I1628T and L1503Q caused no significant structural change in the protein, suggesting that inclusion of the protease in this model is necessary for understanding their effect.Figure Homology model of the von Willebrand factor A2 domainElectronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00894-004-0194-9  相似文献   

11.
Journal of Plankton Research, 11, 1273–1295, 1989. The values of P/U0 (Table I) and fluid velocity used to calculatethe energy required for sieving (pp. 1289–1290) and severalequations (footnote b of Table I; p. 1290, lines 3–4)are incorrect. The corrected table appears below: Table I. Filter setule measurements (mean and within specimenstandard deviation) of the gnathobases for the cladocerans studiedaGnathobaseof trunklimb number. bP = 8µU0/(b(1 – 21nt + 1/6(t2) - 1/144(t4))), whereP = pressure drop in dyn cm–2, =3.1416, U0 = fluid velocityin cm s–1, b = distance between setule centres in cm,t = ( x setule diameter)/b and µ = 0.0101 dyn s–1cm–2. Formula from Jørgensen (1983). The text (p. 1289, line 19 to p. 1290, line 10) should read: organism. Using a similar argument, a 0.5 mm Ceriodaphnia witha filter area of 0.025 mm2 (Ganf and Shiel, 1985) and pressuredrop P = 2757 dyn cm–2 (with fluid velocity of 0.07 cms–1) allocates only 2171 ergs h–1 to filtrationof a total energy expenditure of 104 ergs h–1 [filtrationenergy (ergs h–1) = area (cm2) x pressure drop (dyn cm–2)x 3600 (s h–1) x 1/0.2 (efficiency of conversion of biochemicalinto mechanical work); total energy (ergs h–1) = respiration(0.05 µl O2 ind–1 h–1 consumed; Gophen, 1976)x conversion factor (2 x 105 ergs µl–1 O2). Withan estimated 0.034 mm2 in filter area, fluid velocity of 0.041cm s–1 and respiration of 1.8 x 104 ergs h–1 (calculatedfrom Porter and McDonough, 1984), a 0.5 mm Bosmina uses <4%of its metabolism to overcome filter resistance. The velocities used in the original examples (0.4 cm s–1for Ceriodaphnia, 0.2 cm s–1 for Bosmina) were derivedfrom literature values of appendage beat rate and estimatesof the distance travelled by the appendages during each beatcycle. This approach unnecessarily assumes that all water movedpasses through the filter. In the new calculations, the flowacross the filter needed for food to be collected by sieving(0.07 cm s–1 for Ceriodaphnia and 0.041 cm s–1 forBosmina) was determined from the maximum clearance rate/filterarea. The amended energy expenditures, although higher, do notrefute the sieve model of particle collection.  相似文献   

12.
A sediment trap study was conducted at Daya Bay, South ChinaSea, to investigate the relationships between encystment andpopulation dynamics of Scrippsiella trochoidea from December1999 to January 2001. A dense bloom of S. trochoidea occurredduring the study period from August to September 2000, withthe maximum cell number of 3.18 x 104 cells mL–1.Two morphotypes of cysts, one with a thick calcareous wall (calcifiedcyst) and another without the obvious calcareous cover (non-calcifiedcyst), were observed during this investigation. The morphologicaland excystment characteristics of these two cyst types werestudied as well. Mass encystments of S. trochoidea, with themaximum of 3.05 x 105 cysts m–2 d–1for calcified cyst, and 1.54 x 107 cysts m–2 d–1for non-calcified cyst, coincided with the maximum abundanceof the vegetative cells. Encystment caused the transfer of atotal of 2.24–4.49 x 108 cells m–2 vegetativecells from the water column to the sea bottom during the bloomand resulted in a considerable loss of the bloom population.High assemblages of cysts of S. trochoidea were detected inthe surface sediments as well. This rich ‘seed bed’in the surface sediments caused by the high efficiency of encystmentafter blooms acting as a benthic reservoir for future vegetativepopulation, together with the short dormant period (15–26days) and high germination rate (50–90%), may explainthe repeated occurrence of S. trochoidea blooms in Daya Bay.  相似文献   

13.
p. 383, Figure 2. The legend to Figure 2 should read: Fig. 2. Cumulative urea-N taken up as % total cellular N vs.time of incubation for T. pseudonana. Closed symbols = ureauptake; open symbols =urea uptake in the presence of NH4+. = pre-depletion ([NO2 ] in culture medium = 5.0 µg-atomNO2-N 1–1 ), • = at depletion, = post-depletion(16 h after nitrogenous nutrient could no longer be detectedin culture medium).  相似文献   

14.
The response of phytoplankton to variations in the light regimewas studied during the VULCAN and ACDA cruises in the Antarctic.Unenriched batch cultures of 12–19 days' duration reachedchl concentrations of 10–50 µg–1 and exhibitedexponential growth rates, with the maximal rate being 0.41 doubl,day–1. Ice edge algae exhibited maximum growth rates atphoton flux densities (PFD) of 30–100 µE m–2S–1and the growth rate was reduced by about 30% at 500–1000µE m–2S–1 The chl/C ratio ranged between 0.004and 0.018, with the lowest ratios at PFDs above 500 µEm–2S–1 chl/C ratios were also below maximum at PFDsbelow 40–50 µE m–2S–1 The C:N:P ratioswere close to the Redfield ratios; the Si/C ratio averaged 0.16(atoms), and the ATP/C ratio averaged from 0.0024 to 0.0050in different culture senes. When thawed after having been frozenfor 10 days, shade-adapted cultures were in a much better conditionthan sun-adapted ones. P versus I data showed that the maximumassimilation number varied from 0.75 to 4.4 µg C (µgchl)–1h–1. It varied inversely with the chl/C ratio;therefore the maximum carbon turnover rate varied little betweensamples (0.024/0.035 h–1). Low biomass communities exhibitedrelatively high values for (the initial slope of P versus Icurves), low values for 1sat (160–330 µE m–2S–1),and they were susceptible to photoinhibition. In contrast, communitiesdominated by Odontella weissflogii exhibited low values for, a high value for Isat (560 µE m–2S–1 andthey tolerated high PFDs. The photo-adaptational status of thephytoplankton in natural water samples is discussed relativeto the profile of water column stability and mixing processes.  相似文献   

15.
Pritchard, J., Tomos, A. D. and Wyn Jones, R. G. 1987. Controlof wheat root elongation growth. I. Effects of ions on growthrate, wall rheology and cell water relations.—J. exp.Bot. 38: 948–959. The nature of the ions in the bathing medium of hydroponicallygrown wheat seedlings strongly influenced root growth rate.In 0·5 mol m–3 CaSO4 the growth rate was 32 mm24 h–1 (used as 100% control rate). K+ and SO ions(10 mol m–3) each inhibited extension growth (to about40% and 70% of the control value respectively). In the absenceof K+, Cl greatly reduced the inhibition due to SO42–.Measurement of tissue plasticity and elasticity in the expandingzone with an Instron-type tensiometer indicated that both werea function of growth rate although relationship of plasticityto growth rate was the steeper and the more pronounced. Turgor pressure at the proximal end of the expanding zone wasnot correlated to growth, being approximately 0·65 MPain all treatments. In mature tissue turgor pressure varied withtreatment, but was also not related to growth rate. Cell membranehydraulic conductivity (5 x 10–7 ± 1·3 (10)m s–1 MPa–2) was not influenced by the presenceof K+. We propose that K+ and SO42 – influence root growthrates by modulating the rheological properties of the wallsof the expanding cell. The physiological significance of these properties is discussed. Key words: Growth, wall extensibility, turgor pressure, wheat roots  相似文献   

16.
A system was developed to test the effects of floodwater O2concentration on ethylene evolution and stem lenticel hypertrophy,and the effects of exogenous ethylene on stem lenticel hypertrophyin mango (Mangifera indica L.) trees. Dissolved O2 concentrationsof 1–7x10–9 m3 m–3 generally resulted in hypertrophyof stem lenticels within about 6 d of flooding, whereas floodwaterO2 concentrations of 13–15 x 10–9 m3 m–3 delayedhypertrophy until about day 9. After 14d of flooding, therewere more than twice the number of hypertrophied lenticels pertree with floodwater O2 concentrations of 1–7 x 10–9m3 m–3 than with floodwater O2 concentrations of 15 x10–9 m3 m–3. Ethylene evolution from stem tissueimmediately above the floodline increased 4- to 8-fold in treesexposed to floodwater O2 concentrations of 1–2 x 10–9m3 m–3, increased 2-fold for trees exposed to floodwaterO2 concentrations of 6–7 x 10–9 m3 m–3, butremained constant with floodwater O2 concentrations of 13–15x 10–9 m3 m–3. Plants maintained in highly oxygenatedfloodwater (13–15 x 10–9 m3 m–3), and givenexogenous ethylene developed many hypertrophied lenticels, whereasplants in highly oxygenated water and not given ethylene developedfewer or nohypertrophied lenticels. These data suggest thatethylene plays a role in promotion of stem lenticel hypertrophyin flooded mango trees, and that floodwater dissolved oxygenconcentration can regulate stem lenticel hypertrophy and ethyleneevolution in this species. Key words: Flooding, hypoxia, hypertrophic cell swelling  相似文献   

17.
ERRATA     
  相似文献   

18.
This study evaluated the effects of anoxia on K+ uptake andtranslocation in 3–4-d-old, intact, rice seedlings (Oryzasativa L. cv. Calrose). Rates of net K+ uptake from the mediumover 24 h by coleoptiles of anoxic seedlings were inhibitedby 83–91 %, when compared with rates in aerated seedlings.Similar uptake rates, and degree of inhibition due to anoxia,were found for Rb+ when supplied over 1·5–2 h,starting 22 h after imposing anoxia. The Rb+ uptake indicatedthat intact coleoptiles take up ions directly from the externalsolution. Monovalent cation (K+ and Rb+) net uptake from thesolution was inhibited by anoxia to the same degree for thecoleoptiles of intact seedlings and for coleoptiles excised,‘aged’, and supplied with exogenous glucose. Transportof endogenous K+ from caryopses to coleoptiles was inhibitedless by anoxia than net K+ uptake from the solution, the inhibitionbeing 55 % rather than 87 %. Despite these inhibitions,osmotic pressures of sap (sap) expressed from coleoptiles ofseedlings exposed to 48 h of anoxia, with or without exogenousK+, were 0·66 ± 0·03 MPa; however,the contributions of K+ to sap were 23 and 16 %, respectively.After 24 h of anoxia, the K+ concentrations in the basal10 mm of the coleoptiles of seedlings with or without exogenousK+, were similar to those in aerated seedlings with exogenousK+. In contrast, K+ concentrations had decreased in aeratedseedlings without exogenous K+, presumably due to ‘dilution’by growth; fresh weight gains of the coleoptile being 3·6-to 4·7-fold greater in aerated than in anoxic seedlings.Deposition rates of K+ along the axes of the coleoptiles werecalculated for the anoxic seedlings only, for which we assessedthe elongation zone to be only the basal 4 mm. K+ depositionin the basal 6 mm was similar for seedlings with or withoutexogenous K+, at 0·6–0·87 µmolg–1 f. wt h–1. Deposition rates in zones above6 mm from the base were greater for seedlings with, thanwithout, exogenous K+; the latter were sometimes negative. Weconclude that for the coleoptiles of rice seedlings, anoxiainhibits net K+ uptake from the external solution to a muchlarger extent than K+ translocation from the caryopses. Furthermore,K+ concentrations in the elongation zone of the coleoptilesof anoxic seedlings were maintained to a remarkable degree,contributing to maintenance of sap in cells of these elongatingtissues.  相似文献   

19.
The quantitatively major nonasaccharide (XG9) derived from xyloglucanby digestion with cellulase exhibits anti-auxin activity inthe pea stem segment straight-growth bioassay; the most effectiveconcentration of XG9 is c. 10–9 M. Previous work had shownthat XG9 owes its biological activity to the presence of a terminal-L-fucopyranose residue. In order to investigate to what extentthe remainder of the XG9 molecule is essential for activity,several fucose-containing compounds were tested for their abilityto mimic the anti-auxin effect of XG9. A fucose-containing pentasaccharideof xyloglucan (XG5; probable structure FucGalXylGlcGlc) was,at 10–8 M, about as effective an anti-auxin as 10–9M XG9; unlike XG9, XG5 did not diminish in effectiveness at10–7 M. The human milk trisaccharide, 2'-fucosyl-lactose[L-fucopyranosyl--(12)-D-galactopyranosyl-ß-(14)-D-glucose],whose FucGal unit is identical with that of XG9, inhibited auxin-inducedelongation over a wide range of concentrations centred on about10–8 M. 2'-Fucosyl-lactose at 10–8 M was about aseffective an anti-auxin as 10–9 M XG9. Free L-fucose andmethyl--L-fucopyranoside were unable to inhibit auxin-inducedgrowth at any concentration tested (10–10 M to 10–6M) and neither compound interfered with the inhibition causedby 10–9 M XG9 when co-incubated at concentrations up to10–4 M. The results confirm the essential r?le of an -linkedterminal fucose residue in the anti-auxin activity of XG9 andshow that the sub-terminal galactose residue may also be required.Possible reasons why high concentrations of XG9 fail to antagonizeauxin-induced growth while high concentrations of XG5 and 2'-fucosyl-lactosecontinue to do so are discussed. Key words: Anti-auxin, oligosaccharin, fucose  相似文献   

20.
The distribution and abundance of photoautotrophic picoplankton(PPP. Synechococcus group) in the aphotic bottom sediments ofLake Biwa were investigated by direct counting and viable counting(most probable number, MPN) methods. In the surface layer ofbottom sediments (0–1 cm). where large PPP blooms occurredin the past 5 years, >105 cells cm–3 of PPP were foundto be viable throughout the year. Furthermore, the density ofPPP deposited on the sediment surface (0–0.1 cm) was oneorder of magnitude higher (MPN = 1.3 x 106 cells cm–3.direct count = 9.9 x 106 cells cm–3) than that of bulkedsurface sediments (0–1 cm). Even in the deeper layer (13–14cm) of bottom mud, viable PPP were still found (101 cells cm–1.In winter, viable PPP in the aphotic bottom sediments were 104–105times greater per Unit volume than those in the euphotic lakewater. Since the aphotic bottom sediments have high levels ofPPP, as well as high growth potential (high ratio of viablecount/total direct count), they are likely to seed PPP bloomsin the North Basin of Lake Biwa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号