首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Day T  Gandon S 《Ecology letters》2007,10(10):876-888
Much of the existing theory for the evolutionary biology of infectious diseases uses an invasion analysis approach. In this Ideas and Perspectives article, we suggest that techniques from theoretical population genetics can also be profitably used to study the evolutionary epidemiology of infectious diseases. We highlight four ways in which population-genetic models provide benefits beyond those provided by most invasion analyses: (i) they can make predictions about the rate of pathogen evolution; (ii) they explicitly draw out the mechanistic way in which the epidemiological dynamics feed into evolutionary change, and thereby provide new insights into pathogen evolution; (iii) they can make predictions about the evolutionary consequences of non-equilibrium epidemiological dynamics; (iv) they can readily incorporate the effects of multiple host dynamics, and thereby account for phenomena such as immunological history and/or host co-evolution.  相似文献   

2.
Individual-level models (ILMs) for infectious diseases, fitted in a Bayesian MCMC framework, are an intuitive and flexible class of models that can take into account population heterogeneity via various individual-level covariates. ILMs containing a geometric distance kernel to account for geographic heterogeneity provide a natural way to model the spatial spread of many diseases. However, in even only moderately large populations, the likelihood calculations required can be prohibitively time consuming. It is possible to speed up the computation via a technique which makes use a linearized distance kernel. Here we examine some methods of carrying out this linearization and compare the performances of these methods.  相似文献   

3.
MOTIVATION: Primary immunodeficiency diseases (PIDs) are Mendelian conditions of high phenotypic complexity and low incidence. They usually manifest in toddlers and infants, although they can also occur much later in life. Information about PIDs is often widely scattered throughout the clinical as well as the research literature and hard to find for both generalists as well as experienced clinicians. Semantic Web technologies coupled to clinical information systems can go some way toward addressing this problem. Ontologies are a central component of such a system, containing and centralizing knowledge about primary immunodeficiencies in both a human- and computer-comprehensible form. The development of an ontology of PIDs is therefore a central step toward developing informatics tools, which can support the clinician in the diagnosis and treatment of these diseases. RESULTS: We present PIDO, the primary immunodeficiency disease ontology. PIDO characterizes PIDs in terms of the phenotypes commonly observed by clinicians during a diagnosis process. Phenotype terms in PIDO are formally defined using complex definitions based on qualities, functions, processes and structures. We provide mappings to biomedical reference ontologies to ensure interoperability with ontologies in other domains. Based on PIDO, we developed the PIDFinder, an ontology-driven software prototype that can facilitate clinical decision support. PIDO connects immunological knowledge across resources within a common framework and thereby enables translational research and the development of medical applications for the domain of immunology and primary immunodeficiency diseases.  相似文献   

4.
Discovery and integration of data is important in many ecological studies, especially those that concern broad-scale ecological questions. Data discovery and integration are often difficult and time consuming tasks for researchers, which is due in part to the use of informal, ambiguous, and sometimes inconsistent terms for describing data content. Ontologies offer a solution to this problem by providing consistent definitions of ecological concepts that in turn can be used to annotate, relate, and search for data sets. However, unlike in molecular biology or biomedicine, few ontology development efforts exist within ecology. Ontology development often requires considerable expertise in ontology languages and development tools, which is often a barrier for ontology creation in ecology. In this paper we describe an approach for ontology creation that allows ecologists to use common spreadsheet tools to describe different aspects of an ontology. We present conventions for creating, relating, and constraining concepts through spreadsheets, and provide software tools for converting these ontologies into equivalent OWL-DL representations. We also consider inverse translations, i.e., to convert ontologies represented using OWL-DL into our spreadsheet format. Our approach allows large lists of terms to be easily related and organized into concept hierarchies, and generally provides a more intuitive and natural interface for ontology development by ecologists.  相似文献   

5.
Blood vessel morphology (vessel radius, branching pattern, and tortuosity) is altered by a multitude of diseases. Although murine models of human pathology are important to the investigation of many diseases, there are few publications that address quantitative measurements of murine vascular morphology. This report outlines methods of imaging mice in vivo using magnetic resonance angiograms obtained on a clinical 3T unit, of defining mouse vasculature from these images, and of quantifying measures of vessel shape. We provide examples of both healthy and diseased vasculature and illustrate how the approach can be used to assess pathology both visually and quantitatively. The method is amenable to the assessment of many diseases in both human beings and mice.  相似文献   

6.
In mathematical studies of the dynamics of multi-strain diseases caused by antigenically diverse pathogens, there is a substantial interest in analytical insights. Using the example of a generic model of multi-strain diseases with cross-immunity between strains, we show that a significant understanding of the stability of steady states and possible dynamical behaviours can be achieved when the symmetry of interactions between strains is taken into account. Techniques of equivariant bifurcation theory allow one to identify the type of possible symmetry-breaking Hopf bifurcation, as well as to classify different periodic solutions in terms of their spatial and temporal symmetries. The approach is also illustrated on other models of multi-strain diseases, where the same methodology provides a systematic understanding of bifurcation scenarios and periodic behaviours. The results of the analysis are quite generic, and have wider implications for understanding the dynamics of a large class of models of multi-strain diseases.  相似文献   

7.
Understanding why some human populations remain persistently poor remains a significant challenge for both the social and natural sciences. The extremely poor are generally reliant on their immediate natural resource base for subsistence and suffer high rates of mortality due to parasitic and infectious diseases. Economists have developed a range of models to explain persistent poverty, often characterized as poverty traps, but these rarely account for complex biophysical processes. In this Essay, we argue that by coupling insights from ecology and economics, we can begin to model and understand the complex dynamics that underlie the generation and maintenance of poverty traps, which can then be used to inform analyses and possible intervention policies. To illustrate the utility of this approach, we present a simple coupled model of infectious diseases and economic growth, where poverty traps emerge from nonlinear relationships determined by the number of pathogens in the system. These nonlinearities are comparable to those often incorporated into poverty trap models in the economics literature, but, importantly, here the mechanism is anchored in core ecological principles. Coupled models of this sort could be usefully developed in many economically important biophysical systems—such as agriculture, fisheries, nutrition, and land use change—to serve as foundations for deeper explorations of how fundamental ecological processes influence structural poverty and economic development.  相似文献   

8.
ABSTRACT: BACKGROUND: Biomedical processes can provide essential information about the (mal-) functioning of an organism and are thus frequently represented in biomedical terminologies and ontologies, including the GO Biological Process branch. These processes often need to be described and categorised in terms of their attributes, such as rates or regularities. The adequate representation of such process attributes has been a contentious issue in bio-ontologies recently; and domain ontologies have correspondingly developed ad hoc workarounds that compromise interoperability and logical consistency. RESULTS: We present a design pattern for the representation of process attributes that is compatible with upper ontology frameworks such as BFO and BioTop. Our solution rests on two key tenets: firstly, that many of the sorts of process attributes which are biomedically interesting can be characterised by the ways that repeated parts of such processes constitute, in combination, an overall process; secondly, that entities for which a full logical definition can be assigned do not need to be treated as primitive within a formal ontology framework. We apply this approach to the challenge of modelling and automatically classifying examples of normal and abnormal rates and patterns of heart beating processes, and discuss the expressivity required in the underlying ontology representation language. We provide full definitions for process attributes at increasing levels of domain complexity. CONCLUSIONS: We show that a logical definition of process attributes is feasible, though limited by the expressivity of DL languages so that the creation of primitives is still necessary. This finding may endorse current formal upper-ontology frameworks as a way of ensuring consistency, interoperability and clarity.  相似文献   

9.
Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.  相似文献   

10.
Plant diseases threaten both food security and the botanical diversity of natural ecosystems. Substantial research effort is focused on pathogen detection and control, with detailed risk management available for many plant diseases. Risk can be assessed using analytical techniques that account for disease pressure both spatially and temporally. We suggest that such technical assessments of disease risk may not provide an adequate guide to the strategies undertaken by growers and government to manage plant disease. Instead, risk-management strategies need to account more fully for intuitive and normative responses that act to balance conflicting interests between stakeholder organizations concerned with plant diseases within the managed and natural environments. Modes of effective engagement between policy makers and stakeholders are explored in the paper, together with an assessment of such engagement in two case studies of contemporary non-indigenous diseases in one food and in one non-food sector. Finally, a model is proposed for greater integration of stakeholders in policy decisions.  相似文献   

11.
I investigate how theoretical assumptions, pertinent to different perspectives and operative during the modeling process, are central in determining how nature is actually taken to be. I explore two different models by Michael Turelli and Steve Frank of the evolution of parasite-mediated cytoplasmic incompatility, guided, respectively, by Fisherian and Wrightian perspectives. Since the two models can be shown to be commensurable both with respect to mathematics and data, I argue that the differences between them in the (1) mathematical presentation of the models, (2) explanations, and (3) objectified ontologies stem neither from differences in mathematical method nor the employed data, but from differences in the theoretical assumptions, especially regarding ontology, already present in the respective perspectives. I use my "set up, mathematically manipulate, explain, and objectify" (SMEO) account of the modeling process to track the model-mediated imposition of theoretical assumptions. I conclude with a discussion of the general implications of my analysis of these models for the controversy between Fisherian and Wrightian perspectives.  相似文献   

12.
Over the past several years, considerable progress has been made in the development of gene therapy as a therapeutic strategy for a variety of inherited metabolic diseases, including neuropathic lysosomal storage disorders (LSDs). The premise of gene therapy for this group of diseases is borne of findings that genetic modification of a subset of cells can provide a more global benefit by virtue of the ability of the secreted lysosomal enzymes to effect cross-correction of adjacent and distal cells. Preclinical studies in small and large animal models of these disorders support the application of either a direct in vivo approach using recombinant adeno-associated viral vectors or an ex vivo strategy using lentiviral vector-modified hematopoietic stem cells to correct the neurological component of these diseases. Early clinical studies utilizing both approaches have begun or are in late-stage planning for a small number of neuropathic LSDs. Although initial indications from these studies are encouraging, it is evident that second-generation vectors that exhibit a greater safety profile and transduction activity may be required before this optimism can be fully realized. Here, I review recent progress and the remaining challenges to treat the neurological aspects of various LSDs using this therapeutic paradigm.  相似文献   

13.
The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. The ontology terms and protein families and subfamilies, as well as Drosophila gene c;assifications, can be browsed and searched for free. Due to outstanding contractual obligations, access to human gene classifications and to protein family trees and multiple sequence alignments will temporarily require a nominal registration fee. PANTHER is publicly available on the web at http://panther.celera.com.  相似文献   

14.
The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.  相似文献   

15.
韦余达  李爽  刘改改  张永贤  丁秋蓉 《遗传》2015,37(10):983-991
精准医疗强调针对不同个体定制个性化治疗方案,其推行需要精准疾病模型的建立。人类干细胞因其具有多能性而成为体外不同类型的成体细胞和器官小体的潜在来源,其强增殖能力保证了充足原材料用于科研分析和大规模药物筛选。基因组编辑技术(尤其是CRISPR/Cas9技术)的快速发展使得在人多能干细胞和成体干细胞中进行高效基因组编辑成为可能。两者的有效结合能建立起针对不同遗传致病背景的“个性化”疾病模型,有利于深入解析不同遗传突变的致病机制和开发高针对性的精准医疗方案。本文对基因组编辑技术在人类干细胞中的应用以及利用干细胞疾病模型模拟罕见病和肿瘤发生的研究进行了综述。  相似文献   

16.
A recent study by van Ede et al. (2012) shows that the accuracy and reaction time in humans of tactile perceptual decisions are affected by an attentional cue via distinct cognitive and neural processes. These results are controversial as they undermine the notion that accuracy and reaction time are influenced by the same latent process that underlie the decision process. Typically, accumulation-to-bound models (like the drift diffusion model) can explain variability in both accuracy and reaction time by a change of a single parameter. To elaborate the findings of van Ede et al., we fitted the drift diffusion model to their behavioral data. Results show that both changes in accuracy and reaction time can be partly explained by an increase in the accumulation of sensory evidence (drift rate). In addition, a change in non-decision time is necessary to account for reaction time changes as well. These results provide a subtle explanation of how the underlying dynamics of the decision process might give rise to differences in both the speed and accuracy of perceptual tactile decisions. Furthermore, our analyses highlight the importance of applying a model-based approach, as the observed changes in the model parameters might be ecologically more valid, since they have an intuitive relationship with the neuronal processes underlying perceptual decision making.  相似文献   

17.
18.
Animal models have received particular attention as key examples of material models. In this paper, we argue that the specificities of establishing animal models—acknowledging their status as living beings and as epistemological tools—necessitate a more complex account of animal models as materialised models. This becomes particularly evident in animal-based models of diseases that only occur in humans: in these cases, the representational relation between animal model and human patient needs to be generated and validated. The first part of this paper presents an account of how disease-specific animal models are established by drawing on the example of transgenic mice models for Alzheimer’s disease. We will introduce an account of validation that involves a three-fold process including (1) from human being to experimental organism; (2) from experimental organism to animal model; and (3) from animal model to human patient. This process draws upon clinical relevance as much as scientific practices and results in disease-specific, yet incomplete, animal models. The second part of this paper argues that the incompleteness of models can be described in terms of multi-level abstractions. We qualify this notion by pointing to different experimental techniques and targets of modelling, which give rise to a plurality of models for a specific disease.  相似文献   

19.
This study investigates the impact that uncertainty in phase contrast-MRI derived inlet boundary conditions has on patient-specific computational hemodynamics models of the healthy human thoracic aorta. By means of Monte Carlo simulations, we provide advice on where, when and how, it is important to account for this source of uncertainty. The study shows that the uncertainty propagates not only to the intravascular flow, but also to the shear stress distribution at the vessel wall. More specifically, the results show an increase in the uncertainty of the predicted output variables, with respect to the input uncertainty, more marked for blood pressure and wall shear stress. The methodological approach proposed here can be easily extended to study uncertainty propagation in both healthy and pathological computational hemodynamic models.  相似文献   

20.
With numerous whole genomes now in hand, and experimental data about genes and biological pathways on the increase, a systems approach to biological research is becoming essential. Ontologies provide a formal representation of knowledge that is amenable to computational as well as human analysis, an obvious underpinning of systems biology. Mapping function to gene products in the genome consists of two, somewhat intertwined enterprises: ontology building and ontology annotation. Ontology building is the formal representation of a domain of knowledge; ontology annotation is association of specific genomic regions (which we refer to simply as 'genes', including genes and their regulatory elements and products such as proteins and functional RNAs) to parts of the ontology. We consider two complementary representations of gene function: the Gene Ontology (GO) and pathway ontologies. GO represents function from the gene's eye view, in relation to a large and growing context of biological knowledge at all levels. Pathway ontologies represent function from the point of view of biochemical reactions and interactions, which are ordered into networks and causal cascades. The more mature GO provides an example of ontology annotation: how conclusions from the scientific literature and from evolutionary relationships are converted into formal statements about gene function. Annotations are made using a variety of different types of evidence, which can be used to estimate the relative reliability of different annotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号