首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
rRNA from detergent-purified nuclei was fractionated quantitatively, by two independent methods, into nucleolar and nucleoplasmic RNA fractions. The two RNA fractions were analysed by urea/agar-gel electrophoresis and the amount of pre-rRNA (precursor of rRNA) and rRNA components was determined. The rRNA constitutes 35% of total nuclear RNA, of which two-thirds are in nucleolar RNA and one-third in nucleoplasmic RNA. The identified pre-rRNA components (45 S, 41 S, 39 S, 36 S, 32 S and 21 S) are confined to the nucleolus and constitute about 70% of its rRNA. The remaining 30% are represented by 28 S and 18 S rRNA, in a molar ratio of 1.4. The bulk of rRNA in nucleoplasmic RNA is represented by 28 S and 18 S rRNA in a molar ratio close to 1.0. Part of the mature rRNA species in nucleoplasmic RNA originate from ribosomes attached to the outer nuclear membrane, which resist detergent treatment. The absolute amount of nuclear pre-rRNA and rRNA components was evaluated. The amount of 32 S and 21 S pre-rRNA (2.9 x 10(4) and 2.5 x 10(4) molecules per nucleus respectively) is 2-3-fold higher than that of 45 S, 41 S and 36 S pre-rRNA.  相似文献   

2.
1. Canine pancreas slices were incubated with [6-(14)C]orotic acid and the rate of its incorporation into RNA was measured. RNA was fractionated by shaking homogenates with phenol at 2 degrees , 50 degrees , 65 degrees and 80 degrees . Cytoplasmic RNA was extracted at the lowest temperature and nuclear RNA at the higher temperatures. The samples were centrifuged through sucrose gradients and the E(260) and (14)C-sedimentation patterns determined. Incorporation of orotic acid was very rapid into cytoplasmic 4s RNA. This probably represents end-group turnover. No incorporation into cytoplasmic ribosomal RNA was observed. 2. The nuclear 50 degrees -RNA exhibited two E(260) peaks, at 18s and 28s. This portion of the sample contained but moderate amounts of [(14)C]RNA. The highly labelled material had sedimentation coefficients in the range 35-50s. The nuclear 65 degrees -RNA showed an E(260) peak at 16s. The [(14)C]RNA peak occurred at 25-35s and this portion demonstrated the highest specific activity of any RNA fraction. 3. The 50 degrees -RNA, 65 degrees -RNA and 80 degrees -RNA were hydrolysed and their base compositions were determined. All three samples possess a ribosomal type of composition (G+C)/(A+U)=(1.4-1.7). For this reason they are considered to contain ribosomal precursor RNA as their major constituent. 4. Actinomycin D (0.5mug./ml.) in the incubation medium inhibited incorporation of orotic acid into both nuclear fractions but not into 4s RNA. 5. The cholinergic drug Urecholine inhibited incorporation into the heavy, high-specific-activity portions of the nuclear fractions but did not inhibit incorporation into the ribosomal precursor type of nuclear RNA. A similar result was also obtained with the hormone pancreozymin. Moderate inhibition of incorporation of orotic acid into 4s RNA likewise resulted from the presence of the drug and the hormone.  相似文献   

3.
4.
Abstract– The method of T hompson (1973) for isolation and fractionation of brain nuclei was modified by the introduction of 12mM-Mg2+ in the isolating media. This technique gives a good yield of pure (85-90%) neuronal and glial rat brain nuclei, with minimal disruption of nuclei and degradation or processing of nuclear RNA. The RNA/DNA ratio of neuronal nuclei is about 3-fold higher than that of glial nuclei. Analysis of nucleolar RNA fractions by urea-agar gel electrophoresis allows the identification of 45S, 41S, 39S, 36S, 32S and 21S pre-rRNA components. The pattern of nucleolar pre-rRNA and rRNA species in neuronal and glial nuclei is identical. These results demonstrate the existence in brain nuclei of multiple pre-rRNA processing pathways qualitatively similar to those observed in other animal tissues.  相似文献   

5.
We previously hypothesized that HEAT-repeat (Huntington, elongation A subunit, TOR) ribosome synthesis factors function in ribosome export. We report that the HEAT-repeat protein Sda1p is a component of late 60S pre-ribosomes and is required for nuclear export of both ribosomal subunits. In strains carrying the ts-lethal sda1-2 mutation, pre-60S particles were rapidly degraded following transfer to 37 degrees C. Polyadenylated forms of the 27S pre-rRNA and the 25S rRNA were detected, suggesting the involvement of the Trf4p/Air/Mtr4p polyadenylation complex (TRAMP). The absence of Trf4p suppressed polyadenylation and stabilized the pre-rRNA and rRNA. The absence of the nuclear exosome component Rrp6p also conferred RNA stabilization, with some hyperadenylation. We conclude that the nuclear-restricted pre-ribosomes are polyadenylated by TRAMP and degraded by the exosome. In sda1-2 strains at 37 degrees C, pre-40S and pre-60S ribosomes initially accumulated in the nucleoplasm, but then strongly concentrated in a subnucleolar focus, together with exosome and TRAMP components. Localization of pre-ribosomes to this focus was lost in sda1-2 strains lacking Trf4p or Rrp6p. We designate this nucleolar focus the No-body and propose that it represents a site of pre-ribosome surveillance.  相似文献   

6.
7.
8.
Cycloheximide given in vivo at low doses (2--5 mg/kg body weight) causes within 30 min a complete inhibition of protein synthesis in rat liver. The labelling of nuclear proteint is also strongly inhibited. Under these conditions, the amount of nucleolar 45-S pre-rRNA and its [14C]-orotate labelling remain unaffected for at least 4 h. These results show that initially the rates of synthesis and processing of 45-S pre-rRNA are not appreciably altered. On the other hand, drastic alterations in the 45-S pre-rRNA processing pathways occur at the early stages of cycloheximide action. Formation of 18-S rRNA is abolished and that of 28S rRNA is reduced to about half the level in control rats. This dichotomy in the production of the two ribosomal particles may be correlated with a block in the formation of 41-S and 21-S pre-rRNA. Generation of 36-S and 32-S pre-rRNA is still taking place, but the rate of their processing to nucleolar 28-S rRNA is decreased, thus causing the accumulation of these two pre-rRNA species. In parallel, processing of 45-S pre-rRNA to an aberrant 39-S rRNA species is markedly enhanced. The results obtained show that the channelling of nucleolar pre-rRNA along alternative processing pathways is under stringent control by the continuous supply of critical protein(s).  相似文献   

9.
10.
NSR1 is a yeast nuclear localization sequence-binding protein showing striking similarity in its domain structure to nucleolin. Cells lacking NSR1 are viable but have a severe growth defect. We show here that NSR1, like nucleolin, is involved in ribosome biogenesis. The nsr1 mutant is deficient in pre-rRNA processing such that the initial 35S pre-rRNA processing is blocked and 20S pre-rRNA is nearly absent. The reduced amount of 20S pre-rRNA leads to a shortage of 18S rRNA and is reflected in a change in the distribution of 60S and 40S ribosomal subunits; there is no free pool of 40S subunits, and the free pool of 60S subunits is greatly increased in size. The lack of free 40S subunits or the improper assembly of these subunits causes the nsr1 mutant to show sensitivity to the antibiotic paromomycin, which affects protein translation, at concentrations that do not affect the growth of the wild-type strain. Our data support the idea that NSR1 is involved in the proper assembly of pre-rRNA particles, possibly by bringing rRNA and ribosomal proteins together by virtue of its nuclear localization sequence-binding domain and multiple RNA recognition motifs. Alternatively, NSR1 may also act to regulate the nuclear entry of ribosomal proteins required for proper assembly of pre-rRNA particles.  相似文献   

11.
A recessive temperature sensitive mutant has been isolated that is defective in ribosomal RNA processing. By Northern analysis, this mutant was found to accumulate three novel rRNA species: 23S', 18S' and 7S', each of which contains sequences from the spacer region between 25S and 18S rRNA. 35S pre-rRNA accumulates, while the level of the 20S and 27S rRNA processing intermediates is depressed. Pulse-chase analysis demonstrates that the processing of 35S pre-rRNA is slowed. The defect in the mutant appears to be at the first processing step, which generates 20S and 27S rRNA. 7S' RNA is a form of 5.8S RNA whose 5' end is extended by 149 nucleotides to a position just 5 nucleotides downstream of the normal cleavage site that produces 20S and 27S rRNA. 7S' RNA can assemble into 60S ribosomal subunits, but such subunits are relatively ineffective in joining polyribosomes. A single lesion is responsible for the pre-rRNA processing defect and the temperature sensitivity. The affected gene is designated RRP2.  相似文献   

12.
Homogenates of dormant cysts of Artemia salina were fractionated by differential centrifugation. RNA was prepared from the various fractions and tested for stimulatory activity in a [14C]leucine incorporating Escherichia coli system. The highest specific activity was found in the RNA extracted from a cytoplasmic fraction sedimenting at 15,000 g. Some activity was associated with the soluble and crude ribosomal fractions, while the RNA extracted from the crude nuclear fraction was less active.The 15,000 g sediment was purified by centrifugation in a sucrose density gradient. The active material formed a characteristic, colored band at a buoyant density of about 1.17 g/ml. The banding fraction was mainly composed of endoplasmic vesicles and mitochondria. The specific activity of the extracted RNA was further increased when the 15,000 g sediment was treated with buffered 20–100 mM EDTA (with or without 0.1% Triton X-100) before banding.Sedimentation analysis of the active RNA from the purified 15,000 g fractions revealed three distinct absorption peaks at 28 S, 18 S, and 16 S, apparently representing cytoplasmic and mitochondrial rRNA. The 28 S and 18 S peaks were reduced by EDTA treatment, but only to a certain limit. By gel electrophoresis a number of additional components were resolved, including 4 S and 5 S RNA. The template activity showed a heterodisperse distribution with a maximum at 17–20 S, not correlated with the 16 S peak. Isolated 18 S and 28 S rRNA had very low activity.The experiments suggest that in Artemia cysts an appreciable amount of messengerlike RNA is associated with mitochondria and/or endoplasmic vesicles carrying ribosomal monomers.  相似文献   

13.
Summary Slow-growing mutants were isolated after mutagenesis of the osmotic-sensitive strain Saccharomyces cerevisiae VY1160. The isolated mutants in rich media have generation times from 300 to 400 min at 30°C. Studies on the biosynthesis of rRNAx have shown, that the processing of 37S pre-rRNA in 6 of the slow-growing mutants occurs 3 to 4 times slower than in the parental strain. These mutants with decreased rate of rRNA maturation are of two different types. In some of them the processing of both 37S and 27S pre-rRNA is slowed down, while the mutants from the second group are acharacterized by a specific inhibition of the step 27S pre-rRNA25S rRNA. Experiments in which the synthesis of macromolecules was studied, have shown that in the mutants and in the parental strain, RNA and proteins are synthesized at comparable rates. Preliminary results suggest that the decreased rate of rRNA processing in three of the isolated mutants might be due to an insufficient function of the enzymes involved in the maturation of rRNA.Abbreviations rRNA ribosomal RNA - pre-rRNA precursor to ribosomal RNA  相似文献   

14.
Our knowledge of the functions of metazoan ribosomal proteins in ribosome synthesis remains fragmentary. Using siRNAs, we show that knockdown of 31 of the 32 ribosomal proteins of the human 40S subunit (ribosomal protein of the small subunit [RPS]) strongly affects pre–ribosomal RNA (rRNA) processing, which often correlates with nucleolar chromatin disorganization. 16 RPSs are strictly required for initiating processing of the sequences flanking the 18S rRNA in the pre-rRNA except at the metazoan-specific early cleavage site. The remaining 16 proteins are necessary for progression of the nuclear and cytoplasmic maturation steps and for nuclear export. Distribution of these two subsets of RPSs in the 40S subunit structure argues for a tight dependence of pre-rRNA processing initiation on the folding of both the body and the head of the forming subunit. Interestingly, the functional dichotomy of RPS proteins reported in this study is correlated with the mutation frequency of RPS genes in Diamond-Blackfan anemia.  相似文献   

15.
Different fractions of cellular RNA from erythroid enriched bone marrow cells of the rabbit, extracted by the temperature fractionation method, were investigated by hybridization to globin cDNA. 97.4% of all globin sequences were found in the 4 degrees C franction (cytoplasmic RNA) 0.11% are in the 40 degrees / 50 degrees C fraction and 2.47% in the 65 degrees C and 85 degrees C franctions (pre-mRNA). This shows a substantial purification of the pre-mRNA fractions from cytoplasmic mRNA. 33% of the globin sequences in the 65 degrees C and 85 degrees C fractions are polyadenylated. The poly(A)+-RNA from the 65 degrees C and 85 degrees C fractions separated in a formamide sucrose gradient showed a clear hybridization to globin cDNA in the region between 9S and 28S and around 4S. In a control experiment in which RNA from baby hamster kidney cells (BHK) was mixed with globin mRNA and separated in the same manner hybridization was observed at the 9S position of the gradient only.  相似文献   

16.
Ethionine, a hepatocarcinogen, was administered into rats 24 h before partial hepatectomy and immediately thereafter. Hepatic precursor ribosomal RNA (pre-rRNA) obtained 20 h after the operation of rats injected with ethionine and adenine resulted in methyl deficiency as judged by the incorporation of [3H]methyl group of S-adenosylmethionine into nuclear rRNA by partially purified rRNA methylase. The ethionine and adenine treatment causes methyl deficiency of nuclear rRNA at 2'-hydroxyribose sites of cytidine and uridine, but not at base sites. Although the ethionine and adenine treatment produced no significant change in total hepatic RNA synthesis in vivo assayed by the incorporation of labeled orotate, a one-third increase in nuclear rRNA synthesis as well as a one-third decrease in microsomal rRNA synthesis was found under the treatment. These results suggest that the undermethylation at 2'-hydroxyribose of pre-rRNA in liver nucleus, which is caused by ethionine and adenine administration into rats, causes an inhibition of the processing of nuclear pre-rRNA to cytoplasmic rRNA.  相似文献   

17.
18.
19.
20.
Kinetic studies on the labelling in vivo with [14C]orotate of rat liver nucleolar and nucleoplasmic pre-rRNA (precursor of rRNA) and rRNA, isolated from detergent-purified nuclei, were carried out. The mathematical methods used for the computer analysis of specific-radioactivity curves are described. Evaluation of the experimental data permitted the selection of the most probable models for the processing of pre-rRNA and the nucleo-cytoplasmic transfer of rRNA. It was shown that considerable flexibility exists in the sequence of endonuclease attacks at critical sites of 45 and 41 S pre-rRNA chains, resulting in the simultaneous occurrence of several processing pathways. However, the phosphodiester bonds involved in the formation of mature 28 and 18 S rRNA appear to be protected until the generation of their immediate pre-rRNA. The turnover rates and half-lives of all pre-rRNA and rRNA pools were determined. The turnover rate of 45 S pre-rRNA corresponds to the formation of 1100 ribosomes/min per nucleus. The model for the nucleolus-nucleoplasm-cytoplasm migration of rRNA includes a 'nucleoplasm' compartment in which the small ribosomal subparticle is in rapid equilibrium with the respective cytoplasmic pool. At equimolar amounts of nuclear 28 and 18 S rRNA this model explains the faster appearance of labelled small ribosomal subparticles in the cytoplasm simultaneous with a lower labelling of nuclear 18 S rRNA as compared with 28 S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号