首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcineurin purified from bovine brain was found to be active towards beta-naphthyl phosphate greater than p-nitrophenyl phosphate greater than alpha-naphthyl phosphate much greater than phosphotyrosine. In its native state, calcineurin shows little activity. It requires the synergistic action of Ca2+, calmodulin, and Mg2+ for maximum activation. Ca2+ and Ca2+ X calmodulin exert their activating effects by transforming the enzyme into a potentially active form which requires Mg2+ to express the full activity. Ni2+, Mn2+, and Co2+, but not Ca2+ or Zn2+, can substitute for Mg2+. The pH optimum, and the Vm and Km values of the phosphatase reaction are characteristics of the divalent cation cofactor. Ca2+ plus calmodulin increases the Vm in the presence of a given divalent cation, but has little effect on the Km for p-nitrophenyl phosphate. The activating effects of Mg2+ are different from those of the transition metal ions in terms of effects on Km, Vm, pH optimum of the phosphatase reaction and their affinity for calcineurin. Based on the Vm values determined in their respective optimum conditions, the order of effectiveness is: Mg2+ greater than or equal to Ni2+ greater than Mn2+ much greater than Co2+. The catalytic properties of calcineurin are markedly similar to those of p-nitrophenyl phosphatase activity associated with protein phosphatase 3C and with its catalytic subunit of Mr = 35,000, suggesting that there are common features in the catalytic sites of these two different classes of phosphatase.  相似文献   

2.
Calcineurin purified from bovine brain is shown to possess phosphotyrosyl -protein phosphatase activity towards proteins phosphorylated by the epidermal growth factor receptor/kinase. The phosphatase activity is augmented by Ca2+/calmodulin or divalent cation (Ni2+ greater than Mn2+ greater than Mg2+ greater than Co2+). In the simultaneous presence of all three effectors, the enzymatic activity is synergistically increased. Ca2+/calmodulin activates the Mg2+-supported activity by decreasing the Km value for phosphotyrosyl -casein from 2.2 to 0.6 microM, and increasing the Vmax from 0.4 to 4.6 nmol/min/mg. These results represent the first demonstration that calcineurin can dephosphorylate phosphotyrosyl -proteins and suggest a novel mechanism of activation of this enzyme.  相似文献   

3.
The divalent cation dependence of a calmodulin-stimulated phosphatase from bovine brain has been characterized kinetically using phosphorylated myelin basic protein and casein as substrates. At saturating concentrations of calmodulin, dephosphorylation of both myelin basic protein and casein was catalyzed 8- to 10-fold more rapidly at saturating concentrations of Mn2+ than at saturating concentrations of Ca2+. Half-maximal rates of dephosphorylation of both substrates occurred at either 15 microM Mn2+ or 1 microM Ca2+, and the Kact for each ion was not influenced appreciably by the presence of calmodulin. Half-maximal rates of dephosphorylation were observed at concentrations of calmodulin ranging from 3 X 10(-8) to 10(-6) M at saturating concentrations of divalent cations depending on the substrate used and the particular cation chosen. Trypsin treatment of the phosphatase activated the enzyme several-fold, eliminated its calmodulin dependence, but did not alter the Mn2+ concentration dependence of the activity. Ca2+ (10 microM) increased dephosphorylation rates without altering the Mn2+ concentration dependence of the phosphatase activity regardless of the presence of calmodulin. Mg2+ at millimolar concentrations did not alter the Ca2+ or Mn2+ concentration dependence of the activity. As measured without calmodulin, Ca2+ (90 microM) or Mn2+ (200 microM) produced nearly identical alterations of the far ultraviolet circular dichroic spectrum of the phosphatase.  相似文献   

4.
Ca2(+)-dependent protein phosphatase was purified from scallop adductor smooth muscle by a combination of DEAE-Toyoperal 650S ion exchange chromatographies and gel filtration on Sephacryl S-300. The phosphatase consisted of two subunits having molecular weights of 60 and 19 kDa. Phosphorylated regulatory light chain-a (RLC-a) was dephosphorylated by this phosphatase both in free and bound states in myosin prepared from the opaque portion of scallop smooth muscle (opaque myosin). The dephosphorylation was activated by Ca2+. The half maximal activation was a 1 microM free Ca2+ in the presence of calmodulin and 7 microM free Ca2+ in the absence of calmodulin. Opaque myosin phosphorylated at the heavy chain was not dephosphorylated with this phosphatase. p-Nitrophenyl phosphate was dephosphorylated. In addition to Ca2+, the phosphatase activity for RLC-a was activated by Mn2+, while p-nitrophenylphosphatase activity was activated by Mg2+ more strongly than by Mn2+. The pH-activity curves showed a maximum at pH 7 in the presence of Mn2+, but at around pH 8 in the presence of Mg2+. This phosphatase is similar to phosphatase 2B or calcineurin. The possible regulatory function of this phosphatase in scallop catch muscle is discussed.  相似文献   

5.
In this study a rho-nitrophenyl phosphate (PNPP) phosphatase was purified 476-fold from bovine brain cytosol. The molecular weight of the enzyme is 84,000 as determined by gel filtration. The PNPP phosphatase could also dephosphorylate [32P-Tyr]-casein and -poly (Glu, Tyr). [32P-ser]-casein and -histone were not substrates. The phosphatase activity was found to be totally dependent on divalent metal ions. Mg2+ was the most effective with Ka of 20 microM. Ca2+ was found to be a potent inhibitor of the phosphatase. Using PNPP as a substrate the IC50 for Ca2+ was 0.6 microM. Several known inhibitors of phosphotyrosyl protein phosphatases such as Zn2+, vanadate, and molybdate also inhibited the PNPP phosphatase. The very high sensitivity for inhibition by Ca2+ suggests that the activity of the phosphotyrosyl protein phosphatase may be regulated by fluctuations in the intracellular concentrations of Ca2+.  相似文献   

6.
In vitro selection was used to isolate five classes of allosteric hammerhead ribozymes that are triggered by binding to certain divalent metal ion effectors. Each of these ribozyme classes are similarly activated by Mn2+, Fe2+, Co2+, Ni2+, Zn2+ and Cd2+, but their allosteric binding sites reject other divalent metals such as Mg2+, Ca2+ and Sr2+. Through a more comprehensive survey of cations, it was determined that some metal ions (Be2+, Fe3+, Al3+, Ru2+ and Dy2+) are extraordinarily disruptive to the RNA structure and function. Two classes of RNAs examined in greater detail make use of conserved nucleotides within the large internal bulges to form critical structures for allosteric function. One of these classes exhibits a metal-dependent increase in rate constant that indicates a requirement for the binding of two cation effectors. Additional findings suggest that, although complex allosteric functions can be exhibited by small RNAs, larger RNA molecules will probably be required to form binding pockets that are uniquely selective for individual cation effectors.  相似文献   

7.
Biological membrane fusion employs divalent cations as protein cofactors or as signaling ligands. For example, Mg2+ is a cofactor for the N-ethylmaleimide-sensitive factor (NSF) ATPase, and the Ca2+ signal from neuronal membrane depolarization is required for synaptotagmin activation. Divalent cations also regulate liposome fusion, but the role of such ion interactions with lipid bilayers in Rab- and soluble NSF attachment protein receptor (SNARE)-dependent biological membrane fusion is less clear. Yeast vacuole fusion requires Mg2+ for Sec18p ATPase activity, and vacuole docking triggers an efflux of luminal Ca2+. We now report distinct reaction conditions where divalent or monovalent ions interchangeably regulate Rab- and SNARE-dependent vacuole fusion. In reactions with 5 mm Mg2+, other free divalent ions are not needed. Reactions containing low Mg2+ concentrations are strongly inhibited by the rapid Ca2+ chelator BAPTA. However, addition of the soluble SNARE Vam7p relieves BAPTA inhibition as effectively as Ca2+ or Mg2+, suggesting that Ca2+ does not perform a unique signaling function. When the need for Mg2+, ATP, and Sec18p for fusion is bypassed through the addition of Vam7p, vacuole fusion does not require any appreciable free divalent cations and can even be stimulated by their chelators. The similarity of these findings to those with liposomes, and the higher ion specificity of the regulation of proteins, suggests a working model in which ion interactions with bilayer lipids permit Rab- and SNARE-dependent membrane fusion.  相似文献   

8.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

9.
The nucleotide and divalent cation requirements of the in vitro iron-molybdenum cofactor (FeMo-co) synthesis system have been compared with those of substrate reduction by nitrogenase. The FeMo-co synthesis system specifically requires ATP, whereas both 1,N6-etheno-ATP and 2'-deoxy-ATP function in place of ATP in substrate reduction (M. F. Weston, S. Kotake, and L. C. Davis, Arch. Biochem. Biophys. 225:809-817, 1983). Mn2+, Ca2+, and Fe2+ substitute for Mg2+ to various extents in in vitro FeMo-co synthesis, whereas Ca2+ is ineffective in substrate reduction by nitrogenase. The observed differences in the nucleotide and divalent cation specificities suggest a role(s) for the nucleotide and divalent cation in in vitro FeMo-co synthesis that is distinct from their role(s) in substrate reduction.  相似文献   

10.
The complex interrelationships between the transport of inorganic cations and C4 dicarboxylate were examined using mutants defective in potassium transport and retention, divalent cation transport, or phosphate transport. The potassium transport system, studied using 86Rb+ as a K+ analogue, kinetically appeared as a single system (Km 200 microM for Rb+, Ki 50 microM for K+), the activity of which was only slightly reduced in K+ retention mutants. Divalent cation transport, studied using 54Mn2+, 60Co2+, and 45Ca2+, was more complex being represented by at least two systems, one with a high affinity for Mn2+ (Km 2.5 microM) and a more general one of low affinity (Km 1.3-10 mM) for Mg2+, Mn2+, Ca/2+, and Co2+. Divalent cation transport was repressed by Mg2+, derepressed in K+ retention mutants, and defective in Co2+-resistant mutants. Phosphate was required for both divalent cation and succinate transport, and phosphate transport mutants (arsenate resistant) were found to be defective in both divalent cation and succinate transport. Divalent cations, especially Mg2+ and Co2+, decreased Km for succinate transport approximately 20-fold over that achieved with K+; neither cation was required stoichiometrically for succinate transport. The loss of divalent cation transport in cobalt-resistant mutants has been correlated with the loss of a 55,000 molecular weight membrane protein. Similarly, the loss of phosphate transport in arsenate-resistant mutants has been correlated with the loss of a 35,000 molecular weight membrane component.  相似文献   

11.
Fusogenic capacities of divalent cations and effect of liposome size   总被引:3,自引:0,他引:3  
J Bentz  N Düzgüne? 《Biochemistry》1985,24(20):5436-5443
The initial kinetics of divalent cation (Ca2+, Ba2+, Sr2+) induced fusion of phosphatidylserine (PS) liposomes, LUV, is examined to obtain the fusion rate constant, f11, for two apposed liposomes as a function of bound divalent cation. The aggregation of dimers is rendered very rapid by having Mg2+ in the electrolyte, so that their subsequent fusion is rate limiting to the overall reaction. In this way the fusion kinetics are observed directly. The bound Mg2+, which by itself is unable to induce the PS LUV to fuse, is shown to affect only the aggregation kinetics when the other divalent cations are present. There is a threshold amount of bound divalent cation below which the fusion rate constant f11 is small and above which it rapidly increases with bound divalent cation. These threshold amounts increase in the sequence Ca2+ less than Ba2+ less than Sr2+, which is the same as found previously for sonicated PS liposomes, SUV. While Mg2+ cannot induce fusion of the LUV and much more bound Sr2+ is required to reach the fusion threshold, for Ca2+ and Ba2+ the threshold is the same for PS SUV and LUV. The fusion rate constant for PS liposomes clearly depends upon the amount and identity of bound divalent cation and the size of the liposomes. However, for Ca2+ and Ba2+, this size dependence manifests itself only in the rate of increase of f11 with bound divalent cation, rather than in any greater intrinsic instability of the PS SUV. The destabilization of PS LUV by Mn2+ and Ni2+ is shown to be qualitatively distinct from that induced by the alkaline earth metals.  相似文献   

12.
Plasma membranes were isolated from light-grown, 14-day-old maize leaves ( Zea mays L . cv. Golden Cross Bantam) using aqueous two-phase partitioning. The plasma membrane (PM) fraction contained < 0.3% of the total chlorophyll, < 0.2% of the mitochondrial marker enzyme activity, minimal contamination by endomembranes and 34% of the total PM.
A calmodulin-stimulated (Ca2++ Mg2+)-ATPase was identified in the PM-enriched fraction. The Ca2++ calmodulin stimulation was dependent on Mg2+, saturated at ca 25 μM total Ca2+, had a pH maximum at 7.2 and was maximally stimulated by 600 n M bovine brain calmodulin. The stimulation was not greatly affected by the anion present and showed a divalent cation specificity of Ca2+ > Sr+2 ± Mn+2 > Co2+± Cu2+ > Ba2+. The napthalenesulfonamide W7, an antagonist of calmodulin action, completely inhibited the calmodulin stimulation at 175 μM , while the less active analogue W5 was ineffective at this concentration. La3+, an inhibitor of PM Ca2+ transport, showed a 50% inhibition of calmodulin-stimulated ATPase activity at ca 200 μM . Taken as a whole, these data demonstrate the presence of a calmodulinstimulated, (Ca2++ Mg2+)-ATPase on the cytoplasmic surface of the plasma membrane of maize leaf cells.  相似文献   

13.
The cation specificity of dolichol kinase of mammalian brain and the potential involvement of a Ca2+-calmodulin system in regulation of this enzyme have been studied. Among 10 divalent cations examined, Zn2+ was found to be most effective for the activation of dolichol kinase of rat and calf brain and cultured C-6 glial cells. The activations with Ca2+, Co2+, and Mg2+ were 53%, 32%, and 18% of the full activation with Zn2+, respectively. No combinations of the cations could activate the enzyme as much as Zn2+ alone. A role for a Ca2+-calmodulin system in the regulation of brain dolichol kinase was not supported by our data. First, the concentration of free Ca2+ required for the maximum activation of dolichol kinase was two to three orders of magnitude greater than the concentration required by typical calmodulin-dependent enzymes. Second, neither the depletion of calmodulin from the microsomal fraction nor the addition of exogenous calmodulin caused an alteration in the activation of dolichol kinase by Ca2+ (or Zn2+). Third, antagonists of calmodulin failed to suppress the activation of the enzyme by Ca2+ (or Zn2+). The data raise the possibility that Zn2+ is involved in the regulation of dolichol kinase in brain.  相似文献   

14.
In order to determine the role of divalent cations in the reaction mechanism of the H+,K+-ATPase, we have substituted calcium for magnesium, which is required by the H+,K+-ATPase for phosphorylation from ATP and from PO4. Calcium was chosen over other divalent cations assayed (barium and manganese) because in the absence of magnesium, calcium activated ATP hydrolysis, generated sufficiently high levels of phosphoenzyme (573 +/- 51 pmol.mg-1) from [gamma-32P]ATP to study dephosphorylation, and inhibited K+-stimulated ATP hydrolysis. The Ca2+-ATPase activity of the H+,K+-ATPase was 40% of the basal Mg2+-ATPase activity. However, the Ca2+,K+-ATPase activity (minus the Ca2+ basal activity) was only 0.7% of the Mg2+,K+-ATPase, indicating that calcium could partially substitute for Mg2+ in activating ATP hydrolysis but not in K+ stimulation of ATP hydrolysis. Approximately 0.1 mM calcium inhibited 50% of the Mg2+-ATPase or Mg2+,K+-ATPase activities. Inhibition of Mg2+,K+-ATPase activity was not competitive with respect to K+. Inhibition by calcium of Mg2+,K+ activity p-nitrophenyl phosphatase activity was competitive with respect to Mg2+ with an apparent Ki of 0.27 mM. Proton transport measured by acridine orange uptake was not detected in the presence of Ca2+ and K+. In the presence of Mg2+ and K+, Ca2+ inhibited proton transport with an apparent affinity similar to the inhibition of the Mg2+, K+-ATPase activity. The site of calcium inhibition was on the exterior of the vesicle. These results suggest that calcium activates basal turnover and inhibits K+ stimulation of the H+,K+-ATPase by binding at a cytosolic divalent cation site. The pseudo-first order rate constant for phosphoenzyme formation from 5 microM [gamma-32P]ATP was at least 22 times slower in the presence of calcium (0.015 s-1) than magnesium (greater than 0.310 s-1). The Ca.EP (phosphoenzyme formed in the presence of Ca2+) formed dephosphorylated four to five times more slowly that the Mg.EP (phosphoenzyme formed in the presence of Mg2+) in the presence of 8 mm trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) or 250 microM ATP. Approximately 10% of the Ca.EP formed was sensitive to a 100 mM KCl chase compared with greater than 85% of the Mg.EP. By comparing the transient kinetics of the phosphoenzyme formed in the presence of magnesium (Mg.EP) and calcium (Ca.EP), we found two actions of divalent cations on dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Kinetic studies on the interaction of protein kinase C with cations and substrates were performed and the effects of essential activators on the interaction of protein kinase C with its substrates were studied. The catalytic fragment of protein kinase C interacted with protein substrate, MgATP, and Mg2+. The dual divalent cation requirement was shown by kinetic analysis as well as by the ability of Mn2+ to substitute for Mg2+. Analysis of kinetic data based on equilibrium assumptions suggested a random order of interaction of the catalytic fragment with its substrate and Mg2+ cofactor. Activation of intact protein kinase C required Ca2+, phosphatidylserine (PS), and diacylglycerol (DAG) as essential activators. Kinetic analysis of the interaction of activators with substrates indicated that Ca2+ and PS acted to increase the activity of the enzyme without modulating the KM for MgATP; PS and Ca2+ significantly decreased the KM for histone. DAG, on the other hand, did not affect the KM for either MgATP or histone but dramatically enhanced the kcat of the enzyme. These studies allow kinetic distinction between the effects of PS and Ca2+ on the one hand and DAG on the other. The possible interference of the kinetic analysis by histone was also examined by studying the requirements for autophosphorylation of protein kinase C; autophosphorylation showed similar dependencies on PS and DAG. There were no effects of histone on the lipid dependence of protein kinase C autophosphorylation, phorbol dibutyrate binding, and inhibition of autophosphorylation by sphingosine. These studies are discussed in relation to a kinetic model of protein kinase C activation.  相似文献   

16.
A Ca2+-dependent, calmodulin-stimulated protein phosphatase (EC 3.1.3.16) is known to be associated with calcineurin, a major calmodulin binding protein in brain. The protein phosphatase activity has now been shown to be retained by a substrate affinity column (thiophosphorylated myosin P-light chain Sepharose) in the presence of Ca2+, and to be eluted specifically with EGTA. Calcineurin behaved identically. This establishes that calcineurin is the Ca2+-dependent protein phosphatase, and that interaction of Ca2+ with the B-subunit is essential for substrate binding.  相似文献   

17.
The effects of ATP and divalent cations on a divalent cation-independent phosphorylase phosphatase of Mr = 35,000 (phosphatase S) purified from canine cardiac muscle have been studied. The enzyme can be rapidly inactivated by ATP or other nucleoside di- and triphosphates and PPi, but not by AMP, adenosine, adenine, Pi, EDTA, ethylene glycol bis(beta-aminoethyl ether)N,N' -tetraacetic acid, 1,10-phenanthroline, or 8-hydroxyquinoline. After removing the inactivating agent, such as ATP or PPi, by gel filtraiton followed by exhaustive dialysis, the inactivated enzyme (apophosphatase S) can be reactivated by preincubating with Mn2+ or Co2+, but not with Mg2+, Ca2+, Ni2+, Zn2+, Fe2+, Cu2+, Ba2+, Hg2+, Pb2+, or Cd2+. The Mn2+ -reactivated enzyme, which is less active than the Co2+ -reactivated enzyme, can be again inactivated by preincubating with ATP. The present findings indicate that phosphatase S contains a tightly bound divalent cation, probably Mn2+, in the active site. ATP and PPi, due to their structural similarity to the phosphoprotein substrate and their ability to chelate metal ions, can readily enter the active site to remove the divalent cation(s) essential for the catalytic function. The present findings also indicate that phosphatase S, a common catalytic subunit of several larger molecular forms of nospecific phosphoprotein phosphatase in cardiac muscle, can exist in two interconvertible forms, a metallized form (active) and a demetallized form (inactive). ATP and metal ions may regulate this class of isozymes by mediating the interconversions.  相似文献   

18.
cAMP-gated channels were studied in inside-out membrane patches excised from the apical cellular pole of isolated olfactory receptor cells of the rat. In the absence of divalent cations the dose-response curve of activation of patch current by cAMP had a KM of 4.0 microM at -50 mV and of 2.5 microM at +50 mV. However, addition of 0.2 or 0.5 mM Ca2+ shifted the KM of cAMP reversibly to the higher cAMP concentrations of 33 or 90 microM, respectively, at -50 mV. Among divalent cations, the relative potency for inducing cAMP affinity shifts was: Ca2+ > Sr2+ > Mn2+ > Ba2+ > Mg2+, of which Mg2+ (up to 3 mM) did not shift the KM at all. This potency sequence corresponds closely to that required for the activation of calmodulin. However, the Ca(2+)-sensitivity is lower than expected for a calmodulin-mediated action. Brief (60 s) transient exposure to 3 mM Mg2+, in the absence of other divalent cations, had a protective effect in that following washout of Mg2+, subsequent exposure to 0.2 mM Ca2+ no longer caused affinity shifts. This protection effect did not occur in intact cells and was probably a consequence of patch excision, possibly representing ablation of a regulatory protein from the channel cyclic nucleotide binding site. Thus, the binding of divalent cations, probably via a regulatory protein, controls the sensitivity of the cAMP-gated channels to cAMP. The influx of Ca2+ through these channels during the odorant response may rise to a sufficiently high concentration at the intracellular membrane surface to contribute to the desensitization of the odorant- induced response. The results also indicate that divalent cation effects on cyclic nucleotide-gated channels may depend on the sequence of pre-exposure to other divalent cations.  相似文献   

19.
It is now well established that autophosphorylation of a threonine residue located next to each calmodulin-binding domain in the subunits of type II Ca2+/calmodulin-dependent protein kinase causes the kinase to remain active, although at a reduced rate, after Ca2+ is removed from the reaction. This autophosphorylated form of the kinase is still sensitive to Ca2+/calmodulin, which is required for a maximum catalytic rate. After removal of Ca2+, new sites are autophosphorylated by the partially active kinase. Autophosphorylation of these sites abolishes sensitivity of the kinase to Ca2+/calmodulin (Hashimoto, Y., Schworer, C. M., Colbran, R. J., and Soderling, T. R. (1987) J. Biol. Chem. 262, 8051-8055). We have identified two pairs of homologous residues, Thr305 and Ser314 in the alpha subunit and Thr306 and Ser315 in the beta subunit, that are autophosphorylated only after removal of Ca2+ from an autophosphorylation reaction. The sites were identified by direct sequencing of labeled tryptic phosphopeptides isolated by reverse-phase high pressure liquid chromatography. Thr305-306 is rapidly dephosphorylated by purified protein phosphatases 1 and 2A, whereas Ser314-315 is resistant to dephosphorylation. We have shown by selective dephosphorylation that the presence of phosphate on Thr305-306 blocks sensitivity of the kinase to Ca2+/calmodulin. In contrast, the presence of phosphate on Ser314-315 is associated with an increase in the Kact for Ca2+/calmodulin of only about 2-fold, producing a relatively small decrease in sensitivity to Ca2+/calmodulin.  相似文献   

20.
Allen GJ  Sanders D 《The Plant cell》1995,7(9):1473-1483
The slowly activating vacuolar (SV) channel of plant vacuoles is gated open by cytosolic free Ca2+ and by cytosol-positive potentials. Using vacuoles isolated from broad bean guard cell protoplasts, SV-mediated currents could be measured in the whole-vacuole configuration of a patch clamp as the time-dependent increase in current at cytosol-positive voltages. Time-dependent deactivation of the SV currents when changing from activating to nonactivating voltages (tail currents) was used to calculate the selectivity of the channel to Ca2+ and Cl- with respect to K+. Changing the equilibrium potential for each permeant ion (Ca2+, Cl-, and K+) at least once for individual vacuoles allowed the relative permeabilities (P) of each of these ions to be calculated in a single experiment. The resulting Pca:Pcl:Pk ratio was close to 3:0.1:1. In accord with its characterization as a weakly selective Ca2+ channel, the SV-mediated current density decreased with increasing Ca2+ activity in the vacuole lumen. SV currents were potently modulated by the Ca2+-dependent, calmodulin-stimulated protein phosphatase 2B (calcineurin). At low concentrations ([less than or equal to]0.4 units per mL), calcineurin stimulated SV currents by ~60%, whereas at higher concentrations the phosphatase was inhibitory, reaching ~90% inhibition at 3 units per mL. Bovine calmodulin had no direct effect on SV-mediated currents, although calcineurin stimulated by exogenous calmodulin inhibited SV currents at all concentrations tested with half-maximal inhibition for calcineurin at 0.16 units per mL. The inhibitory effect of calcineurin could be blocked by the pyrethroid deltamethrin, indicating inhibition of SV channels by calcineurin via dephosphorylation. A model is discussed in which vacuolar Ca2+ release through SV channels is subject to both positive feedforward and negative feedback control through cytosolic Ca2+ and dephosphorylation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号