首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand alkylating agent-induced cytotoxicity and the base lesion DNA repair process in Saccharomyces cerevisiae, we replaced the RAD27FEN1 open reading frame (ORF) with the ORF of the bifunctional human repair enzyme DNA polymerase (Pol) β. The aim was to probe the effect of removal of the incised abasic site 5′-sugar phosphate group (i.e., 5′-deoxyribose phosphate or 5′-dRP) in protection against methyl methanesulfonate (MMS)-induced cytotoxicity. In S. cerevisiae, Rad27Fen1 was suggested to protect against MMS-induced cytotoxicity by excising multinucleotide flaps generated during repair. However, we proposed that the repair intermediate with a blocked 5′-end, i.e., 5′-dRP group, is the actual cytotoxic lesion. In providing a 5′-dRP group removal function mediated by dRP lyase activity of Pol β, the effects of the 5′-dRP group were separated from those of the multinucleotide flap itself. Human Pol β was expressed in S. cerevisiae, and this partially rescued the MMS hypersensitivity observed with rad27fen1-null cells. To explore this rescue effect, altered forms of Pol β with site-directed eliminations of either the 5′-dRP lyase or polymerase activity were expressed in rad27fen1-null cells. The 5′-dRP lyase, but not the polymerase activity, conferred the resistance to MMS. These results suggest that after MMS exposure, the 5′-dRP group in the repair intermediate is cytotoxic and that Rad27Fen1 protection against MMS in wild-type cells is due to elimination of the 5′-dRP group.  相似文献   

2.
As predicted by the amino acid sequence, the purified protein coded by Schizosaccharomyces pombe SPAC2F7.06c is a DNA polymerase (SpPol4) whose biochemical properties resemble those of other X family (PolX) members. Thus, this new PolX is template-dependent, polymerizes in a distributive manner, lacks a detectable 3′→5′ proofreading activity and its preferred substrates are small gaps with a 5′-phosphate group. Similarly to Polμ, SpPol4 can incorporate a ribonucleotide (rNTP) into a primer DNA. However, it is not responsible for the 1–2 rNTPs proposed to be present at the mating-type locus and those necessary for mating-type switching. Unlike Polμ, SpPol4 lacks terminal deoxynucleotidyltransferase activity and realigns the primer terminus to alternative template bases only under certain sequence contexts and, therefore, it is less error-prone than Polμ. Nonetheless, the biochemical properties of this gap-filling DNA polymerase are suitable for a possible role of SpPol4 in non-homologous end-joining. Unexpectedly based on sequence analysis, SpPol4 has deoxyribose phosphate lyase activity like Polβ and Polλ, and unlike Polμ, suggesting also a role of this enzyme in base excision repair. Therefore, SpPol4 is a unique enzyme whose enzymatic properties are hybrid of those described for mammalian Polβ, Polλ and Polμ.  相似文献   

3.
DNA polymerase ε (Pol ε) is a replicative DNA polymerase with an associated 3′–5′ exonuclease activity. Here, we explored the capacity of Pol ε to perform strand displacement synthesis, a process that influences many DNA transactions in vivo. We found that Pol ε is unable to carry out extended strand displacement synthesis unless its 3′–5′ exonuclease activity is removed. However, the wild-type Pol ε holoenzyme efficiently displaced one nucleotide when encountering double-stranded DNA after filling a gap or nicked DNA. A flap, mimicking a D-loop or a hairpin structure, on the 5′ end of the blocking primer inhibited Pol ε from synthesizing DNA up to the fork junction. This inhibition was observed for Pol ε but not with Pol δ, RB69 gp43 or Pol η. Neither was Pol ε able to extend a D-loop in reconstitution experiments. Finally, we show that the observed strand displacement synthesis by exonuclease-deficient Pol ε is distributive. Our results suggest that Pol ε is unable to extend the invading strand in D-loops during homologous recombination or to add more than two nucleotides during long-patch base excision repair. Our results support the hypothesis that Pol ε participates in short-patch base excision repair and ribonucleotide excision repair.  相似文献   

4.
XRCC1 (X-ray cross-complementing group 1) is a DNA repair protein that forms complexes with DNA polymerase β (β-Pol), DNA ligase III and poly-ADP-ribose polymerase in the repair of DNA single strand breaks. The domains in XRCC1 have been determined, and characterization of the domain–domain interaction in the XRCC1-β-Pol complex has provided information on the specificity and mechanism of binding. The domain structure of XRCC1, determined using limited proteolysis, was found to include an N-terminal domain (NTD), a central BRCT-I (breast cancer susceptibility protein-1) domain and a C-terminal BRCT-II domain. The BRCT-Ilinker–BRCT-II C-terminal fragment and the linker–BRCT-II C-terminal fragment were relatively stable to proteolysis suggestive of a non-random conformation of the linker. A predicted inner domain was found not to be stable to proteolysis. Using cross-linking experiments, XRCC1 was found to bind intact β-Pol and the β-Pol 31 kDa domain. The XRCC1-NTD1–183 (residues 1183) was found to bind β-Pol, the β-Pol 31 kDa domain and the β-Pol C-terminal palm-thumb (residues 140–335), and the interaction was further localized to XRCC1-NTD1–157 (residues 1–157). The XRCC1-NTD1–183-β-Pol 31 kDa domain complex was stable at high salt (1 M NaCl) indicative of a hydrophobic contribution. Using a yeast two-hybrid screen, polypeptides expressed from two XRCC1 constructs, which included residues 36–355 and residues 1–159, were found to interact with β-Pol, the β-Pol 31 kDa domain, and the β-Pol C-terminal thumb-only domain polypeptides expressed from the respective β-Pol constructs. Neither the XRCC1-NTD1–159, nor the XRCC136–355 polypeptide was found to interact with a β-Pol thumbless polypeptide. A third XRCC1 polypeptide (residues 75–212) showed no interaction with β-Pol. In quantitative gel filtration and analytical ultracentrifugation experiments, the XRCC1-NTD1–183 was found to bind β-Pol and its 31 kDa domain in a 1:1 complex with high affinity (Kd of 0.4–2.4 µM). The combined results indicate a thumb-domain specific 1:1 interaction between the XRCC1-NTD1–159 and β-Pol that is of an affinity comparable to other binding interactions involving β-Pol.  相似文献   

5.
DNA polymerase eta (Pol η) is a eukaryotic member of the Y-family of DNA polymerase involved in translesion DNA synthesis and genome mutagenesis. Recently, several translesion DNA synthesis polymerases have been found to function in repair of DNA double-strand breaks (DSBs). However, the role of Pol η in promoting DSB repair remains to be well defined. Here, we demonstrated that Pol η could be targeted to etoposide (ETO)-induced DSBs and that depletion of Pol η in cells causes increased sensitivity to ETO. Intriguingly, depletion of Pol η also led to a nonhomologous end joining repair defect in a catalytic activity–independent manner. We further identified the scaffold protein Kap1 as a novel interacting partner of Pol η, the depletion of which resulted in impaired formation of Pol η and Rad18 foci after ETO treatment. Additionally, overexpression of Kap1 failed to restore Pol η focus formation in Rad18-deficient cells after ETO treatment. Interestingly, we also found that Kap1 bound to Rad18 in a Pol η-dependent manner, and moreover, depletion of Kap1 led to a significant reduction in Rad18–Pol η association, indicating that Kap1 forms a ternary complex with Rad18 and Pol η to stabilize Rad18–Pol η association. Our findings demonstrate that Kap1 could regulate the role of Pol η in ETO-induced DSB repair via facilitating Rad18 recruitment and stabilizing Rad18–Pol η association.  相似文献   

6.
8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) is a biomarker of oxidative DNA damage and can be repaired by hOGG1 and APE1 via the base excision repair (BER) pathway. In this work, we studied coordinated BER of 8-oxodGuo by hOGG1 and APE1 in nucleosome core particles and found that histones transiently formed DNA-protein cross-links (DPCs) with active repair intermediates such as 3′-phospho-α,β-unsaturated aldehyde (PUA) and 5′-deoxyribosephosphate (dRP). The effects of histone participation could be beneficial or deleterious to the BER process, depending on the circumstances. In the absence of APE1, histones enhanced the AP lyase activity of hOGG1 by cross-linking with 3′-PUA. However, the formed histone-PUA DPCs hampered the subsequent repair process. In the presence of APE1, both the AP lyase activity of hOGG1 and the formation of histone-PUA DPCs were suppressed. In this case, histones could catalyse removal of the 5′-dRP by transiently cross-linking with the active intermediate. That is, histones promoted the repair by acting as 5′-dRP lyases. Our findings demonstrate that histones participate in multiple steps of 8-oxodGuo repair in nucleosome core particles, highlighting the diverse roles that histones may play during DNA repair in eukaryotic cells.  相似文献   

7.
X-ray repair cross-complementing protein-1 (XRCC1)-deficient cells are sensitive to DNA damaging agents and have delayed processing of DNA base lesions. In support of its role in base excision repair, it was found that XRCC1 forms a tight complex with DNA ligase IIIα and also interacts with DNA polymerase β (Pol β) and other base excision repair (BER) proteins. We have isolated wild-type XRCC1–DNA ligase IIIα heterodimer and mutated XRCC1–DNA ligase IIIα complex that does not interact with Pol β and tested their activities in BER reconstituted with human purified proteins. We find that a point mutation in the XRCC1 protein which disrupts functional interaction with Pol β, affected the ligation efficiency of the mutant XRCC1–DNA ligase IIIα heterodimer in reconstituted BER reactions. We also compared sensitivity to hydrogen peroxide between wild-type CHO-9 cells, XRCC1-deficient EM-C11 cells and EM-C11 cells transfected with empty plasmid vector or with plasmid vector carrying wild-type or mutant XRCC1 gene and find that the plasmid encoding XRCC1 protein, that does not interact with Pol β has reduced ability to rescue the hydrogen peroxide sensitivity of XRCC1- deficient cells. These data suggest an important role for the XRCC1–Pol β interaction for coordinating the efficiency of the BER process.  相似文献   

8.
Eukaryotic DNA replication requires the coordinated activity of the multi-subunit DNA polymerases: Pol α, Pol δ and Pol . The conserved catalytic and regulatory B subunits associate in a constitutive heterodimer that represents the functional core of all three replicative polymerases. Here, we combine X-ray crystallography and electron microscopy (EM) to describe subunit interaction and 3D architecture of heterodimeric yeast Pol α. The crystal structure of the C-terminal domain (CTD) of the catalytic subunit bound to the B subunit illustrates a conserved mechanism of accessory factor recruitment by replicative polymerases. The EM reconstructions of Pol α reveal a bilobal shape with separate catalytic and regulatory modules. Docking of the B–CTD complex in the EM reconstruction shows that the B subunit is tethered to the polymerase domain through a structured but flexible linker. Our combined findings provide a structural template for the common functional architecture of the three major replicative DNA polymerases.  相似文献   

9.
DNA polymerase mu (Pol µ) is a novel family X DNA polymerase that has been suggested to play a role in micro-homology mediated joining and repair of double strand breaks. We show here that human Pol µ is not able to discriminate against the 2′-OH group of the sugar moiety. It inserts rNTPs with an efficiency that is <10-fold lower than that of dNTPs, in sharp contrast with the >1000-fold discrimination characteristic of most DNA-dependent DNA polymerases. The lack of sugar discrimination by Pol µ is demonstrated by its ability to add rNTPs to both DNA and RNA primer strands, and to insert both deoxy- and ribonucleotides on growing nucleic acid chains. 3D-modelling of human Pol µ based on the available Pol β and TdT structural information allowed us to predict candidate residues involved in sugar discrimination. Thus, a single amino acid substitution in which Gly433 residue of Pol µ was mutated to the consensus tyrosine present in Pol β, produced a strong increase in the discrimination against ribonucleotides. The unusual capacity to insert both rNTPs and dNTPs will be discussed in the context of the predicted roles of Pol µ in DNA repair.  相似文献   

10.
In eukaryotic DNA replication, short RNA-DNA hybrid primers synthesized by primase-DNA polymerase α (Prim-Pol α) are needed to start DNA replication by the replicative DNA polymerases, Pol δ and Pol ϵ. The C terminus of the Pol α catalytic subunit (p180C) in complex with the B subunit (p70) regulates the RNA priming and DNA polymerizing activities of Prim-Pol α. It tethers Pol α and primase, facilitating RNA primer handover from primase to Pol α. To understand these regulatory mechanisms and to reveal the details of human Pol α organization, we determined the crystal structure of p70 in complex with p180C. The structured portion of p70 includes a phosphodiesterase (PDE) domain and an oligonucleotide/oligosaccharide binding (OB) domain. The N-terminal domain and the linker connecting it to the PDE domain are disordered in the reported crystal structure. The p180C adopts an elongated asymmetric saddle shape, with a three-helix bundle in the middle and zinc-binding modules (Zn1 and Zn2) on each side. The extensive p180C-p70 interactions involve 20 hydrogen bonds and a number of hydrophobic interactions resulting in an extended buried surface of 4080 Å2. Importantly, in the structure of the p180C-p70 complex with full-length p70, the residues from the N-terminal to the OB domain contribute to interactions with p180C. The comparative structural analysis revealed both the conserved features and the differences between the human and yeast Pol α complexes.  相似文献   

11.
In mammalian cells, repair of the most abundant endogenous premutagenic lesion in DNA, 7,8-dihydro-8-oxoguanine (8-oxoG), is initiated by the bifunctional DNA glycosylase OGG1. By using purified human proteins, we have reconstituted repair of 8-oxoG lesions in DNA in vitro on a plasmid DNA substrate containing a single 8-oxoG residue. It is shown that efficient and complete repair requires only hOGG1, the AP endonuclease HAP1, DNA polymerase (Pol) β and DNA ligase I. After glycosylase base removal, repair occurred through the AP lyase step of hOGG1 followed by removal of the 3′-terminal sugar phosphate by the 3′-diesterase activity of HAP1. Addition of PCNA had a slight stimulatory effect on repair. Fen1 or high concentrations of Pol β were required to induce strand displacement DNA synthesis at incised 8-oxoG in the absence of DNA ligase. Fen1 induced Pol β strand displacement DNA synthesis at HAP1-cleaved AP sites differently from that at gaps introduced by hOGG1/HAP1 at 8-oxoG sites. In the presence of DNA ligase I, the repair reaction at 8-oxoG was confined to 1 nt replacement, even in the presence of high levels of Pol β and Fen1. Thus, the assembly of all the core proteins for 8-oxoG repair catalyses one major pathway that involves single nucleotide repair patches.  相似文献   

12.
BLM, a RecQ family DNA helicase mutated in Bloom''s Syndrome, participates in homologous recombination at two stages: 5′ DNA end resection and double Holliday junction dissolution. BLM exists in a complex with Topo IIIα, RMI1 and RMI2. Herein, we address the role of Topo IIIα and RMI1-RMI2 in resection using a reconstituted system with purified human proteins. We show that Topo IIIα stimulates DNA unwinding by BLM in a manner that is potentiated by RMI1-RMI2, and that the processivity of resection is reliant on the Topo IIIα–RMI1-RMI2 complex. Topo IIIα localizes to the ends of double-strand breaks, thus implicating it in the recruitment of resection factors. While the single-stranded DNA binding protein RPA plays a major role in imposing the 5′ to 3′ polarity of resection, Topo IIIα also makes a contribution in this regard. Moreover, we show that DNA2 stimulates the helicase activity of BLM. Our results thus uncover a multifaceted role of the Topo IIIα–RMI1-RMI2 ensemble and of DNA2 in the DNA resection reaction.  相似文献   

13.
Biophysical and structural studies have defined many of the interactions that occur between individual components or subassemblies of the bacterial replicase, DNA polymerase III holoenzyme (Pol III HE). Here, we extended our knowledge of residues and interactions that are important for the first step of the replicase reaction: the ATP-dependent formation of an initiation complex between the Pol III HE and primed DNA. We exploited a genetic selection using a dominant negative variant of the polymerase catalytic subunit that can effectively compete with wild-type Pol III α and form initiation complexes, but cannot elongate. Suppression of the dominant negative phenotype was achieved by secondary mutations that were ineffective in initiation complex formation. The corresponding proteins were purified and characterized. One class of mutant mapped to the PHP domain of Pol III α, ablating interaction with the ϵ proofreading subunit and distorting the polymerase active site in the adjacent polymerase domain. Another class of mutation, found near the C terminus, interfered with τ binding. A third class mapped within the known β-binding domain, decreasing interaction with the β2 processivity factor. Surprisingly, mutations within the β binding domain also ablated interaction with τ, suggesting a larger τ binding site than previously recognized.  相似文献   

14.
The DnaX complex (DnaX3δδ′χψ) within the Escherichia coli DNA polymerase III holoenzyme serves to load the dimeric sliding clamp processivity factor, β2, onto DNA. The complex contains three DnaX subunits, which occur in two forms: τ and the shorter γ, produced by translational frameshifting. Ten forms of E. coli DnaX complex containing all possible combinations of wild-type or a Walker A motif K51E variant τ or γ have been reconstituted and rigorously purified. DnaX complexes containing three DnaX K51E subunits do not bind ATP. Comparison of their ability to support formation of initiation complexes, as measured by processive replication by the DNA polymerase III holoenzyme, indicates a minimal requirement for one ATP-binding DnaX subunit. DnaX complexes containing two mutant DnaX subunits support DNA synthesis at about two-thirds the level of their wild-type counterparts. β2 binding (determined functionally) is diminished 12–30-fold for DnaX complexes containing two K51E subunits, suggesting that multiple ATPs must be bound to place the DnaX complex into a conformation with maximal affinity for β2. DNA synthesis activity can be restored by increased concentrations of β2. In contrast, severe defects in ATP hydrolysis are observed upon introduction of a single K51E DnaX subunit. Thus, ATP binding, hydrolysis, and the ability to form initiation complexes are not tightly coupled. These results suggest that although ATP hydrolysis likely enhances β2 loading, it is not absolutely required in a mechanistic sense for formation of functional initiation complexes.  相似文献   

15.
A complex of the three (αεθ) core subunits and the β2 sliding clamp is responsible for DNA synthesis by Pol III, the Escherichia coli chromosomal DNA replicase. The 1.7 Å crystal structure of a complex between the PHP domain of α (polymerase) and the C-terminal segment of ε (proofreading exonuclease) subunits shows that ε is attached to α at a site far from the polymerase active site. Both α and ε contain clamp-binding motifs (CBMs) that interact simultaneously with β2 in the polymerization mode of DNA replication by Pol III. Strengthening of both CBMs enables isolation of stable αεθ:β2 complexes. Nuclear magnetic resonance experiments with reconstituted αεθ:β2 demonstrate retention of high mobility of a segment of 22 residues in the linker that connects the exonuclease domain of ε with its α-binding segment. In spite of this, small-angle X-ray scattering data show that the isolated complex with strengthened CBMs has a compact, but still flexible, structure. Photo-crosslinking with p-benzoyl-L-phenylalanine incorporated at different sites in the α-PHP domain confirm the conformational variability of the tether. Structural models of the αεθ:β2 replicase complex with primer-template DNA combine all available structural data.  相似文献   

16.
The strand displacement activity of DNA polymerase δ is strongly stimulated by its interaction with proliferating cell nuclear antigen (PCNA). However, inactivation of the 3′–5′ exonuclease activity is sufficient to allow the polymerase to carry out strand displacement even in the absence of PCNA. We have examined in vitro the basic biochemical properties that allow Pol δ-exo to carry out strand displacement synthesis and discovered that it is regulated by the 5′-flaps in the DNA strand to be displaced. Under conditions where Pol δ carries out strand displacement synthesis, the presence of long 5′-flaps or addition in trans of ssDNA suppress this activity. This suggests the presence of a secondary DNA binding site on the enzyme that is responsible for modulation of strand displacement activity. The inhibitory effect of a long 5′-flap can be suppressed by its interaction with single-stranded DNA binding proteins. However, this relief of flap-inhibition does not simply originate from binding of Replication Protein A to the flap and sequestering it. Interaction of Pol δ with PCNA eliminates flap-mediated inhibition of strand displacement synthesis by masking the secondary DNA site on the polymerase. These data suggest that in addition to enhancing the processivity of the polymerase PCNA is an allosteric modulator of other Pol δ activities.  相似文献   

17.
DNA polymerase (Pol) λ is a member of the Pol X family and possesses four different enzymatic activities, being DNA polymerase, terminal transferase, deoxyribose phosphate lyase and polynucleotide synthetase, all localized in its C-terminal region. On the basis of its biochemical properties, Pol λ has been implicated in various DNA repair pathways, such as abasic site translesion DNA synthesis, base excision repair and non-homologous end joining of double strand breaks. However, its role in vivo has not yet been elucidated. In addition, Pol λ has been shown to interact with the replication clamp proliferating cell nuclear antigen (PCNA) in vitro and in vivo. In this work, we searched by affinity chromatography for novel partners and we identified the cyclin-dependent kinase Cdk2 as novel partner of Pol λ. Pol λ is phosphorylated in vitro by several Cdk/cyclin complexes, including Cdk2/cyclin A, in its proline-serine-rich domain. While the polymerase activity of Pol λ was not affected by Cdk2/cyclin A phosphorylation, phosphorylation of Pol λ was decreased by its interaction with PCNA. Finally, Pol λ is also phosphorylated in vivo in human cells and this phosphorylation is modulated during the cell cycle.  相似文献   

18.
Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic. Here we report a stable ternary complex of Pol II, the replicative polymerase Pol III core complex and the dimeric processivity clamp, β. Single-molecule experiments reveal that the interactions of Pol II and Pol III with β allow for rapid exchange during DNA synthesis. As with another TLS polymerase, Pol IV, increasing concentrations of Pol II displace the Pol III core during DNA synthesis in a minimal reconstitution of primer extension. However, in contrast to Pol IV, Pol II is inefficient at disrupting rolling-circle synthesis by the fully reconstituted Pol III replisome. Together, these data suggest a β-mediated mechanism of exchange between Pol II and Pol III that occurs outside the replication fork.  相似文献   

19.
We have shown earlier that DNA polymerase β (Pol β) localizes to the synaptonemal complex (SC) during Prophase I of meiosis in mice. Pol β localizes to synapsed axes during zygonema and pachynema, and it associates with the ends of bivalents during late pachynema and diplonema. To test whether these localization patterns reflect a function for Pol β in recombination and/or synapsis, we used conditional gene targeting to delete the PolB gene from germ cells. We find that Pol β-deficient spermatocytes are defective in meiotic chromosome synapsis and undergo apoptosis during Prophase I. We also find that SPO11-dependent γH2AX persists on meiotic chromatin, indicating that Pol β is critical for the repair of SPO11-induced double-strand breaks (DSBs). Pol β-deficient spermatocytes yielded reduced steady-state levels of the SPO11-oligonucleotide complexes that are formed when SPO11 is removed from the ends of DSBs, and cytological experiments revealed that chromosome-associated foci of replication protein A (RPA), RAD51 and DMC1 are less abundant in Pol β-deficient spermatocyte nuclei. Localization of Pol β to meiotic chromosomes requires the formation of SPO11-dependent DSBs. Taken together, these findings strongly indicate that Pol β is required at a very early step in the processing of meiotic DSBs, at or before the removal of SPO11 from DSB ends and the generation of the 3′ single-stranded tails necessary for subsequent strand exchange. The chromosome synapsis defects and Prophase I apoptosis of Pol β-deficient spermatocytes are likely a direct consequence of these recombination defects.  相似文献   

20.
DNA polymerases (Pol) α, δ, and ϵ replicate the bulk of chromosomal DNA in eukaryotic cells, Pol ϵ being the main leading strand and Pol δ the lagging strand DNA polymerase. By applying chromatin immunoprecipitation (ChIP) and quantitative PCR we found that at G1/S arrest, all three DNA polymerases were enriched with DNA containing the early firing lamin B2 origin of replication and, 2 h after release from the block, with DNA containing the origin at the upstream promoter region of the MCM4 gene. Pol α, δ, and ϵ were released from these origins upon firing. All three DNA polymerases, Mcm3 and Cdc45, but not Orc2, still formed complexes in late S phase. Reciprocal ChIP of the three DNA polymerases revealed that at G1/S arrest and early in S phase, Pol α, δ, and ϵ were associated with the same nucleoprotein complexes, whereas in late S phase Pol ϵ and Pol α/δ were largely associated with distinct complexes. At G1/S arrest, the replicative DNA polymerases were associated with lamins, but in late S phase only Pol ϵ, not Pol α/δ, remained associated with lamins. Consistently, Pol ϵ, but not Pol δ, was found in nuclear matrix fraction throughout the cell cycle. Therefore, Pol ϵ and Pol α/δ seem to pursue their functions at least in part independently in late S phase, either by physical uncoupling of lagging strand maturation from the fork progression, or by recruitment of Pol δ, but not Pol ϵ, to post-replicative processes such as translesion synthesis or post-replicative repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号