首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 910 毫秒
1.
Tian M  Bai C  Lin Q  Lin H  Liu M  Ding F  Wang HR 《FEBS letters》2011,585(14):2199-2204
Smurf1-mediated RhoA ubiquitination and degradation plays key roles in regulation of cell polarity and protrusive activity. However, how Smurf1 recognizes RhoA is still not clear. Here we report that the C2 domain of Smurf1 is necessary and sufficient for binding RhoA, and therefore is crucial for targeting RhoA for ubiquitination. In contrast, the C2 domain is dispensable for Smurf1-mediated ubiquitination of Smad1. Consistent with its biochemical specificity, the C2 domain is essential for Smurf1-regulated protrusion formation but not BMP signaling. Therefore, our study reveals the mechanism of the C2 domain of Smurf1 in substrate selection.  相似文献   

2.
Rho GTPases participate in various cellular processes, including normal and tumor cell migration. It has been reported that RhoA is targeted for degradation at the leading edge of migrating cells by the E3 ubiquitin ligase Smurf1, and that this is required for the formation of protrusions. We report that Smurf1-dependent RhoA degradation in tumor cells results in the down-regulation of Rho kinase (ROCK) activity and myosin light chain 2 (MLC2) phosphorylation at the cell periphery. The localized inhibition of contractile forces is necessary for the formation of lamellipodia and for tumor cell motility in 2D tissue culture assays. In 3D invasion assays, and in in vivo tumor cell migration, the inhibition of Smurf1 induces a mesenchymal-amoeboid-like transition that is associated with a more invasive phenotype. Our results suggest that Smurf1 is a pivotal regulator of tumor cell movement through its regulation of RhoA signaling.  相似文献   

3.
Ubiquitin-dependent protein degradation is involved in various biological processes, and accumulating evidence suggests that E3 ubiquitin ligases play important roles in cancer development. Smad ubiquitin regulatory factor 1 (Smurf1) and Smurf2 are E3 ubiquitin ligases, which suppress transforming growth factor-beta (TGF-beta) family signaling through degradation of Smads and receptors for TGF-beta and bone morphogenetic proteins. In addition, Smurf1 has been reported to promote RhoA ubiquitination and degradation and regulate cell motility, suggesting the involvement of Smurf1 in cancer progression. However, the regulation and biological function of Smurf1 and Smurf2 in cancer development remain to be elucidated. In the present study, we show the post-translational regulation of Smurf1 by Smurf2 and the functional differences between Smurf1 and Smurf2 in the progression of breast cancer cells. Smurf2 interacted with Smurf1 and induced its ubiquitination and degradation, whereas Smurf1 failed to induce degradation of Smurf2. Knockdown of Smurf2 in human breast cancer MDA-MB-231 cells resulted in increases in the levels of Smurf1 protein, and enhancement of cell migration in vitro and bone metastasis in vivo. Of note, knockdown of Smurf1, but not of Smurf2, enhanced TGF-beta signaling in MDA-MB-231 cells, suggesting that increased an protein level of Smurf1 offsets the effect of Smurf2 knockdown on TGF-beta signaling. These results indicate that two related E3 ubiquitin ligases, Smurf1 and Smurf2, act in the same direction in TGF-beta family signaling but play opposite roles in cell migration.  相似文献   

4.
The HECT-type E3 Smad ubiquitination regulation factor 1 (Smurf1) functions in regulation of cell polarity and bone homeostasis by targeting Smads, Runx2, RhoA and MEKK2 for ubiquitination and degradation. In a yeast two-hybrid screening, we identified TNF receptor-associated factor 4 (TRAF4) as a candidate substrate and was further validated. The PY motifs of TRAF4 mediated the interaction with the second WW domain of Smurf1. Overexpression of Smurf1 reduced the protein levels of TRAF4 dependent of its E3 activity and the proteasome. Further, we showed that all six members of TRAF family could be ubiquitinated by Smurf1. Consequently, Smurf1 interfered with the functions of TRAFs in NF-κB signaling under stimulation or not. These results suggested a new role of Smurf1 in inflammation and immunity through controlling the degradation of TRAFs.  相似文献   

5.
The Rho family of small GTPases has been implicated in the reorganization of actin cytoskeleton and subsequent morphological changes in various cells. Rnd2 is a member of the Rnd subfamily, comprising Rnd1, Rnd2, and Rnd3. In contrast to Rnd1 and Rnd3, displaying an antagonistic action for RhoA signaling, signaling pathways of Rnd2 are not well known. Here we have performed a yeast two-hybrid screen using Rnd2 as bait and identified a novel Rnd2 effector protein, predominantly expressed in neurons, including cortical and hippocampal neurons. We named it Pragmin (pragma of Rnd2). In in vivo and in vitro binding assays, Pragmin specifically binds to Rnd2 among the Rho family GTPases in a GTP-dependent manner. Rnd2-bound Pragmin significantly stimulates RhoA activity and induces cell contraction through RhoA and the Rho-kinase pathway in HeLa cells. In PC12 cells, expressing Pragmin inhibits nerve growth factor-induced neurite outgrowth in response to Rnd2, and knock-down of Pragmin by Pragmin-specific small interfering RNA enhances neurite elongation. Therefore, Rnd2 regulates neurite outgrowth by functioning as the RhoA activator through Pragmin, in contrast to Rnd1 and Rnd3 inhibiting RhoA signaling.  相似文献   

6.
Smurf1, a member of HECT-type E3 ubiquitin ligases, regulates cell polarity and protrusive activity by inducing ubiquitination and subsequent proteasomal degradation of the small GTPase RhoA. We report here that hPEM-2, a guanine nucleotide exchange factor for the small GTPase Cdc42, is a novel target of Smurf1. Pulse-chase labeling and a ubiquitination experiment using MG132, a proteasomal inhibitor, indicate that Smurf1 induces proteasomal degradation of hPEM-2 in cells. GST pull-down assays with heterologously expressed firefly luciferase-fusion proteins that include partial sequences of hPEM-2 reveal that part of the PH domain (residues 318-343) of hPEM-2 is sufficient for binding to Smurf1. In contrast, the hPEM-2 binding domain in Smurf1 was mapped to the C2 domain. Although it has been reported that the binding activities of some C2 domains to target proteins are regulated by Ca2+, Smurf1 interacts with hPEM-2 in a Ca2+-independent manner. Our discovery that hPEM-2 is, in addition to RhoA, a target protein of Smurf1 suggests that Smurf1 plays a crucial role in the spatiotemporal regulation of Rho GTPase family members.  相似文献   

7.
Phospholipase Cδ3 (PLCδ3) is a key enzyme regulating phosphoinositide metabolism; however, its physiological function remains unknown. Because PLCδ3 is highly enriched in the cerebellum and cerebral cortex, we examined the role of PLCδ3 in neuronal migration and outgrowth. PLCδ3 knockdown (KD) inhibits neurite formation of cerebellar granule cells, and application of PLCδ3KD using in utero electroporation in the developing brain results in the retardation of the radial migration of neurons in the cerebral cortex. In addition, PLCδ3KD inhibits axon and dendrite outgrowth in primary cortical neurons. PLCδ3KD also suppresses neurite formation of Neuro2a neuroblastoma cells induced by serum withdrawal or treatment with retinoic acid. This inhibition is released by the reintroduction of wild-type PLCδ3. Interestingly, the H393A mutant lacking phosphatidylinositol 4,5-bisphosphate hydrolyzing activity generates supernumerary protrusions, and a constitutively active mutant promotes extensive neurite outgrowth, indicating that PLC activity is important for normal neurite outgrowth. The introduction of dominant negative RhoA (RhoA-DN) or treatment with Y-27632, a Rho kinase-specific inhibitor, rescues the neurite extension in PLCδ3KD Neuro2a cells. Similar effects were also detected in primary cortical neurons. Furthermore, the RhoA expression level was significantly decreased by serum withdrawal or retinoic acid in control cells, although this decrease was not observed in PLCδ3KD cells. We also found that exogenous expression of PLCδ3 down-regulated RhoA protein, and constitutively active PLCδ3 promotes the RhoA down-regulation more significantly than PLCδ3 upon differentiation. These results indicate that PLCδ3 negatively regulates RhoA expression, inhibits RhoA/Rho kinase signaling, and thereby promotes neurite extension.  相似文献   

8.
Netrins are chemotropic guidance cues that attract or repel growing axons during development. DCC (deleted in colorectal cancer), a transmembrane protein that is a receptor for netrin-1, is implicated in mediating both responses. However, the mechanism by which this is achieved remains unclear. Here we report that Rho GTPases are required for embryonic spinal commissural axon outgrowth induced by netrin-1. Using N1E-115 neuroblastoma cells, we found that both Rac1 and Cdc42 activities are required for DCC-induced neurite outgrowth. In contrast, down-regulation of RhoA and its effector Rho kinase stimulates the ability of DCC to induce neurite outgrowth. In Swiss 3T3 fibroblasts, DCC was found to trigger actin reorganization through activation of Rac1 but not Cdc42 or RhoA. We detected that stimulation of DCC receptors with netrin-1 resulted in a 4-fold increase in Rac1 activation. These results implicate the small GTPases Rac1, Cdc42, and RhoA as essential components that participate in signaling the response of axons to netrin-1 during neural development.  相似文献   

9.
Rho-GTPases control a wide range of physiological processes by regulating actin cytoskeleton dynamics. Numerous studies on neuronal cell lines have established that Rac, Cdc42, and RhoG activate neurite extension, while RhoA mediates neurite retraction. Guanine nucleotide exchange factors (GEFs) activate Rho-GTPases by accelerating GDP/GTP exchange. Trio displays two Rho-GEF domains, GEFD1, activating the Rac pathway via RhoG, and GEFD2, acting on RhoA, and contains numerous signaling motifs whose contribution to Trio function has not yet been investigated. Genetic analyses in Drosophila and in Caenorhabditis elegans indicate that Trio is involved in axon guidance and cell motility via a GEFD1-dependent process, suggesting that the activity of its Rho-GEFs is strictly regulated. Here, we show that human Trio induces neurite outgrowth in PC12 cells in a GEFD1-dependent manner. Interestingly, the spectrin repeats and the SH3-1 domain of Trio are essential for GEFD1-mediated neurite outgrowth, revealing an unexpected role for these motifs in Trio function. Moreover, we demonstrate that Trio-induced neurite outgrowth is mediated by the GEFD1-dependent activation of RhoG, previously shown to be part of the NGF (nerve growth factor) pathway. The expression of different Trio mutants interferes with NGF-induced neurite outgrowth, suggesting that Trio may be an upstream regulator of RhoG in this pathway. In addition, we show that Trio protein accumulates under NGF stimulation. Thus, Trio is the first identified Rho-GEF involved in the NGF-differentiation signaling.  相似文献   

10.
The Rho family of small GTPases (RhoA, Rac1 and Cdc42) controls signal-transduction pathways that influence many aspects of cell behaviour, including cytoskeletal dynamics. At the leading edge, Rac1 and Cdc42 promote cell motility through the formation of lamellipodia and filopodia, respectively. On the contrary, RhoA promotes the formation of contractile actin-myosin-containing stress fibres in the cell body and at the rear. Here, we identify synaptopodin, an actin-associated protein, as a novel regulator of RhoA signalling and cell migration in kidney podocytes. We show that synaptopodin induces stress fibres by competitive blocking of Smurf1-mediated ubiquitination of RhoA, thereby preventing the targeting of RhoA for proteasomal degradation. Gene silencing of synaptopodin in kidney podocytes causes the loss of stress fibres and the formation of aberrant non-polarized filopodia and impairment of cell migration. Together, these data show that synaptopodin is essential for the integrity of the podocyte actin cytoskeleton and for the regulation of podocyte cell migration.  相似文献   

11.
We have shown that protein kinase C (PKC) epsilon, independently of its kinase activity, via its regulatory domain (RD), induces neurites in neuroblastoma cells. This study was designed to evaluate whether the same effect is obtained in nonmalignant neural cells and to dissect mechanisms mediating the effect. Overexpression of PKCepsilon resulted in neurite induction in two immortalised neural cell lines (HiB5 and RN33B). Phorbol ester potentiated neurite outgrowth from PKCepsilon-overexpressing cells and led to neurite induction in cells overexpressing PKCdelta. The effects were potentiated by blocking the PKC catalytic activity with GF109203X. Furthermore, kinase-inactive PKCdelta induced more neurites than the wild-type isoform. The isolated regulatory domains of novel PKC isoforms also induced neurites. Experiments with PKCdelta-overexpressing HiB5 cells demonstrated that phorbol ester, even in the presence of a PKC inhibitor, led to a decrease in stress fibres, indicating an inactivation of RhoA. Active RhoA blocked PKC-induced neurite outgrowth, and inhibition of the RhoA effector ROCK led to neurite outgrowth. This demonstrates that neurite induction by the regulatory domain of PKCdelta can be counteracted by PKCdelta kinase activity, that PKC-induced neurite outgrowth is accompanied by stress fibre dismantling indicating an inactivation of RhoA, and that the RhoA pathway suppresses PKC-mediated neurite outgrowth.  相似文献   

12.
Mammalian Diaphanous (Dia)-related formins initiate the assembly of filamentous actin downstream of Rho GTPases to regulate cellular processes such as cytokinesis, cell polarity, cell motility and adhesion. In this work, we show that Neurochondrin (NC) is a novel Dia1 interacting protein. NC specifically binds to the formin homology 3 (FH3), but not to the FH1 or FH2 domain of Dia1. Both proteins show a partial co-localization in dissociated primary rat hippocampal neurons. Ectopic expression of both proteins induced neurite outgrowth in Neuro2A cells. Using a series of deletion mutants of NC we could show that the first 100 amino acids were responsible for its effect on neurite outgrowth, whereas the C-terminal part of NC had no neurite outgrowth promoting activity. Moreover, co-expression of the C terminus of NC with Dia1ΔDAD resulted in a dramatic reduction of Dia1-induced neurite outgrowth. On the basis of actin fractionation assays, SRF-activity assays as well as microtubule stabilization assays, we could demonstrate that the C terminus of NC does not influence the actin polymerizing activity of Dia1, indicating a more specific function of NC in the modulation of Dia1 activity.  相似文献   

13.
14.
Rapid neurite remodeling is fundamental to nervous system development and plasticity and is regulated by Rho family GTPases that signal f-actin reorganization in response to various receptor ligands. Neuronal N1E-115 cells show dramatic neurite retraction and cell rounding in response to serum factors such as lysophosphatidic acid (LPA), sphingosine-1 phosphate (S1P), and thrombin, due to activation of the RhoA-Rho kinase pathway. Type I phosphatidylinositol 4-phosphate 5-kinases (PIPkinase), which regulate cellular levels of PtdIns(4,5)P(2), have been suggested as targets of the RhoA-Rho kinase pathway able to modulate cytoskeletal dynamics. Here, we show that the introduction of Type Ialpha PIPkinase into N1E-115 cells leads to cell rounding and complete inhibition of neurite outgrowth, perhaps through the dissociation of vinculin and the destabilization of focal adhesions. This occurs independently of RhoA, Rho kinase, and the activation of actomyosin contraction. Strikingly, expression of kinase-dead PIPkinase promotes the outgrowth of neurites, which fail to retract in response to LPA, S1P, thrombin, or active RhoA. Moreover, neurite retraction in response to an endogenous neuronal guidance cue, Semaphorin3A, was also dependent on Type Ialpha PIPkinase. Our results suggest an essential role for a Type I PIPkinase during neurite retraction in response to a number of diverse stimuli.  相似文献   

15.
We previously demonstrated that phospholipase D (PLD) expression and PLD activity are upregulated during neuronal differentiation. In the present study, employing neural stem cells from the brain cortex of E14 rat embryos, we investigated the role of Rho family GTPases in PLD activation and in neurite outgrowth of neural stem cells during differentiation. As neuronal differentiation progressed, the expression levels of Cdc42 and RhoA increased. Furthermore, Cdc42 and PLD1 were mainly localized in neurite, whereas RhoA was localized in cytosol. Co-immunoprecipitation revealed that Cdc42 was bound to PLD1 during differentiation, whereas RhoA was associated with PLD1 during both proliferation and differentiation. These results indicate that the association between Cdc42 and PLD1 is related to neuronal differentiation. To examine the effect of Cdc42 on PLD activation and neurite outgrowth, we transfected dominant negative Cdc42 (Cdc42N17) and constitutively active Cdc42 (Cdc42V12) into neural stem cells, respectively. Overexpression of Cdc42N17 decreased both PLD activity and neurite outgrowth, whereas co-transfection with Cdc42N17 and PLD1 restored them. On the other hand, Cdc42V12 increased both PLD activity and neurite outgrowth, suggesting that active state of Cdc42 is important in upregulation of PLD activity which is responsible for the increase of neurite outgrowth.  相似文献   

16.
The formation and directional guidance of neurites involves dynamic regulation of Rho family GTPases. Rac and Cdc42 promote neurite outgrowth, whereas Rho activation causes neurite retraction. Here we describe a role for collapsin response mediator protein (Crmp-2), a neuronal protein implicated in axonal outgrowth and a component of the semaphorin 3A pathway, in switching GTPase signaling when expressed in combination with either dominant active Rac or Rho. In neuroblastoma N1E-115 cells, co-expression of Crmp-2 with dominant active RhoA V14 induced Rac morphology, cell spreading and ruffling (and the formation of neurites). Conversely, co-expression of Crmp-2 with dominant active Rac1 V12 inhibited Rac morphology, and in cells already expressing Rac1 V12, Crmp-2 caused localized peripheral collapse, involving Rho (and Cdc42) activation. Rho kinase was a pivotal regulator of Crmp-2; Crmp-2 phosphorylation was required for Crmp-2/Rac1 V12 inhibition, but not Crmp-2/RhoA V14 induction, of Rac morphology. Thus Crmp-2, regulated by Rho kinase, promotes outgrowth and collapse in response to active Rho and Rac, respectively, reversing their usual morphological effects and providing a mechanism for dynamic modulation of growth cone guidance.  相似文献   

17.
Tropomyosins are widespread actin-binding proteins that influence numerous cellular functions including actin dynamics, cell migration, tumour suppression, and Drosophila oocyte development. Synaptopodin is another actin-binding protein with a more restricted expression pattern in highly dynamic cell compartments such as kidney podocyte foot processes, where it promotes RhoA signalling by blocking the Smurf1-mediated ubiquitination of RhoA. Here, we show that synaptopodin has a shorter half-life but shares functional properties with the highly stable tropomyosin. Transgenic expression of synaptopodin restores oskar mRNA localization in Drosophila oocytes mutant for TmII, thereby rescuing germline differentiation and fertility. Synaptopodin restores stress fibres in tropomyosin-deficient human MDA-MB 231 breast cancer cells and TPMα-depleted fibroblasts. Gene silencing of TPMα but not TPMβ causes loss of stress fibres by promoting Smurf1-mediated ubiquitination and proteasomal degradation of RhoA. Functionally, overexpression of synaptopodin or RhoA(K6,7R) significantly reduces MDA-MB 231 cell migration. Our findings elucidate RhoA stabilization by structurally unrelated actin-binding proteins as a conserved mechanism for regulation of stress fibre dynamics and cell motility in a cell type-specific fashion.  相似文献   

18.
The development of a polarised morphology with multiple dendrites and a single axon is an essential step in the differentiation of neurons. The establishment of neuronal polarity is directed by the sequential activity of the GTPases Rap1B and Cdc42. Rap1B is initially present in all neurites of unpolarised neurons, but becomes restricted to the tip of a single process during the establishment of neuronal polarity where it specifies axonal identity. Here, we show that the ubiquitin ligases Smad ubiquitination regulatory factor-1 (Smurf1) and Smurf2 are essential for neurite growth and neuronal polarity, respectively, and regulate the GTPases Rho and Rap1B in hippocampal neurons. Smurf2 is required for the restriction of Rap1B to a single neurite. Smurf2 ubiquitinates inactive Rap1B and initiates its degradation through the ubiquitin/proteasome pathway (UPS). Degradation of Rap1B restricts it to a single neurite and thereby ensures that neurons extend a single axon.  相似文献   

19.
Guo X  Shen S  Song S  He S  Cui Y  Xing G  Wang J  Yin Y  Fan L  He F  Zhang L 《The Journal of biological chemistry》2011,286(20):18037-18047
The HECT-type ubiquitin ligase (E3) Smad ubiquitination regulatory factor 1 (Smurf1) targets various substrates, including Smad1/5, RhoA, Prickle 1, MEKK2, and JunB for degradation and thereby regulates adult bone formation and embryonic development. Here, we identify the endoplasmic reticulum (ER)-localized Wolfram syndrome protein (WFS1) as a specific degradation substrate of Smurf1. Mutations in the WFS1 gene cause Wolfram syndrome, an autosomal recessive disorder characterized by diabetes mellitus and optic atrophy. WFS1 negatively regulates the ER stress response, and WFS1 deficiency in mice increases ER stress and triggers apoptosis. We show that Smurf1 interacts with WFS1 at the ER and promotes the ubiquitination and proteasomal degradation of WFS1. A C-terminal luminal region in WFS1, including residues 667-700, is involved in this degradation. Wild-type WFS1 as well as a subset of WFS1 mutants that include this degron region are susceptible to Smurf1-mediated degradation. By contrast, pathophysiological deletion mutants of WFS1 lacking the degron, such as W648X, Y660X, and Q667X, are resistant to degradation by Smurf1. Depletion of Smurf1 by RNA interference results in increased WFS1 and decreased ATF6α levels. Furthermore, we show that ER stress induces Smurf1 degradation and WFS1 up-regulation. These findings reveal for the first time that Smurf1 targets an ER-localized protein for degradation and that Smurf1 is regulated by ER stress.  相似文献   

20.
Dynamic interactions between the actin cytoskeleton and specific proteins are crucial for changes in cell shape and motility. Here we describe a novel protein MSAP (MIR-interacting saposin-like protein) that is a positive regulator of neurite outgrowth. MSAP is expressed in different tissues, including brain, and has an apparent molecular weight of 21 kDa. MSAP interacts with the ezrin-radixin-moesin (ERM)-like myosin regulatory light chain-interacting protein (MIR), and the two proteins are co-localized in cell lines and in primary neurons. Overexpression of MSAP enhances neurite out-growth in neuroblastoma and PC12 cells, whereas down-regulation of MSAP using RNA silencing led to inhibition of neurite formation. The stimulation of neurite outgrowth by MSAP was abrogated by the overexpression of MIR, which induced a decrease in the levels of myosin regulatory light chain (MRLC). This reduction in MRLC by MIR was inhibited by blocking the activity of proteasome and by overexpression of MSAP, suggesting an effect on protein stability. Evidence was obtained that MIR decreases MRLC by inducing its ubiquitination. The results show that the levels of MRLC are controlled by MIR via ubiquitination and that the effect of MIR on MRLC is counteracted in the presence of MSAP. MSAP can stabilize MRLC and thus bring about an increase in neurite outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号