共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinetically controlled synthesis of ampicillin with immobilized penicillin acylase in the presence of organic cosolvents 总被引:3,自引:0,他引:3
Penicillin acylase (PA) is used in the industrial production of 6-amino penicillanic acid (6-APA). However, by proper control of reaction medium, the enzyme can be used in the reverse synthesis of β-lactam antibiotics from the corresponding β-lactam nuclei and suitable acyl donors. Under thermodynamically controlled strategy, the use of organic cosolvents can favor synthesis over hydrolysis by lowering water activity and favoring the non-ionic reactive species. Under kinetically controlled strategy using activated acyl donors, organic solvents can favor synthesis by depressing hydrolytic reactions. Results are presented on the synthesis of ampicillin from phenylglycine methyl ester and 6-APA with immobilized Escherichia coli PA in the presence of organic cosolvents. Several solvents were tested in terms of enzyme stability and solubility of substrates. Ethylene glycol, glycerol, 1–2 propanediol and 1–3 butanediol were selected accordingly and ampicillin synthesis was performed in all of them. Best results in terms of yield and productivity were obtained with ethylene glycol, with which further studies were conducted. Variables studied were enzyme to limiting substrate ratio, acyl acceptor to acyl donor ratio, organic solvent concentration, pH and temperature. Experimental design based on a two-level fractional factorial design was conducted. pH was determined as the most sensitive variable and was further optimized. The best conditions for ampicillin synthesis in terms of productivity, within the range of values studied for those variables, were pH 7.4, 28°C, 36 US PA/mmol 6-APA, 3 mol PGME/mol 6-APA and 45 % (v/v) ethylene glycol concentration. Productivity was 7.66 mM ampicillin/h, which corresponds to a specific productivity of 7.02 μmol ampicillin/h US at 55 % yield. Productivity was lower than in buffer but product yield was higher because of the much lower relative hydrolysis rates. 相似文献
2.
Immobilized penicillin acylase preparations have much higher activities per unit volume than immobilized cell preparations. Many parameters of the deacylation reaction are dependent on pH and both reactant and one of the products, 6-aminopenicillanic acid, are acid and alkali labile. Acid is produced as result of the deacylation reaction and must be neutralised. The influence of these pH effects on the design of the catalyst and the reactor is discussed. 相似文献
3.
Hydrolysis of penicillin G by combination of immobilized penicillin acylase and electrodialysis 总被引:1,自引:0,他引:1
Phenylacetic acid, as inhibitory product, was formed from a hydrolysis of penicillin G by immobilized penicillin acylase. In this article, electrodialysis was applied to remove phenylacetic acid continuously from the reaction mixture and to enhance an efficiency of the reaction. When 268 and 537 mM of penicillin G solution were used as the substrate, the concentration of phenylacetic acid in the reaction mixture could be maintained at less than 81 and 126 mM, respectively, and eventually, 86% and 88% of phenylacetic acid produced were removed from the reaction mixture at the end of the hydrolysis, respectively. Times required to reach 96% and 94.8% conversion from 268 and 537 mM of initial penicillin G could be reduced to 65% and 64% respectively, by means of electrodialysis; while 3.0% and 4.3% of initial penicillin G of 268 and 537 mM were permeated out of the reaction chamber during the hydrolysis, respectively. However, a loss of penicillin G by permeation could be reduced from 4.3% to 3.4% by a repeated addition of penicillin G. 相似文献
4.
Enzymatic syntheses of cefaclor by immobilized penicillin acylase under kinetic control were carried out. According to the initial reaction rate ratio of synthesis to hydrolysis (Vs/Vh), penicillin acylase from Alcaligenes faecalis was chosen as the suitable catalyst for the synthesis of cefaclor. The reaction conditions, such as temperature, pH, and substrate concentration were investigated based on their Vs/Vh values. In the process of preparing cefaclor, in situ product removal (ISPR) and acyl donor feeding were used to achieve high yield. At the optimal conditions, the yield of cefaclor was 90%. In addition, the product were separated and purified, the total yield of cefaclor was 61%. 相似文献
5.
M O Mandel A I K?stner E H Sijmer G I Kleiner L M Elizarovskaya V J Stamer 《Prikladnaia biokhimiia i mikrobiologiia》1975,11(2):219-225
An active insoluble preparation of immobilized benzyl penicillin acylase (IBA) EC 3.5.1.11 has been obtained by its entrapping into polyacrylamide gel lattice. Due to immobilization the preparation maintains up to 87% of its initial activity. The kinetics of IBA at low substrate concentrations obeys the Michaelis-Menten law; however, the apparent KM value decreases and the temperature optimum elevates. The inhibition by the reaction products--6-aminopenicillanic acid and phenylacetic acid--has been found to be 4.3 mM. The resultant IBA preparation proves to be suitable for hydrolysis of 5% benzyl penicillin solutions. 相似文献
6.
The usefulness of Lilly's kinetic equation to describe penicillin G hydrolysis performed by immobilized penicillin acylase onto the acrylic carrier has been shown. Based on the experimental results characteristic kinetic constants have been estimated. The effect of noncompetitive inhibition of 6-amino penicillanic acid has not been found. Five components of reaction resistance have been defined. These components were also estimated for the reaction of the native enzyme as well as the Boehringer preparation.List of Symbols
C
E g/m3
enzyme concentration
-
C
P,C
Q mol/m3
product concentrations
-
C
S mol/m3
substrate concentration
-
C
SO mol/m3
initial substrate concentration
-
K
A mol/m3
constant which defines the affinity of a substrate to the enzyme
-
K
iS mol/m3
substrate inhibitory constant
-
K
iP mol/m3
PhAA inhibitory constant
-
K
iQ mol/m3
6-APA inhibitory constant
-
k
3 mol/g/min
constant rate of dissociation of the active complex
-
R(1)
concentrational component of reaction resistance
-
R(2)
resistance component derived from substrate affinity
-
R(3)
resistance component due to the inhibition of the enzyme by substrate
-
R(4)
resistance component due to the inhibition of the enzyme by PhAA
-
R(5)
resistance component due to inhibition of the enzyme by 6-APA
-
r = dCs/dt mol/m3 min
rate of reaction
-
t
min reaction time
- (i)
relative resistance of reaction 相似文献
7.
Continuous penicillin G hydrolysis in an electro-membrane reactor with immobilized penicillin G acylase 总被引:1,自引:0,他引:1
Penicillin G (2%, w/v in phosphate buffer, pH 8) was hydrolysed in a flow-through, miniature electro-membrane reactor with the penicillin G acylase immobilized in 5% (w/v) polyacrylamide (diam. 10 mm, thickness 2.6 mm, enzyme activity 24 U ml–1). The conversion of penicillin G increased from 0.15 to almost 0.5 when the electric current applied to the reactor was changed from –600 to +600 A/m2 with a substrate residency of 1 h.
Symbols and abbreviations
c
j
p & concentration of component j in product stream (M) c
j
s & concentration of component j in substrate stream (M) c
s
o & substrate concentration at reactor inlet (M) C
j
p=c
j
p/c
S
0 & scaled concentration of component j in product stream C
j
s=c
j
s/c
S
0 & scaled concentration of component j in substrate stream i & electric current density (A/m2) j & reaction component, j P, Q or S P & main reaction product (6-aminopenicillanic acid) PGA & penicillin G acylase Q & side reaction product (phenylacetic acid) S & substrate (penicillin G) Y
s=C
P
s+C
P
p & substrate conversion & mean residence time of substrate and product streams in reactor (h) =C
Q
s+C
Q
p+C
S
s+C
S
s & check-sum of scaled concentrations =C
P
p/(C
P
s+C
P
p) & separation factor of 6-aminopenicillanic acid (0 1) 相似文献
8.
The usefulness of penicillin acylase immobilized onto butyl acrylate — ethyl glycol dimethacrylate (called in this paper acrylic carrier) in penicillin G hydrolysis performed in a stirred tank reactor is shown. The enzyme-acrylic carrier preparation does not deteriorate its own properties in the mixing condition of slurry reactor. The experiments were carried out in a batch and a continuous stirred tank reactor as well as continuous stirred tank reactors in series. It was found to be a satisfactory agreement between experimental and predicted results. It also indicated the optimal substrate concentration range which provides the most effective enzyme operation. A superiority of the three reactors in series over the batch reactor is shown.List of Symbols CE g/m3
equivalent enzyme concentration
- CSO mol/m3
initial penicillin G concentration
- KA mol/m3
substrate affinity constant
- KiS mol/m3
substrate inhibitory constant
- KiP mol/m3
PhAA inhibitory constant
- KiQ mol/m3
6-APA inhibitory constant
- k3 mol/g min
constant rate of dissotiation of the active complex
- r mol/m3
rate of reaction
- t min.
reaction time
- tj min.
maintenance time
-
degree of conversion
- B, F
dimensionless time
- min.
residence time
- PA
penicillin acylase
- PG
penicillin G
- PhAA
phenylacetic acid
- 6-APA
6-aminopenicillanic acid 相似文献
9.
Liu YC ChangChien CC Suen SY 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2003,794(1):67-76
The immobilized metal affinity membrane (IMAM) with modified regeneration cellulose was employed for purification of penicillin G acylase (PGA). For studying PGA adsorption capacity on the IMAM, factors such as chelator surface density, chelating metal, loading temperature, pH, NaCl concentration and elution solutions were investigated. The optimal loading conditions were found at 4 degrees C, 0.5 M NaCl, 32.04 micromol Cu(2+) per disk with 10 mM sodium phosphate buffer, pH 8.5, whereas elution conditions were: 1 M NH(4)Cl with 10 mM sodium phosphate buffer, pH 6.8. By applying these chromatographic conditions to the flow experiments in a cartridge, a 9.11-fold purification in specific activity with 90.25% recovery for PGA purification was obtained. Meanwhile, more than eight-times reusability of the membrane was achieved with the EDTA regeneration solutions. 相似文献
10.
Yasushi Morikawa Isao Karube Shuichi Suzuki 《Applied microbiology and biotechnology》1980,10(1-2):23-30
Summary Whole cells of Kluyvera citrophila were immobilized in polyacrylamide gel. The penicillin acylase activity of immobilized whole cells was 60%–70% of native cells. When the immobilized cells were continuously cultivated for 40 h in an aerated fermentor containing peptone medium and were treated with alkali in order to remove -lactamase activity, the immobilized cells produced ampicillin up to 4.4 times faster than noncultivated cells.Ampicillin production was investigated in a column system using these cultivated immobilized whole cells. The cultivated immobilized cells showed excellent performance in continuous ampicillin production. 相似文献
11.
Molecular modeling has revealed intimate details of the mechanism of binding of natural substrate, penicillin G (PG), in the penicillin acylase active center and solved questions raised by analysis of available X-ray structures, mimicking Michaelis complex, which substantially differ in the binding pattern of the PG leaving group. Three MD trajectories were launched, starting from PDB complexes of the inactive mutant enzyme with PG (1FXV) and native penicillin acylase with sluggishly hydrolyzed substrate analog penicillin G sulfoxide (1GM9), or from the complex obtained by PG docking. All trajectories converged to a similar PG binding mode, which represented the near-to-attack conformation, consistent with chemical criteria of how reactive Michaelis complex should look. Simulated dynamic structure of the enzyme-substrate complex differed significantly from 1FXV, resembling rather 1GM9; however, additional contacts with residues bG385, bS386, and bN388 have been found, which were missing in X-ray structures. Combination of molecular docking and molecular dynamics also clarified the nature of extremely effective phenol binding in the hydrophobic pocket of penicillin acylase, which lacked proper explanation from crystallographic experiments. Alternative binding modes of phenol were probed, and corresponding trajectories converged to a single binding pattern characterized by a hydrogen bond between the phenol hydroxyl and the main chain oxygen of bS67, which was not evident from the crystal structure. Observation of the trajectory, in which phenol moved from its steady bound to pre-dissociation state, mapped the consequence of molecular events governing the conformational transitions in a coil region a143-a146 coupled to substrate binding and release of the reaction products. The current investigation provided information on dynamics of the conformational transitions accompanying substrate binding and significance of poorly structured and flexible regions in maintaining catalytic framework. 相似文献
12.
Oh B Kim K Park J Yoon J Han D Kim Y 《Biochemical and biophysical research communications》2004,319(2):486-492
The penicillin G acylase (PGA) and cephalosporin acylase (CA) families, which are members of the N-terminal (Ntn) hydrolases, are valuable for the production of backbone chemicals like 6-aminopenicillanic acid and 7-aminocephalosporanic acid (7-ACA), which can be used to synthesize semi-synthetic penicillins and cephalosporins, respectively. Regardless of the low sequence similarity between PGA and CA, the structural homologies at their active-sites are very high. However, despite this structural conservation, they catalyze very different substrates. PGA reacts with the hydrophobic aromatic side-chain (the phenylacetyl moiety) of penicillin G (PG), whereas CA targets the hydrophilic linear side-chain (the glutaryl moiety) of glutaryl-7-ACA (GL-7-ACA). These different substrate specificities are likely to be due to differences in the side-chains of the active-site residues. In this study, mutagenesis of active-site residues binding the side-chain moiety of PG changed the substrate specificity of PGA to that of CA. This mutant PGA may constitute an alternative source of engineered enzymes for the industrial production of 7-ACA. 相似文献
13.
Janssen MH van Langen LM Pereira SR van Rantwijk F Sheldon RA 《Biotechnology and bioengineering》2002,78(4):425-432
Penicillin G acylase from Escherichia coli was immobilized on Eupergit C with different enzyme loading. The activity of the immobilized preparations was assayed in the hydrolysis of penicillin G and was found to be much lower than would be expected on the basis of the residual enzyme activity in the immobilization supernatant. Active-site titration demonstrated that the immobilized enzyme molecules on average had turnover rates much lower than that of the dissolved enzyme. This was attributed to diffusion limitations of substrate and product inhibition. Indeed, when the immobilized preparations were crushed, the activity increased from 587 U g-1 to up to 974 U g-1. The immobilized preparations exhibited up to 15% lower turnover rates than the dissolved enzyme in cephalexin synthesis from 7-ADCA and D-(-)-phenylglycine amide. The synthesis over hydrolysis ratios of the immobilized preparations were also much lower than that of the dissolved enzyme. This was partly due to diffusion limitations but also to an intrinsic property of the immobilized enzyme because the synthesis over hydrolysis ratio of the crushed preparations was much lower than that of the dissolved enzyme. 相似文献
14.
《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2001,754(1):135-140
The aim of this work was to test immobilized metal affinity chromatography (IMAC) for the purification of penicillin acylase. After evaluation of different metals, Cu2+ was selected. Different samples were tested: pure penicillin acylase, industrial clarified feedstock and crude extract. After comparing two eluents, NH4Cl and imidazole, it appeared that although both gave good results for recovery and activity, NH4Cl was a more selective eluent with a higher fold purification than imidazole (4.64 versus 2.04). Moreover, we shown that a multistep gradient of NH4Cl, greatly increased the degree of purification (12.36) compared with the one-step process as control (4.64). In addition, good recovery was obtained (97–100%). 相似文献
15.
Penicillin V acylase from Fusarium sp. SKF 235 was immobilized on several cation-exchange resins, of which Amberlite CG-50 was preferred. Maximum activity of the immobilized penicillin V acylase was 250 to 280 IU/g dry beads. The pH and temperature optima of the enzyme shifted from 6.5 to 6.8 and 55°C to 60°C, respectively, as a result of immobilization. However, the K
m for penicillin V remained at 10mm. Parameters for producing 6-aminopenicillanic acid were investigated and the immobilized penicillin V acylase was used for 68 cycles in a stirred tank reactor. 相似文献
16.
Valeria Miranda Lorena Wilson Constanza Cárdenas Andrés Illanes 《Journal of Molecular Catalysis .B, Enzymatic》2011,68(1):77-82
Reactivation of penicillin G acylase immobilized in glyoxyl-agarose after inactivation was studied with the purpose of increasing the lifespan of the biocatalyst by simple and reproducible strategies, considering unfolding–refolding and direct incubation in reactivation media. Reactivation yields were increased with respect to the control (fully aqueous medium) when cosolvents were added to the reactivation medium at concentrations below 50% (v/v). Best results were obtained with 30% (v/v) ethyleneglycol (EG) in both reactivation strategies. An increase in reactivation yield from 36.0 to 62.8% was obtained using the unfolding–refolding strategy, while an increase from 50.0 to 68.4% was obtained by direct incubation in aqueous media with respect to control. Catalytic modulators were also included in the reactivation medium: competitive inhibitors (phenylacetic acid and 2-thienylacetic acid) caused a reduction while non-competitive (7-ADCA and 6-APA) caused an increase in reactivation yield. Combining cosolvent and catalytic modulators, best results in both strategies were obtained with 30% (v/v) EG plus 100 mM 7-ADCA, where an increase in reactivation yield from 36.0 to 96.0% and from 50.0 to 98.0% was achieved with unfolding–refolding and direct incubation in reactivation media respectively. Apparent reactivation rate was higher in the case of direct incubation in reactivation media, best results being obtained when using 100 mM 7-ADCA and 30% (v/v) EG, with an increase with respect to the control (fully aqueous medium with no modulator) from 0.309 h?1 to 1.129 h?1, while for unfolding–refolding strategy increase was only from 0.124 h?1 to 0.384 h?1. Results indicate that direct incubation is a better strategy for penicillin G acylase reactivation and opens up the possibility of significantly increasing the operational lifespan of the biocatalyst by operating the reactor with repeated cycles of reaction and reactivation. 相似文献
17.
V. G. Artyukhov T. A. Kovaleva M. G. Kholyavka L. A. Bityutskaya M. V. Grechkina 《Applied Biochemistry and Microbiology》2010,46(4):385-389
Thermal inactivation of the Kluyveromyces marxianus inulinase in a free form and immobilized on VION KN-1 cation exchange fiber was studied. Atomic force microscopy demonstrated an oligomeric structure of this enzyme, composed of two subunits differing in their size. It was assumed that the intersubunit contacts were destroyed at 60°C, and the inulinase molecule dissociated into two monomers located separately. 相似文献
18.
19.
Immobilized penicillin acylase has been used for the deacylation of benzylpenicillin at 37°C in a continuous reactor consisting of four 1 liter stirred tanks connected in series. There was good agreement between the predicted and actual conversions obtained in each tank under steady-state conditions. The operational stability of the immobilized enzyme in the tanks depended on the pH and the rate of addition and concentration of alkali needed to neutralize the acid produced during the reaction. At pH 7 with the addition of 2M NaOH, the half-life for enzyme stability was greater than 400 hr in all tanks. This was over half the value for the immobilized enzyme when stored at 37°C and pH 7. 相似文献
20.
The effect of pH, temperature, reactant concentration, and reaction time has been investigated for the synthesis of N-benzhydryl-N′-acetamidopiperazyl-6-penicillanic acid and N-benzyl-N′-acetamidopiperazyl-6-penicillanic acid from 6-aminopenicillanic acid by the immobilized penicillin acylase from Escherichia coli. The synthesis of penicillins from carboxylic acids proceeds most rapidly at pH 5; with ethyl ester derivatives of carboxylic acids the pH optimum is higher (6–7). The most rapid synthesis of penicillins was obtained with ethyl ester derivatives of carboxylic acids. The optimum temperatures were 25–35°C. 相似文献