首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Luminescence resonance energy transfer measurements were used to show that binding of E. coli core RNA polymerase induced major changes in interdomain distances in the sigma 70 subunit. The simplest model describing core-induced changes in sigma 70 involves a movement of the conserved region 1 by approximately 20 A and the conserved region 4.2 by approximately 15 A with respect to conserved region 2. The core-induced movement of region 1 (autoinhibition domain) and region 4.2 (DNA-binding domain) provides structural rationale for allosteric regulation of sigma 70 DNA binding properties by the core and suggests that this regulation may not only involve directly the autoinhibition domain of sigma 70 but also could involve a modulation of spacing between DNA-binding domains of sigma 70 induced by binding of core RNAP.  相似文献   

5.
A mutation is described that alters the promoter specificity of sigma 70, the primary sigma factor of Escherichia coli RNA polymerase. In strains carrying both the mutant and wild-type sigma gene (rpoD), the mutant sigma causes a large increase in the activity of mutant P22 ant promoters with A.T or C.G instead of the wild-type, consensus G.C base-pair at position -33, the third position of the consensus -35 hexamer 5'-TTGACA-3'. There is little or no effect on the activities of the wild-type and 23 other mutant ant promoters, including one with T.A at -33. The mutant sigma also activates E. coli lac promoters with A.T or C.G, but not T.A, at the corresponding position. The rpoD mutation (rpoD-RH588) changes a CGT codon to CAT. The corresponding change in sigma 70 is Arg588----His. This residue is in a region that is conserved among most sigma factors, a region that is also homologous with the helix-turn-helix motif of DNA-binding proteins. These results suggest that this region of sigma 70 is directly involved in recognition of the -35 hexamer.  相似文献   

6.
7.
8.
9.
10.
11.
The intracellular levels of two principal sigma subunits, sigma 70 (sigma D, the rpoD gene product) and sigma 38 (sigma s, the rpoS gene product), in Escherichia coli MC4100 were determined by a quantitative Western immunoblot analysis. Results indicate that the level of sigma 70 is maintained at 50 to 80 fmol per micrograms of total proteins throughout the transition from the exponential growth phase to the stationary phase, while the level of sigma 38 protein is below the detection level at the exponential growth phase but increases to 30% of the level of sigma 70 when cell growth stops to enter into the stationary phase. Beside the stationary phase, the increase in sigma 38 level was observed in two cases: exposure to heat shock at the exponential phase and osmotic shock at the stationary phase.  相似文献   

12.
13.
14.
15.
Penicillium charlesii extracts contain UDP-galactose:NAD+ 2-hexosyl oxidoreductase (1). ADP-ribose also serves as a substrate resulting in formation of NADH and an oxidized ADP-ribose derivative. Treatment of the oxidized product with NaBH4 followed by hydrolysis at pH 2 and 100° releases xylose as well as ribose. We conclude that ADP-D-glycero-D-glycero-3-pentosulose (ADP-3-ketoribose) is the product derived from ADP-ribose.  相似文献   

16.
We have identified the gene encoding the Caulobacter crescentus principal sigma subunit, RpoD. The rpoD gene codes for a polypeptide of 653 amino acids with a predicted molecular mass of 72,623 Da (sigma 73). The C. crescentus sigma subunit has extensive amino acid sequence homology with the principal sigma factors of a number of divergent procaryotes. In particular, the segments designated region 2 that are involved in core polymerase binding and promoter recognition were identical among these bacteria despite the fact that the -10 region recognized by the C. crescentus sigma 73 differs significantly from that of the other bacteria. Thus, it appears that additional sigma factor regions must be involved in -10 region recognition. This conclusion was strengthened by a heterologous complementation assay in which C. crescentus sigma 73 was capable of complementing the Escherichia coli rpoD285 temperature-sensitive mutant. Furthermore, C. crescentus sigma 73 conferred new specificity on the E. coli RNA polymerase, allowing the expression of C. crescentus promoters in E. coli. Thus, the C. crescentus sigma 73 appears to have a broader specificity than does the sigma 70 of the enteric bacteria.  相似文献   

17.
18.
Bai H  Yan H  Hou Z 《生理科学进展》2011,42(1):47-51
细菌的转录过程是一个由多种分子共同调控的复杂过程,其中RNA聚合酶(RNA polymerase,RNAP)是催化转录合成RNA的重要酶.作为RNAP中一个独立的亚单位,σ因子(sigma factor)在转录起始过程中起着至关重要的作用.最近的研究表明σ因子参与了转录起始的各个过程,包括启动子的定位、启动子的解链、起始RNA合成、脱离启动子等过程.由于其在细菌转录过程中的重要作用,σ因子正在成为抗菌药物研究的新靶点.本文对σ因子的结构、分类、功能以及以它为中心的调控网络的研究进行综述.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号