首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Park SA  Lee HW  Hong MH  Choi YW  Choe YH  Ahn BY  Cho YJ  Kim DS  Su Kim D  Lee NG 《Proteomics》2006,6(4):1319-1328
Helicobacter pylori is known to cause chronic gastritis, peptic ulcer, and gastric cancer, and has also been linked to iron deficiency anemia (IDA). To determine whether H. pylori clinical isolates correlate with the prevalence of H. pylori-associated IDA, we compared the proteomic profiles of H. pylori strains isolated from antral biopsy specimens of H. pylori-positive patients with or without IDA. Fifteen strains, including eight non-IDA and seven IDA strains, were cultured under iron-rich and iron-depleted conditions and then analyzed for protein expression profiles by 2-DE. The distances between two H. pylori strains were determined on the basis of similarities between their expression patterns of 189 protein spots, and a phylogenetic tree was constructed. The results revealed that the IDA strains formed a cluster separate from that of six non-IDA strains, with two non-IDA strains between the clusters. H. pylori strain 26695 was located in the non-IDA cluster. Protein spots displaying similar expression patterns were clustered, and 18 spots predominantly expressed in IDA strains were identified by MALDI-TOF analysis. These data indicate that the non-IDA and IDA strains can be distinguished by their protein expression profiles, suggesting that the polymorphism of H. pylori strains may be one of the factors determining the occurrence of H. pylori-associated IDA.  相似文献   

3.
The Gram negative bacterium Helicobacter pylori is a human pathogen which infects the gastric mucosa and causes an inflammatory process leading to gastritis, ulceration and cancer. A systematic, proteome based approach was chosen to detect candidate antigens of H. pylori for diagnosis, therapy and vaccine development and to investigate potential associations between specific immune responses and manifestations of disease. Sera from patients with active H. pylori infection (n = 24), a control group with unrelated gastric disorders (n = 12) and from patients with gastric cancer (n = 6) were collected and analyzed for the reactivity against proteins of the strain HP 26695 separated by two-dimensional electrophoresis. Overall, 310 antigenic protein species were recognized by H. pylori positive sera representing about 17% of all spots separated. Out of the 32 antigens most frequently recognized by H. pylori positive sera, nine were newly identified and 23 were confirmed from other studies. Three newly identified antigens which belong to the 150 most abundant protein species of H. pylori, were specifically recognized by H. pylori positive sera: the predicted coding region HP0231, serine protease HtrA (HP1019) and Cag3 (HP0522). Other antigens were recognized differently by sera from gastritis and ulcer patients, which may identify them as candidate indicators for clinical manifestations. The data from these immunoproteomic analyses are added to our public database (http://www.mpiib-berlin.mpg.de/2D-PAGE). This platform enables one to compile many protein profiles and to integrate data from other studies, an approach which will greatly assist the search for more immunogenic proteins for diagnostic assays and vaccine design.  相似文献   

4.
We investigated the cytosolic proteome of inflamed synovial tissue by hierarchical clustering analysis and validated the feasibility of this proteome analysis by identifying proteins that were differentially expressed between rheumatoid arthritis (RA), spondyloarthropathy (SpA), and osteoarthritis (OA). Synovial biopsy samples were obtained from 18 patients undergoing needle arthroscopy for knee synovitis associated with RA (n = 6) and SpA (n = 6), and for joint effusion of the knee associated with OA (n = 6). Cytosolic proteins were extracted from the tissue and subjected to two-dimensional gel electrophoresis. Protein expression patterns were statistically analyzed and used for hierarchical cluster analysis. Proteins of interest were independently identified by matrix-assisted laser desorption/ionization- and electrospray ionization-mass spectrometry. Hierarchical cluster analysis of the complete match set, containing 640 spots, remarkably segregated SpA from RA and OA. Next, we used a subset of spots that was statistically, differentially expressed (P < 0.01), between RA and SpA, SpA and OA, or RA and OA, in both Student's t-test and Mann-Whitney U-test. The dendrograms revealed distinct clustering of RA versus SpA and RA versus OA. Spots that were differentially expressed between the groups were identified by tandem mass spectrometry. Fructose bisphosphate aldolase A and alpha-enolase showed higher expression levels in SpA than in OA (P < 0.01). Calgranulin A myeloid related protein-8 (MRP-8) was markedly up-regulated in RA and SpA patients in comparison to OA patients where this spot was below detection limit. The analysis of the cytosolic proteome of synovial tissue is a useful approach to identify disease-associated proteins in chronic inflammatory arthritis.  相似文献   

5.
6.
Emerging evidence has suggested a critical role for activator protein-1 (AP)-1 in regulating various cellular functions. The goal of this study was to investigate the effects of Helicobacter pylori and mitogen-activated protein kinases (MAPK) on AP-1 subcomponents expression and AP-1 DNA-binding activity in gastric epithelial cells. We found that H. pylori infection resulted in a time- and dose-dependent increase in the expression of the proteins c-Jun, JunB, JunD, Fra-1, and c-Fos, which make up the major AP-1 DNA-binding proteins in AGS and MKN45 cells, while the expression levels of Fra-2 and FosB remained unchanged. Helicobacter pylori infection and MAPK inhibition altered AP-1 subcomponent protein expression and AP-1 DNA-binding activity, but did not change the overall subcomponent composition. Different clinical isolates of H. pylori showed various abilities to induce AP-1 DNA binding. Mutation of cagA, cagPAI, or vacA, and the nonphosphorylateable CagA mutant (cagA(EPISA)) resulted in less H. pylori-induced AP-1 DNA-binding activity, while mutation of the H. pylori flagella had no effect. extracellular signal-related kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) each selectively regulated AP-1 subcomponent expression and DNA-binding activity. These results provide more insight into how H. pylori and MAPK modulate AP-1 subcomponents in gastric epithelial cells to alter the expression of downstream target genes and affect cellular functions.  相似文献   

7.
Helicobacter pylori infection leads to gastroduodenal inflammation, peptic ulceration, and gastric carcinoma. Moreover, H. pylori may induce disease-specific protein expression in gastric epithelial cells. The present study was aimed at determining differentially expressed proteins in H. pylori-infected gastric epithelial AGS cells. AGS cells were treated with H. pylori at a bacterium/cell ratio of 300:1 for 12 h. Altered protein patterns as separated by two-dimensional electrophoresis using pH gradients of 4-7 were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. Four differentially expressed proteins, whose expression levels were increased by more than two-fold in H. pylori-infected cells, were analyzed. These proteins (14-3-3 protein alpha/beta, cullin homolog 3, alpha-enolase, ezrin) are known to be related to cell proliferation, cell adhesion, and carcinogenesis, and may be mediated by cellular stress, such as reactive oxygen species. In conclusion, the identification of these differentially expressed proteins provide valuable information for the understanding of the pathophysiologic mechanisms of H. pylori-induced gastric diseases, and may be useful as prognostic indices of H. pylori-related gastric disorders.  相似文献   

8.
BACKGROUND: Helicobacter pylori infection in Mongolian gerbils is an established experimental model of gastric carcinogenesis that mimics H. pylori-positive patients developing gastric ulcer and gastric cancer, but the effect of probiotic therapy on functional aspects of this infection remains unknown. METHODS: We compared the effects of intragastric inoculation of gerbils with H. pylori strain (cagA+ vacA+, 5 x 10(6) colony forming units/ml) with or without triple therapy including omeprazole, amoxicillin, and tinidazol or probiotic bacteria Lacidofil. Histology of glandular mucosa, the viable H. pylori, and density of H. pylori colonization were evaluated. The gastric blood flow was measured by H2-gas clearance method; the plasma gastrin and gastric luminal somatostatin were determined by RIA and expression of cyclooxygenase (COX)-2 and apoptotic Bax and Bcl-2 proteins were evaluated by Western blot. RESULTS: The gastric H. pylori infection was detected in all animals by histology and H. pylori culture. Basal gastric acid was significantly reduced in H. pylori-infected animals but not in those with triple therapy or Lacidofil. Early lesions were seen already 4 weeks upon H. pylori inoculation and consisted of chronic gastritis and glandular atypia associated with typical regenerative hyperplasia and increased mitotic activity and formation of apoptotic bodies. The H. pylori infection was accompanied by the fall in gastric blood flow, the marked increase in plasma gastrin, the significant fall in gastric somatostatin levels and Bcl-2 protein expression, and the rise in expression of COX-2 and Bax proteins. These mucosal changes were counteracted by the triple therapy and Lacidofil. CONCLUSIONS: H. pylori infection in gerbils, associated with regenerative hyperplasia of glandular structure, results in the suppression of gastric secretion, overexpression of COX-2, and enhancement in apoptosis and impairment of both, gastric blood flow and gastrin-somatostatin link that were reversed by anti-H. pylori triple therapy and attenuated by probiotics.  相似文献   

9.
BACKGROUND: Helicobacer pylori infection is a major gastric cancer risk factor. Deficient DNA mismatch repair (MMR) caused by H. pylori may underlie microsatellite instability (MSI) in the gastric epithelium and may represent a major mechanism of mutation accumulation in the gastric mucosa during the early stages of H. pylori-associated gastric carcinogenesis. In this study, we examined the expression of DNA MMR protein (hMLH1 and hMSH2) in patients with chronic H. pylori infection before and after eradication of the infection. MATERIALS AND METHODS: Gastric tissue samples were collected from 60 patients with H. pylori gastritis and peptic ulcer disease before and after eradication of the infection. The DNA MMR protein expression (hMLH1 and hMSH2) was determined by immunohistochemical staining in 60 patients before and after H. pylori eradication. The percentage of epithelial cell nuclei and intensity of staining were then compared in gastric biopsies before and after eradication. RESULTS: The percentage of hMLH1 (76.60 +/- 20.27, 84.82 +/- 12.73, p=.01) and hMSH2 (82.36 +/- 12.86, 88.11 +/- 9.27, p<.05) positive epithelial cells significantly increased in 53 patients who became H. pylori-negative after eradication therapy. However, the intensity of hMLH1 and hMSH2 staining was not significantly different. In those 7 patients, who did not respond to the eradication therapy and were still H. pylori-positive, the percent positivity and intensity of hMLH1 and hMSH2 staining did not change. CONCLUSIONS: The expression of DNA MMR proteins increased in the gastric mucosa after H. pylori eradication, indicating that H. pylori gastritis may be associated with a reduced DNA MMR system during infection. The effect of H. pylori infection on MMR protein expression appears to be at least partially reversible after H. pylori eradication. These data suggest that H. pylori gastritis might lead to a deficiency of DNA MMR in gastric epithelium that may increase the risk of mutation accumulation in the gastric mucosa cells during chronic H. pylori infection.  相似文献   

10.
11.
兰州地区幽门螺杆菌分离株主要毒力基因的研究   总被引:2,自引:2,他引:0  
本文首次报道了兰州地区胃病患者幽门螺杆菌分离株主要毒力基因ureA vacA 和cagA的 PCR 检测情况。共获 41 株Hp 分离株,分别来自于慢性胃炎病人(32 株)、胃-十二指肠溃疡病人(7株)和胃癌病人(2 株)。检测结果表明,41 株Hp 分离株的ureA,vacA 及cagA 的阳性率分别为100% ,100% 和97.6% ;含有ureA,vacA 和cagA 基因的Hp 与人类胃部疾患密切相关,而cagA 基因的存在可能与更加严重的胃部疾病有关。Hp 毒力基因的检测结果与其它地区Hp 分离株的检测结果相似。作者建议,对ureA 基因的PCR 检测可以作为鉴定Hp 的一个指标。  相似文献   

12.
13.
Infection with Helicobacter pylori is the major cause for the development of peptic ulcer disease (PUD). In children, with no other etiology for the disease, this rare event occurs shortly after infection. In these young patients, habits of smoking, diet, consumption of alcohol and non-steroid anti-inflammatory drugs and stress, in addition to the genetic susceptibility of the patient, represent a minor influence. Accordingly, the virulence of the implicated H. pylori strain should play a crucial role in the development of PUD. Corroborating this, our in vitro infection assays comparing a pool of five H. pylori strains isolated from children with PUD to a pool of five other pediatric clinical isolates associated with non-ulcer dyspepsia (NUD) showed the greater ability of PUD strains to induce a marked decrease in the viability of gastric cells and to cause severe damage in the cells cytoskeleton as well as an impairment in the production/secretion of mucins. To uncover virulence features, we compared the proteome of these two groups of H. pylori strains. Two-dimensional gel electrophoresis followed by mass-spectrometry allowed us to detect 27 differentially expressed proteins between them. In addition to the presence of genes encoding well established virulence factors, namely cagA, vacAs1, oipA "on" status, homB and jhp562 genes, the pediatric ulcerogenic strains shared a proteome profile characterized by changes in the abundance of: motility-associated proteins, accounting for higher motility; antioxidant proteins, which may confer increased resistance to inflammation; and enzymes involved in key steps in the metabolism of glucose, amino acids and urea, which may be advantageous to face fluctuations of nutrients. In conclusion, the enhanced virulence of the pediatric ulcerogenic H. pylori strains may result from a synergy between their natural ability to better adapt to the hostile human stomach and the expression of the established virulence factors.  相似文献   

14.
Helicobacter pylori causes gastroduodenal disease, which is mediated in part by its outer membrane proteins (OMPs). To identify OMPs of H. pylori strain 26695, we performed a proteomic analysis. A sarcosine-insoluble outer membrane fraction was resolved by two-dimensional electrophoresis with immobilized pH gradient strips. Most of the protein spots, with molecular masses of 10 to 100 kDa, were visible on the gel in the alkaline pI regions (6.0 to 10.0). The proteome of the OMPs was analyzed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Of the 80 protein spots processed, 62 spots were identified; they represented 35 genes, including 16 kinds of OMP. Moreover, we identified 9 immunoreactive proteins by immunoblot analysis. This study contributes to the characterization of the H. pylori strain 26695 proteome and may help to further elucidate the biological function of H. pylori OMPs and the pathogenesis of H. pylori infection.  相似文献   

15.
The efficiency of Helicobacter pylori as a mucosal pathogen is caused by unique soluble and integral membrane proteins, which allow its survival at acidic pH and successful colonization of the gastric environment. With about one-fourth of the H. pylori's proteome comprising integral membrane proteins, the need for solution of their three-dimensional (3D) structures becomes persistent as it can potentially drive the generation of more effective drugs. This study presents a medium-throughput approach for cloning and expression screening of integral membrane proteins from H. pylori (26695) using Escherichia coli as the expression host. One-hundred sixteen H. pylori targets were cloned into two different vector systems and heterologously expressed in E. coli. Eighty-four percent of these proteins displayed medium to high expression. No clear-cut correlation was found between expression levels and number of putative transmembrane spans, predicted functionality, and molecular mass. Nonetheless, expression of transporters and hypothetical proteins < or =40 kDa with two to four transmembrane spans displayed generally high expression levels. To statistically strengthen the quality of the data from the medium-throughput approach, a comparison with data derived from robotic-based methodologies was conducted. Optimization of expression and solubilization conditions for selected targets was also performed. Seventeen targets have been purified and subjected to crystallization so far. Eighteen percent of these targets (2/17) produced crystals under specific sets of crystallization conditions.  相似文献   

16.
17.
Acid stress is the most obvious challenge Helicobacter pylori encounters in human stomach. The urease system is the basic process used to maintain periplasmic and cytoplasmic pH near neutrality when H. pylori is exposed to acidic condition. However, since the urea concentration in gastric juice is approximately 1 mM, considered possibly insufficient to ensure the survival of H. pylori, it is postulated that additional mechanisms of pH homeostasis may contribute to the acid adaptation in H. pylori. In order to identify the acid-related proteins other than the urease system we have compared the proteome profiles of H. pylori strain 26695 exposed to different levels of external pH (7.4, 6.0, 5.0, 4.0, 3.0, and 2.0) for 30 min in the absence of urea using 2-DE. Differentially expressed proteins were identified by MALDI-TOF-TOF-MS analysis, which turned out to be 36 different proteins. The functions of these proteins included ammonia production, molecular chaperones, energy metabolism, cell envelope, response regulator and some proteins with unknown function. SOM analysis indicated that H. pylori responds to acid stress through multi-mechanisms involving many proteins, which depend on the levels of acidity the cells encounter.  相似文献   

18.
Because of the important role of membrane proteins in adhesion, invasion, and intracellular survival of pathogens in the host, membrane proteins are of potential interest in the search for drug targets or biomarkers. We have established a mass spectrometry-based method that allows characterization of the outer membrane protein (OMP) profile of clinical isolates from of the human gastric pathogen Helicobacter pylori. Subcellular fractionation and one-dimensional gel electrophoresis (1D-GE) analysis was combined with nano-liquid chromatography Fourier transform-ion cyclotron resonance mass spectrometry (nano-LC FT-ICR MS) and tandem mass spectrometry (MS/MS) analysis of fifteen H. pylori strains associated either with duodenal ulcers, gastric cancer, or isolated from asymptomatic H. pylori infected carriers. Over 60 unique membrane or membrane-associated proteins, including 30 of the 33 theoretically predicted OMPs, were identified from the strains. Several membrane proteins, including Omp11 and BabA, were found to be expressed by all strains. In the search for clinical markers we found that Omp26 was expressed by all disease-related strains but was only present in one out of five strains from asymptomatic carriers, which makes Omp26 a potential target for further investigation in the search for proteins unique to disease-related H. pylori strains. In addition, presence of Omp30 and absence of Omp6 seemed to be associated with H. pylori strains causing duodenal ulcer.  相似文献   

19.
The use of Enterococcus faecalis in the food industry has come under dispute because of the pathogenic potential of some strains of this species. In this study, we have compared the secretome and whole-cell proteome of one food isolate (E. faecalis DISAV 1022) and one clinical isolate (E. faecalis H1) by 2-DE and iTRAQ analyses, respectively. Extracellular protein patterns differed significantly, with only seven proteins common to both strains. Notably, only the clinical isolate expressed various well-characterized virulence factors such as the gelatinase coccolysin (GelE) and the extracellular serine proteinase V8 (SprE). Moreover, various other putative virulence factors, e.g. superoxide dismutase, choline- and chitin-binding proteins and potential moonlighting proteins, have been detected exclusively in the secretome of the clinical isolate, but not in the food isolate. The iTRAQ analysis of whole-cell proteins of the two strains highlighted a stronger expression of pathogenic traits such as an endocarditis-specific antigen and an adhesion lipoprotein in the pathogenic strain E. faecalis H1. Subsequently, six food isolates (including E. faecalis DISAV 1022) and six clinical isolates (including E. faecalis H1) were tested for the presence of gelatinase and protease activity in the culture supernatants. Both enzymatic activities were found in the clinical as well as the food isolates which clearly indicates that protease expression is strain specific and not representative for pathogenic isolates. Genetic analyses revealed that not only the gelatinase and serine protease genes but also the regulatory fsr genes must be present to allow protease expression.  相似文献   

20.
BACKGROUND: Cyclooxygenase 2 (COX-2) is induced by the presence of Helicobacter pylori (H. pylori) on the gastric mucosa as part of the inflammatory response; this results in the synthesis of prostaglandins that amplify the local inflammatory response. The presence of H. pylori inhibits the secretion of ascorbate into the gastric lumen. Interestingly, ascorbate inhibits the growth of H. pylori and low dietary levels are associated with an increased risk of gastric adenocarcinoma. We therefore investigated the effect of ascorbate on H. pylori mediated COX-2 induction and prostaglandin production in vitro. METHODS: H. pylori was cocultured with gastric epithelial cells in the presence of ascorbate at physiological concentrations. The expression of COX-2 was assessed by Western blotting and prostaglandin E(2) (PGE(2)) was assessed by ELISA. RESULTS: Ascorbate inhibited gastric cell PGE(2) synthesis but not in COX-2 expression in response to H. pylori. In the absence of the organism, ascorbate also reduced PGE(2) expression in cells that constitutively express COX-2, again with no reduction of COX-2 protein expression. CONCLUSIONS: Physiological concentrations of ascorbate inhibit PGE(2) but not COX-2 expression in response to H. pylori in gastric epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号