首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
N Ahmad  F Michoux  PJ Nixon 《PloS one》2012,7(7):e41722
Chloroplast transformation provides an inexpensive, easily scalable production platform for expression of recombinant proteins in plants. However, this technology has been largely limited to the production of soluble proteins. Here we have tested the ability of tobacco chloroplasts to express a membrane protein, namely plastid terminal oxidase 1 from the green alga Chlamydomonas reinhardtii (Cr-PTOX1), which is predicted to function as a plastoquinol oxidase. A homoplastomic plant containing a codon-optimised version of the nuclear gene encoding PTOX1, driven by the 16S rRNA promoter and 5'UTR of gene 10 from phage T7, was generated using a particle delivery system. Accumulation of Cr-PTOX1 was shown by immunoblotting and expression in an enzymatically active form was confirmed by using chlorophyll fluorescence to measure changes in the redox state of the plastoquinone pool in leaves. Growth of Cr-PTOX1 expressing plants was, however, more sensitive to high light than WT. Overall our results confirm the feasibility of using plastid transformation as a means of expressing foreign membrane proteins in the chloroplast.  相似文献   

3.
Nitrilase (E.C. 3.5.5.1) cloned from Arabidopsis thaliana converts indole-3-acetonitrile to the plant growth hormone, indole-3-acetic acid in vitro. To probe the capacity of this enzyme under physiological conditions in vivo, the cDNA PM255, encoding nitrilase II, was stably integrated into the genome of Nicotiana tabacum by direct protoplast transformation under the control of the CaMV-35S promotor. The regenerated plants appeared phenotypically normal. Nitrilase II was expressed, based on the occurrence of its mRNA and polypeptide. The enzyme was catalytically active, when extracted from leaf tissue of transgenic plants (specific activity: 25 fkat mg?1 protein with indole3-acetonitrile as substrate). This level of activity was lower than that found in A. thaliana, and this was deemed essential for the in vivo analysis. Leaf tissue from the transgenic plants converted 1-[13C]-indole-3-acetonitrile to 1-[13C]-indole-3-acetic acid in vivo as determined by HPLC/ GC-MS analysis. Untransformed tobacco was unable to catalyze this reaction. When transgenic seeds were grown on medium in the absence of indole-3-acetonitrile, germination and seedling growth appeared normal. In the presence of micromolar levels of exogenous indole-3-acetonitrile, a strong auxin-overproducing phenotype developed resulting in increased lateral root formation (at 10 µM indole-3-acetonitrile) or stunted shoot growth, excessive lateral root initiation, inhibition of root out-growth and callus formation at the root/shoot interface (at 100 µM indole-3-acetonitrile). Collectively, these data prove the ability of nitrilase II to convert low micromolar levels of indole-3-acetonitrile to indole-3-acetic acid in vivo, even when expressed at subphysiological levels thereby conferring a high-auxin phenotype upon transgenic plants. Thus, the A. thaliana nitrilase activity, which exceeds that of the transgenic plants, would be sufficient to meet the requirements for auxin biosynthesis in vivo.  相似文献   

4.
5.
The plastid terminal oxidase PTOX is a plastohydroquinone:oxygen oxidoreductase that is important for carotenoid biosynthesis and plastid development. Its role in photosynthesis is controversially discussed. Under a number of abiotic stress conditions, the protein level of PTOX increases. PTOX is thought to act as a safety valve under high light protecting the photosynthetic apparatus against photodamage. However, transformants with high PTOX level were reported to suffer from photoinhibition. To analyze the effect of PTOX on the photosynthetic electron transport, tobacco expressing PTOX‐1 from Chlamydomonas reinhardtii (Cr‐PTOX1) was studied by chlorophyll fluorescence, thermoluminescence, P700 absorption kinetics and CO2 assimilation. Cr‐PTOX1 was shown to compete very efficiently with the photosynthetic electron transport for PQH2. High pressure liquid chromatography (HPLC) analysis confirmed that the PQ pool was highly oxidized in the transformant. Immunoblots showed that, in the wild‐type, PTOX was associated with the thylakoid membrane only at a relatively alkaline pH value while it was detached from the membrane at neutral pH. We present a model proposing that PTOX associates with the membrane and oxidizes PQH2 only when the oxidation of PQH2 by the cytochrome b6f complex is limiting forward electron transport due to a high proton gradient across the thylakoid membrane.  相似文献   

6.
7.
Dual role of the plastid terminal oxidase in tomato   总被引:1,自引:0,他引:1       下载免费PDF全文
The plastid terminal oxidase (PTOX) is a plastoquinol oxidase whose absence in tomato (Solanum lycopersicum) results in the ghost (gh) phenotype characterized by variegated leaves (with green and bleached sectors) and by carotenoid-deficient ripe fruit. We show that PTOX deficiency leads to photobleaching in cotyledons exposed to high light primarily as a consequence of reduced ability to synthesize carotenoids in the gh mutant, which is consistent with the known role of PTOX as a phytoene desaturase cofactor. In contrast, when entirely green adult leaves from gh were produced and submitted to photobleaching high light conditions, no evidence for a deficiency in carotenoid biosynthesis was obtained. Rather, consistent evidence indicates that the absence of PTOX renders the tomato leaf photosynthetic apparatus more sensitive to light via a disturbance of the plastoquinone redox status. Although gh fruit are normally bleached (most likely as a consequence of a deficiency in carotenoid biosynthesis at an early developmental stage), green adult fruit could be obtained and submitted to photobleaching high light conditions. Again, our data suggest a role of PTOX in the regulation of photosynthetic electron transport in adult green fruit, rather than a role principally devoted to carotenoid biosynthesis. In contrast, ripening fruit are primarily dependent on PTOX and on plastid integrity for carotenoid desaturation. In summary, our data show a dual role for PTOX. Its activity is necessary for efficient carotenoid desaturation in some organs at some developmental stages, but not all, suggesting the existence of a PTOX-independent pathway for plastoquinol reoxidation in association with phytoene desaturase. As a second role, PTOX is implicated in a chlororespiratory mechanism in green tissues.  相似文献   

8.
9.
We have isolated and analyzed a pre-ferredoxin gene from Arabidopsis thaliana. This gene encodes a 148 amino acid precursor protein including a chloroplast transit peptide of 52 residues. Southern analysis shows the presence of a single copy of this ferredoxin (Fd) gene in the A. thaliana genome. Its expression is tissue-specific and positively affected by light. Response times, both to dark and light conditions, are remarkably rapid.A chimeric gene consisting of a 1.2 kb Fd promoter fragment fused to the -glucuronidase reporter gene was transferred to tobacco. This fusion gene is expressed in a tissue-specific way; it shows high levels of expression in green leaves, as compared to root tissue.  相似文献   

10.
Organelle dynamics in the plant male gametophyte has received attention for its importance in pollen tube growth and cytoplasmic inheritance. We recently revealed the dynamic behaviors of plastids in living Arabidopsis pollen grains and tubes, using an inherent promoter-driven FtsZ1–green fluorescent protein (GFP) fusion. Here, we further monitored the movement of pollen tube plastids with an actin1 promoter-driven, stroma-targeted yellow fluorescent protein (YFP). In elongating pollen tubes, most plastids localized to the tube shank, where they displayed either retarded and unsteady motion, or fast, directional, and long-distance movement along the tube polarity. Efficient plastid tracking further revealed a population of tip-forwarding plastids that undergo a fluctuating motion(s) before traveling backward. The behavior of YFP-labeled plastids in pollen basically resembled that of FtsZ1–GFP-labeled plastids, thus validating the use of FtsZ1–GFP for simultaneous visualization of the stroma and the plastid-dividing FtsZ ring.  相似文献   

11.
12.
The peroxisomal acyl-CoA oxidase family plays an essential role in lipid metabolism by catalyzing the conversion of acyl-CoA into trans-2-enoyl-CoA during fatty acid beta-oxidation. Here, we report the X-ray structure of the FAD-containing Arabidopsis thaliana acyl-CoA oxidase 1 (ACX1), the first three-dimensional structure of a plant acyl-CoA oxidase. Like other acyl-CoA oxidases, the enzyme is a dimer and it has a fold resembling that of mammalian acyl-CoA oxidase. A comparative analysis including mammalian acyl-CoA oxidase and the related tetrameric mitochondrial acyl-CoA dehydrogenases reveals a substrate-binding architecture that explains the observed preference for long-chained, mono-unsaturated substrates in ACX1. Two anions are found at the ACX1 dimer interface and for the first time the presence of a disulfide bridge in a peroxisomal protein has been observed. The functional differences between the peroxisomal acyl-CoA oxidases and the mitochondrial acyl-CoA dehydrogenases are attributed to structural differences in the FAD environments.  相似文献   

13.
14.
The plastid terminal oxidase (PTOX) encoded by the Arabidopsis IMMUTANS gene was expressed in Escherichia coli cells and its quinone/oxygen oxidoreductase activity monitored in isolated bacterial membranes using NADH as an electron donor. Specificity for plastoquinone was observed. Neither ubiquinone, duroquinone, phylloquinone nor benzoquinone could substitute for plastoquinone in this assay. However, duroquinol (fully reduced chemically) was an accepted substrate. Iron is also required and cannot be substituted by Cu(2+), Zn(2+) or Mn(2+). This plastoquinol oxidase activity is independent of temperature over the 15-40 degrees C range but increases with pH (from 5.5 to 9.0). Unlike higher plant mitochondrial alternative oxidases, to which PTOX shows sequence similarity (but also differences, especially in a putative quinone binding site and in cysteine conservation), PTOX activity does not appear to be regulated by pyruvate or any other tested sugar, nor by AMP. Its activity decreases, however, with increasing salt (NaCl or KCl) concentration. Various quinone analogues were tested for their inhibitory activity on PTOX. Pyrogallol analogues were found to be inhibitors, especially octyl gallate (I50 = 0.4 microM ) that appears far more potent than propyl gallate or gallic acid. Thus, octyl gallate is a useful inhibitor for future in vivo or in organello studies aimed at studying the roles of PTOX in chlororespiration and as a cofactor for carotenoid biosynthesis.  相似文献   

15.
The plastid terminal oxidase (PTOX) is a plastoquinol oxidase localized in the plastids of plants. It is able to transfer electrons from plastoquinone (PQ) to molecular oxygen with the formation of water. Recent studies have suggested that PTOX is beneficial for plants under environmental stresses, since it is involved in the synthesis of photoprotective carotenoids and chlororespiration, which could potentially protect the chloroplast electron transport chain (ETC) from over-reduction. The absence of PTOX in plants usually results in photo-bleached variegated leaves and impaired adaptation to environment alteration. Although PTOX level and activity has been found to increase under a wide range of stress conditions, the functions of plant PTOX in stress responses are still disputed now. In this paper, the possible physiological roles of PTOX in plant stress responses are discussed based on the recent progress.  相似文献   

16.
Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana   总被引:3,自引:0,他引:3  
Abscisic acid (ABA) is a plant hormone involved in seed development and responses to various environmental stresses. Oxidation of abscisic aldehyde is the last step of ABA biosynthesis and is catalysed by aldehyde oxidase (EC 1.2.3.1). We have reported the occurrence of three isoforms of aldehyde oxidase, AOalpha, AObeta and AOgamma, in Arabidopsis thaliana seedlings, but none oxidized abscisic aldehyde. Here we report a new isoform, AOdelta, found in rosette leaf extracts, which efficiently oxidizes abscisic aldehyde. AO delta was specifically recognized by antibodies raised against a recombinant peptide encoded by AAO3, one of four Arabidopsis aldehyde oxidase genes (AAO1, AAO2, AAO3 and AAO4). Functionally expressed AAO3 protein in the yeast Pichia pastoris showed a substrate preference very similar to that of rosette AOdelta. These results indicate that AOdelta is encoded by AAO3. AOdelta produced in P. pastoris exhibited a very low Km value for abscisic aldehyde (0.51 microM), and the oxidation product was determined by gas chromatography-mass spectrometry to be ABA. Northern analysis showed that AAO3 mRNA is highly expressed in rosette leaves. When the rosette leaves were detached and exposed to dehydration, AAO3 mRNA expression increased rapidly within 3 h of the treatment. These results suggest that AOdelta, the AAO3 gene product, acts as an abscisic aldehyde oxidase in Arabidopsis rosette leaves.  相似文献   

17.
Fu A  Liu H  Yu F  Kambakam S  Luan S  Rodermel S 《The Plant cell》2012,24(4):1579-1595
The immutans (im) variegation mutant of Arabidopsis thaliana is caused by an absence of PTOX, a plastid terminal oxidase bearing similarity to mitochondrial alternative oxidase (AOX). In an activation tagging screen for suppressors of im, we identified one suppression line caused by overexpression of AOX2. AOX2 rescued the im defect by replacing the activity of PTOX in the desaturation steps of carotenogenesis. Similar results were obtained when AOX1a was reengineered to target the plastid. Chloroplast-localized AOX2 formed monomers and dimers, reminiscent of AOX regulation in mitochondria. Both AOX2 and AOX1a were present in higher molecular weight complexes in plastid membranes. The presence of these proteins did not generally affect steady state photosynthesis, aside from causing enhanced nonphotochemical quenching in both lines. Because AOX2 was imported into chloroplasts using its own transpeptide, we propose that AOX2 is able to function in chloroplasts to supplement PTOX activity during early events in chloroplast biogenesis. We conclude that the ability of AOX1a and AOX2 to substitute for PTOX in the correct physiological and developmental contexts is a striking example of the capacity of a mitochondrial protein to replace the function of a chloroplast protein and illustrates the plasticity of the photosynthetic apparatus.  相似文献   

18.
It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.  相似文献   

19.
报告了钙流通抑制剂钌红对缺氧条件下拟南芥中ADH基因表达的诱导和植株存活的影响。结果表明 ,缺氧早期ADH基因的激活和表达需要钙离子 ,钌红处理可以延长缺氧条件下拟南芥植株的存活期。据此推测 :拟南芥中缺氧诱导的细胞死亡是一个钙离子介导的主动过程 ,钌红通过阻止细胞内钙离子浓度的增加而抑制这一过程。延长缺氧处理的时间会导致拟南芥叶片细胞内发生核凝聚和染色体断裂的现象 ,也进一步验证了这种构想。表明缺氧处理引起的叶片细胞损伤直至植株死亡是一个程序化的过程  相似文献   

20.
Engineering herbicide resistance in crops facilitates control of weed species, particularly those that are closely related to the crop, and may be useful in selecting lines that have undergone multiple transformation events. Here we show that herbicide-resistant plants can be engineered by designing an herbicide and expressing a catalytic antibody that destroys the herbicide in planta. First, we developed a carbamate herbicide that can be catalytically destroyed by the aldolase antibody 38C2. This compound has herbicidal activity on all three plant species tested. Second, the light chain and half of the heavy chain (Fab) of the catalytic antibody were targeted to the endoplasmic reticulum in two classes of Arabidopsis thaliana transformants. Third, the two transgenic plants were crossed to produce an herbicide-resistant F1 hybrid. The in vitro catalytic activity of the protein from F1 hybrids corroborates that catalytic antibodies can be constitutively expressed in transgenic plants, and that they can confer a unique trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号