首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Many coxsackievirus B isolates bind to human decay-accelerating factor (DAF) as well as to the coxsackievirus and adenovirus receptor (CAR). The first-described DAF-binding isolate, coxsackievirus B3 (CB3)-RD, was obtained during passage of the prototype strain CB3-Nancy on RD cells, which express DAF but very little CAR. CB3-RD binds to human DAF, whereas CB3-Nancy does not. To determine the molecular basis for the specific interaction of CB3-RD with DAF, we produced cDNA clones encoding both CB3-RD and CB3-Nancy and mutated each of the sites at which the RD and Nancy sequences diverged. We found that a single amino acid change, the replacement of a glutamate within VP3 (VP3-234E) with a glutamine residue (Q), conferred upon CB3-Nancy the capacity to bind DAF and to infect RD cells. Readaptation of molecularly cloned CB3-Nancy to RD cells selected for a new virus with the same VP3-234Q residue. In experiments with CB3-H3, another virus isolate that does not bind measurably to DAF, adaptation to RD cells resulted in a DAF-binding isolate with a single amino acid change within VP2 (VP2-138 N to D). Both VP3-234Q and VP2-138D were required for binding of CB3-RD to DAF. In the structure of the CB3-RD-DAF complex determined by cryo-electron microscopy, both VP3-234Q and VP2-138D are located at the contact site between the virus and DAF.  相似文献   

3.
While group B coxsackieviruses (CVB) use the coxsackievirus and adenovirus receptor (CAR) as the receptor through which they infect susceptible cells, some CVB strains are known for their acquired capacity to bind other molecules. The CVB3/RD strain that emerged from a CVB3/Nancy population sequentially passaged in the CAR-poor RD cell line binds decay-accelerating factor (DAF) (CD55) and CAR. A new strain, CVB3/RDVa, has been isolated from RD cells chronically infected with CVB3/RD and binds multiple molecules in addition to DAF and CAR. The capsid proteins of CVB3/RD differ from those of CVB3/28, a cloned strain that binds only CAR, by only four amino acids, including a glutamate/glutamine dimorphism in the DAF-binding region of the capsid. The capsid proteins of CVB3/RD and CVB3/RDVa differ by seven amino acids. The ability of CVB3/RDVa to bind ligands in addition to CAR and DAF may be attributed to lysine residues near the icosahedral 5-fold axes of symmetry. Considered with differences in the stability of the CVB3 strains, these traits suggest that in vitro selection in a CAR-limited environment selects for virus populations that can associate with molecules on the cell surface and survive until CAR becomes available to support infection.  相似文献   

4.
The composition of the cellular receptor complex for coxsackievirus B3 (CVB3) has been an area of much contention for the last 30 years. Recently, two individual components of a putative CVB3 cellular receptor complex have been identified as (i) decay-accelerating factor (DAF) and (ii) the coxsackievirus-adenovirus receptor protein (CAR). The present study elucidates the individual roles of DAF and CAR in cell entry of CVB3 Nancy. First, we confirm that the DAF-binding phenotype of CVB3 correlates to the presence of key amino acids located in the viral capsid protein, VP2. Second, using antibody blockade, we show that complete protection of permissive cells from infection by high input multiplicities of CVB3 requires a combination of both anti-DAF and anti-CAR antibodies. Finally, it is shown that expression of the CAR protein on the surface of nonpermissive DAF-expressing RD cells renders them highly susceptible to CVB3-mediated lytic infection. Therefore, although the majority of CVB3 Nancy attaches to the cell via DAF, only virus directly interacting with the CAR protein mediates lytic infection. The role of DAF in CVB3 cell infection may be analogous to that recently described for coxsackievirus A21 (D. R. Shafren, D. J. Dorahy, R. A. Ingham, G. F. Burns, and R. D. Barry, J. Virol. 71:4736-4743, 1997), in that DAF may act as a CVB3 sequestration site, enhancing viral presentation to the functional CAR protein.  相似文献   

5.
Although many coxsackie B viruses interact with decay accelerating factor (DAF), attachment to DAF by itself is not sufficient to initiate infection. We examined the early events in infection that follow virus interaction with DAF, and with the coxsackievirus and adenovirus receptor (CAR). Interaction with soluble CAR in a cell-free system, or with CAR on the surfaces of transfected cells, induced the formation of A particles; interaction with soluble or cell surface DAF did not. The results suggest that CAR, but not DAF, is capable of initiating the conformational changes in the viral capsid that lead to release of viral nucleic acid.  相似文献   

6.
All coxsackie B (CB) viruses can initiate infection by attaching to the coxsackievirus and adenovirus receptor (CAR). Although some CB isolates also bind to decay-accelerating factor (DAF), the role of DAF interaction during infection remains uncertain. We recently observed that CAR in polarized epithelial cells is concentrated at tight junctions, where it is relatively inaccessible to virus. In the experiments reported here we found that, unlike CAR, DAF was present on the apical surface of polarized cells and that DAF-binding isolates of CB3 and CB5 infected polarized epithelial cells more efficiently than did isolates incapable of attaching to DAF. Virus attachment and subsequent infection of polarized cells by DAF-binding isolates were prevented in the presence of anti-DAF antibody. Serial passage on polarized cell monolayers selected for DAF-binding virus variants. Taken together, these results indicate that interaction with DAF on the apical surface of polarized epithelial cells facilitates infection by a subset of CB virus isolates. The results suggest a possible role for DAF in infection of epithelial cells at mucosal surfaces.  相似文献   

7.
Many entero-, parecho-, and rhinoviruses use immunoglobulin (Ig)-like receptors that bind into the viral canyon and are required to initiate viral uncoating during infection. However, some of these viruses use an alternative or additional receptor that binds outside the canyon. Both the coxsackievirus-adenovirus receptor (CAR), an Ig-like molecule that binds into the viral canyon, and decay-accelerating factor (DAF) have been identified as cellular receptors for coxsackievirus B3 (CVB3). A cryoelectron microscopy reconstruction of a variant of CVB3 complexed with DAF shows full occupancy of the DAF receptor in each of 60 binding sites. The DAF molecule bridges the canyon, blocking the CAR binding site and causing the two receptors to compete with one another. The binding site of DAF on CVB3 differs from the binding site of DAF on the surface of echoviruses, suggesting independent evolutionary processes.  相似文献   

8.
The coxsackievirus-adenovirus receptor (CAR) and decay-accelerating factor (DAF) have been identified as cellular receptors for coxsackievirus B3 (CVB3). The first described DAF-binding isolate was obtained during passage of the prototype strain, Nancy, on rhabdomyosarcoma (RD) cells, which express DAF but very little CAR. Here, the structure of the resulting variant, CVB3-RD, has been solved by X-ray crystallography to 2.74 Å, and a cryo-electron microscopy reconstruction of CVB3-RD complexed with DAF has been refined to 9.0 Å. This new high-resolution structure permits us to correct an error in our previous view of DAF-virus interactions, providing a new footprint of DAF that bridges two adjacent protomers. The contact sites between the virus and DAF clearly encompass CVB3-RD residues recently shown to be required for binding to DAF; these residues interact with DAF short consensus repeat 2 (SCR2), which is known to be essential for virus binding. Based on the new structure, the mode of the DAF interaction with CVB3 differs significantly from the mode reported previously for DAF binding to echoviruses.  相似文献   

9.
We previously reported that soluble decay-accelerating factor (DAF) and coxsackievirus-adenovirus receptor (CAR) blocked coxsackievirus B3 (CVB3) myocarditis in mice, but only soluble CAR blocked CVB3-mediated pancreatitis. Here, we report that the in vitro mechanisms of viral inhibition by these soluble receptors also differ. Soluble DAF inhibited virus infection through the formation of reversible complexes with CVB3, while binding of soluble CAR to CVB induced the formation of altered (A) particles with a resultant irreversible loss of infectivity. A-particle formation was characterized by loss of VP4 from the virions and required incubation of CVB3-CAR complexes at 37 degrees C. Dimeric soluble DAF (DAF-Fc) was found to be 125-fold-more effective at inhibiting CVB3 than monomeric DAF, which corresponded to a 100-fold increase in binding affinity as determined by surface plasmon resonance analysis. Soluble CAR and soluble dimeric CAR (CAR-Fc) bound to CVB3 with 5,000- and 10,000-fold-higher affinities than the equivalent forms of DAF. While DAF-Fc was 125-fold-more effective at inhibiting virus than monomeric DAF, complement regulation by DAF-Fc was decreased 4 fold. Therefore, while the virus binding was a cooperative event, complement regulation was hindered by the molecular orientation of DAF-Fc, indicating that the regions responsible for complement regulation and virus binding do not completely overlap. Relative contributions of CVB binding affinity, receptor binding footprint on the virus capsid, and induction of capsid conformation alterations for the ability of cellular DAF and CAR to act as receptors are discussed.  相似文献   

10.
Coyne CB  Bergelson JM 《Cell》2006,124(1):119-131
Group B coxsackieviruses (CVBs) must cross the epithelium as they initiate infection, but the mechanism by which this occurs remains uncertain. The coxsackievirus and adenovirus receptor (CAR) is a component of the tight junction and is inaccessible to virus approaching from the apical surface. Many CVBs also interact with the GPI-anchored protein decay-accelerating factor (DAF). Here, we report that virus attachment to DAF on the apical cell surface activates Abl kinase, triggering Rac-dependent actin rearrangements that permit virus movement to the tight junction. Within the junction, interaction with CAR promotes conformational changes in the virus capsid that are essential for virus entry and release of viral RNA. Interaction with DAF also activates Fyn kinase, an event that is required for the phosphorylation of caveolin and transport of virus into the cell within caveolar vesicles. CVBs thus exploit DAF-mediated signaling pathways to surmount the epithelial barrier.  相似文献   

11.
Amino acid exchanges in the virus capsid protein VP1 allow the coxsackievirus B3 variant PD (CVB3 PD) to replicate in decay accelerating factor (DAF)-negative and coxsackievirus-adenovirus receptor (CAR)-negative cells. This suggests that molecules other than DAF and CAR are involved in attachment of this CVB3 variant to cell surfaces. The observation that productive infection associated with cytopathic effect occurred in Chinese hamster ovary (CHO-K1) cells, whereas heparinase-treated CHO-K1 cells, glucosaminoglycan-negative pgsA-745, heparan sulfate (HS)-negative pgsD-677, and pgsE-606 cells with significantly reduced N-sulfate expression resist CVB3 PD infection, indicates a critical role of highly sulfated HS. 2-O-sulfate-lacking pgsF-17 cells represented the cell line with minimum HS modifications susceptible for CVB3 PD. Inhibition of virus replication in CHO-K1 cells by polycationic compounds, pentosan polysulfate, lung heparin, and several intestinal but not kidney HS supported the hypothesis that CVB3 PD uses specific modified HS for entry. In addition, recombinant human hepatocyte growth factor blocked CVB3 PD infection. However, CAR also mediates CVB3 PD infection, because this CVB3 variant replicates in HS-lacking but CAR-bearing Raji cells, infection could be prevented by pretreatment of cells with CAR antibody, and HS-negative pgsD-677 cells transfected with CAR became susceptible for CVB3 PD. These results demonstrate that the amino acid substitutions in the viral capsid protein VP1 enable CVB3 PD to use specific modified HS as an entry receptor in addition to CAR.  相似文献   

12.
Coxsackievirus and adenovirus receptor (CAR) from which the cytoplasmic domain had been deleted and glycosylphosphatidylinositol (GPI)-anchored CAR lacking both transmembrane and cytoplasmic domains were both capable of facilitating adenovirus 5-mediated gene delivery and infection by coxsackievirus B3. These results indicate that the CAR extracellular domain is sufficient to permit virus attachment and entry and that the presence of a GPI anchor does not prevent infection.  相似文献   

13.
In this study, a zebrafish homologue of the coxsackievirus and adenovirus receptor (CAR) protein was identified. Although the extracellular domain of zebrafish CAR (zCAR) is less than 50% identical to that of human CAR (hCAR), zCAR mediated infection of transfected cells by both adenovirus type 5 and coxsackievirus B3. CAR residues interacting deep within the coxsackievirus canyon are highly conserved in zCAR and hCAR, which is consistent with the idea that receptor contacts within the canyon are responsible for coxsackievirus attachment. In contrast, CAR residues contacting the south edge of the canyon are not conserved, suggesting that receptor interaction with the viral "puff region" is not essential for attachment.  相似文献   

14.
Solution structure of the coxsackievirus and adenovirus receptor domain 1   总被引:2,自引:0,他引:2  
Jiang S  Jacobs A  Laue TM  Caffrey M 《Biochemistry》2004,43(7):1847-1853
The coxsackievirus and adenovirus receptor (CAR) mediates entry of coxsackievirus B (CVB) and adenovirus (Ad). The normal cellular function of CAR, which is expressed in a wide variety of tissue types, is thought to involve homophilic cell adhesion in the developing brain. The extracellular domain of CAR consists of two immunoglobulin (Ig) domains termed CAR-D1 and CAR-D2. CAR-D1 is shown by sedimentation velocity to be monomeric at pH 3.0. The solution structure and the dynamic properties of monomeric CAR-D1 have been determined by NMR spectroscopy at pH 3.0. The determinants of the CAR-D1 monomer-dimer equilibrium, as well as the binding site of CVB and Ad on CAR, are discussed in light of the monomer structure.  相似文献   

15.
Human adenovirus (Ad) is extensively used for a variety of gene therapy applications. However, the utility of Ad vectors is limited due to the low efficiency of Ad-mediated gene transfer to target cells expressing marginal levels of the Ad fiber receptor. Therefore, the present generation of Ad vectors could potentially be improved by modification of Ad tropism to target the virus to specific organs and tissues. The fact that coxsackievirus and adenovirus receptor (CAR) does not play any role in virus internalization, but functions merely as the virus attachment site, suggests that the extracellular part of CAR might be utilized to block the receptor recognition site on the Ad fiber knob domain. We proposed to design bispecific fusion proteins formed by a recombinant soluble form of truncated CAR (sCAR) and a targeting ligand. In this study, we derived sCAR genetically fused with human epidermal growth factor (EGF) and investigated its ability to target Ad infection to the EGF receptor (EGFR) overexpressed on cancer cell lines. We have demonstrated that sCAR-EGF protein is capable of binding to Ad virions and directing them to EGFR, thereby achieving targeted delivery of reporter gene. These results show that sCAR-EGF protein possesses the ability to effectively retarget Ad via a non-CAR pathway, with enhancement of gene transfer efficiency.  相似文献   

16.
Carson SD 《FEBS letters》2000,484(2):149-152
Trypsin treatment of HeLa cells results in a limited proteolysis of the coxsackievirus and adenovirus receptor (CAR) after which the cleaved CAR remains cell-associated and tryptic peptides remain associated through disulfide bonds. Trypsin-treated HeLa cells remain susceptible to infection with coxsackievirus B and produce progeny virus at 8 h post-infection in amounts comparable to cells with intact CAR. HeLa cells remove the proteolysed CAR within 15 h and require over 24 h to restore intact CAR to control levels. As turnover is relatively slow, physiological functions that require intact CAR protein may be compromised for more than 24 h following trypsin treatment. Moreover, since removal of proteolysed CAR proceeds at more than twice the replacement rate, trypsin treatment disrupts the receptor-per-cell steady state for at least 24 h.  相似文献   

17.
The adenovirus (Ad) fiber protein mediates Ad binding to the coxsackievirus and Ad receptor (CAR) and is thus a major determinant of viral tropism. The fiber contains three domains: an N-terminal tail that anchors the fiber to the viral capsid, a central shaft region of variable length and flexibility, and a C-terminal knob domain that binds to cell receptors. Ad type 37 (Ad37), a subgroup D virus associated with severe ocular infections, is unable to use CAR efficiently to infect host cells, despite containing a CAR binding site in its fiber knob. We hypothesized that the relatively short, inflexible Ad37 fiber protein restricts interactions with CAR at the cell surface. To test this hypothesis, we analyzed the infectivity and binding of recombinant Ad particles containing modified Ad37 or Ad5 fiber proteins. Ad5 particles equipped with a truncated Ad5 fiber or with a chimeric fiber protein comprised of the Ad5 knob fused to the short, rigid Ad37 shaft domain had significantly reduced infectivity and attachment. In contrast, placing the Ad37 knob onto the long, flexible Ad5 shaft allowed CAR-dependent virus infection and cell attachment, demonstrating the importance of the shaft domain in receptor usage. Increasing fiber rigidity by substituting the predicted flexibility modules in the Ad5 shaft with the corresponding regions of the rigid Ad37 fiber dramatically reduced both virus infection and cell attachment. Cryoelectron microscopy (cryo-EM) single-particle analysis demonstrated the increased rigidity of this chimeric fiber. These studies demonstrate that both length and flexibility of the fiber shaft regulate CAR interaction and provide a molecular explanation for the use of alternative receptors by subgroup D Ad with ocular tropism. We present a molecular model for Ad-CAR interactions at the cell surface that explains the significance of fiber flexibility in cell attachment.  相似文献   

18.
The binding of adenovirus (Ad) fiber knob to its cellular receptor, the coxsackievirus and Ad receptor (CAR), promotes virus attachment to cells and is a major determinant of Ad tropism. Analysis of the kinetics of binding of Ad type 5 (Ad5) fiber knob to the soluble extracellular domains of CAR together (sCAR) and each immunoglobulin (Ig) domain (IgV and IgC2) independently by surface plasmon resonance demonstrated that the IgV domain is necessary and sufficient for binding, and no additional membrane components are required to confer high-affinity binding to Ad5 fiber knob. Four Ad5 fiber knob mutations, Ser408Glu and Pro409Lys in the AB loop, Tyr477Ala in the DG loop, and Leu485Lys in beta strand F, effectively abolished high-affinity binding to CAR, while Ala406Lys and Arg412Asp in the AB loop and Arg481Glu in beta strand E significantly reduced the level of binding. Circular dichroism spectroscopy showed that these mutations do not disorder the secondary structure of the protein, implicating Ser408, Pro409, Tyr477, and Leu485 as contact residues, with Ala406, Arg412, and Arg481 being peripherally or indirectly involved in CAR binding. The critical residues have exposed side chains that form a patch on the surface, which thus defines the high-affinity interface for CAR. Additional site-directed mutagenesis of Ad5 fiber knob suggests that the binding site does not extend to the adjacent subunit or toward the edge of the R sheet. These findings have implications for our understanding of the biology of Ad infection, the development of novel Ad vectors for targeted gene therapy, and the construction of peptide inhibitors of Ad infection.  相似文献   

19.
The coxsackievirus and adenovirus receptor (CAR) is a transmembrane protein that is known to be a site of viral attachment and entry, but its physiologic functions are undefined. CAR expression is maximal in neonates and wanes rapidly after birth in organs such as heart, muscle, and brain, suggesting that CAR plays a role in the development of these tissues. Here, we show that CAR deficiency resulted in an embryonic lethal condition associated with cardiac defects. Specifically, commencing approximately 10.5 days postconception (dpc), CAR-/- cardiomyocytes exhibited regional apoptosis evidenced by both histopathologic features of cell death and positive staining for the apoptotic marker cleaved caspase 3. CAR-/- fetuses invariably suffered from degeneration of the myocardial wall and thoracic hemorrhaging, leading to death by 11.5 dpc. These findings are consistent with the view that CAR provides positive survival signals to cardiomyocytes that are essential for normal heart development.  相似文献   

20.
We have used X-ray crystallography to determine the structure of a decay accelerating factor (DAF)-binding, clinic-derived isolate of echovirus 11 (EV11-207). The structures of the capsid proteins closely resemble those of capsid proteins of other picornaviruses. The structure allows us to interpret a series of amino acid changes produced by passaging EV11-207 in different cell lines as highlighting the locations of multiple receptor-binding sites on the virion surface. We suggest that a DAF-binding site is located at the fivefold axes of the virion, while the binding site for a distinct but as yet unidentified receptor is located within the canyon surrounding the virion fivefold axes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号