首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We tested the hypothesis that protein kinase C-alpha (PKC-alpha) mediates tumor necrosis factor-alpha (TNF-alpha)-induced alterations in permeability of pulmonary microvessel endothelial monolayers (PEM). The permeability of PEM was assessed by the clearance rate of Evans blue-labeled albumin. PEM lysates were analyzed for PKC-alpha mRNA (Northern cDNA blot), protein (Western immunoblot), and activity (translocation and phosphorylation of myristoylated arginine-rich C kinase substrate). Incubation of PEM with TNF-alpha (1,000 U/ml) for 4 h resulted in increases in 1) PKC-alpha protein, 2) cytoskeletal-associated PKC-alpha, 3) PKC-alpha activity, and 4) permeability to albumin. The TNF-alpha-induced increase in PKC-alpha protein, PKC-alpha activity, and permeability was prevented by a 4-h pretreatment with PKC-alpha antisense oligonucleotide but not by the scrambled nonsense oligonucleotide. The TNF-alpha-induced increase in permeability to albumin was prevented by myristoylated protein kinase C inhibitor (an inhibitor of PKC-alpha/beta, 100 microM) and calphostin (an inhibitor of the classic and novel PKC isotypes, 200 nM). The treatment with calphostin from 0.5 to 3.0 h after TNF-alpha still prevented barrier dysfunction induced by 4 h of TNF-alpha treatment. The data indicate that prolonged activation of PKC-alpha, maintained by a translation-dependent pool of PKC-alpha protein, mediates TNF-alpha-induced increases in endothelial permeability in PEM.  相似文献   

2.
Elevated cholesterol levels promote proinflammatory and prothrombogenic responses in venules and impaired endothelium-dependent arteriolar dilation. Although NAD(P)H oxidase-derived superoxide has been implicated in the altered vascular responses to hypercholesterolemia, it remains unclear whether this oxidative pathway mediates the associated arteriolar dysfunction and platelet adhesion in venules. Platelet and leukocyte adhesion in cremasteric postcapillary venules and arteriolar dilation responses to acetylcholine were monitored in wild-type (WT), Cu,Zn-superoxide dismutase transgenic (SOD-TgN), and NAD(P)H oxidase-knockout (gp91(phox-/-)) mice placed on a normal (ND) or high-cholesterol (HC) diet for 2 weeks. HC elicited increased platelet and leukocyte adhesion in WT mice versus ND. Cytosolic subunits of NAD(P)H oxidase (p47phox and p67phox) were expressed in platelets. This was not altered by hypercholesterolemia; however, platelets and leukocytes from HC mice exhibited elevated generation of reactive oxygen species compared to ND mice. Hypercholesterolemia-induced leukocyte recruitment was attenuated in SOD-TgN-HC and gp91(phox-/-)-HC mice. Recruitment of platelets derived from WT-HC mice in venules of SOD-TgN-HC or gp91(phox-/-)-HC recipients was comparable to ND levels. Adhesion of SOD-TgN-HC platelets paralleled the leukocyte response and was attenuated in SOD-TgN-HC recipients, but not in WT-HC recipients. However, gp91(phox-/-)-HC platelets exhibited low levels of adhesion comparable to those of WT-ND in both hypercholesterolemic gp91(phox-/-) and WT recipients. Arteriolar dysfunction was evident in WT-HC mice, compared to WT-ND. Overexpression of SOD or, to a lesser extent, gp91(phox) deficiency restored arteriolar vasorelaxation responses toward WT-ND levels. These findings reveal a novel role for platelet-associated NAD(P)H oxidase in producing the thrombogenic phenotype in hypercholesterolemia and demonstrate that NAD(P)H oxidase-derived superoxide mediates the HC-induced arteriolar dysfunction.  相似文献   

3.
4.
Renal hypertrophy and extracellular matrix accumulation are early features of diabetic nephropathy. We investigated the role of the NAD(P)H oxidase Nox4 in generation of reactive oxygen species (ROS), hypertrophy, and fibronectin expression in a rat model of type 1 diabetes induced by streptozotocin. Phosphorothioated antisense (AS) or sense oligonucleotides for Nox4 were administered for 2 weeks with an osmotic minipump 72 h after streptozotocin treatment. Nox4 protein expression was increased in diabetic kidney cortex compared with non-diabetic controls and was down-regulated in AS-treated animals. AS oligonucleotides inhibited NADPH-dependent ROS generation in renal cortical and glomerular homogenates. ROS generation by intact isolated glomeruli from diabetic animals was increased compared with glomeruli isolated from AS-treated animals. AS treatment reduced whole kidney and glomerular hypertrophy. Moreover, the increased expression of fibronectin protein was markedly reduced in renal cortex including glomeruli of AS-treated diabetic rats. Akt/protein kinase B and ERK1/2, two protein kinases critical for cell growth and hypertrophy, were activated in diabetes, and AS treatment almost abolished their activation. In cultured mesangial cells, high glucose increased NADPH oxidase activity and fibronectin expression, effects that were prevented in cells transfected with AS oligonucleotides. These data establish a role for Nox4 as the major source of ROS in the kidneys during early stages of diabetes and establish that Nox4-derived ROS mediate renal hypertrophy and increased fibronectin expression.  相似文献   

5.
Hyperoxia increases reactive oxygen species (ROS) production in vascular endothelium; however, the mechanisms involved in ROS generation are not well characterized. We determined the role and regulation of NAD(P)H oxidase in hyperoxia-induced ROS formation in human pulmonary artery endothelial cells (HPAECs). Exposure of HPAECs to hyperoxia for 1, 3, and 12 h increased the generation of superoxide anion, which was blocked by diphenyleneiodonium but not by rotenone or oxypurinol. Furthermore, hyperoxia enhanced NADPH- and NADH-dependent and superoxide dismutase- or diphenyleneiodonium-inhibitable ROS production in HPAECs. Immunohistocytochemistry and Western blotting revealed the presence of gp91, p67 phox, p22 phox, and p47 phox subcomponents of NADPH oxidase in HPAECs. Transfection of HPAECs with p22 phox antisense plasmid inhibited hyperoxia-induced ROS production. Exposure of HPAECs to hyperoxia activated p38 MAPK and ERK, and inhibition of p38 MAPK and MEK1/2 attenuated the hyperoxia-induced ROS generation. These results suggest a role for MAPK in regulating hyperoxia-induced NAD(P)H oxidase activation in HPAECs.  相似文献   

6.
ROCK mediates thrombin's endothelial barrier dysfunction   总被引:6,自引:0,他引:6  
Thrombin-induced endothelial monolayer hyperpermeability is thought toresult from increased F-actin stress fiber-related contractile tension,a process regulated by the small GTP-binding protein Rho. We testedwhether this process was dependent on the Rho-associated proteinkinase, ROCK, using a specific ROCK inhibitor, Y-27632. The effects ofY-27632 on thrombin-induced myosin light chain phosphorylation (MLCP)and tyrosine phosphorylation of p125 focal adhesion kinase(p125FAK) and paxillin were measured by Western blotting.F-actin organization and content were analyzed by digital imaging, andendothelial monolayer permeability was measured in bovine pulmonaryartery endothelial cell (EC) monolayers using a size-selectivepermeability assay. Y-27632 enhanced EC monolayer barrier function dueto a decline in small-pore number that was associated with increased ECsurface area, reduced F-actin content, and reorganization of F-actin to-catenin-containing cell-cell adherens junctions. Although Y-27632prevented thrombin-induced MLCP, stress fiber formation, and theincreased phosphotyrosine content of paxillin and p125FAK,it attenuated but did not prevent the thrombin-induced formation oflarge paracellular holes. These data indicate that thrombin-induced stress fiber formation is ROCK dependent. In contrast, thrombin-induced paracellular hole formation occurs in a ROCK-independent manner, whereas thrombin-induced monolayer hyperpermeability appears to bepartially ROCK dependent.

  相似文献   

7.
Primary cytomegalovirus (CMV) infection promotes oxidative stress and reduces nitric oxide (NO) bioavailability in endothelial cells. These events are among the earliest vascular responses to cardiovascular risk factors. We assessed the roles of NAD(P)H oxidase and NO bioavailability in microvascular responses to persistent CMV infection alone or with hypercholesterolemia. Wild-type (WT) or gp91phox (NAD(P)H oxidase subunit) knockout mice received mock inoculum or 3 × 104 PFU murine CMV (mCMV) ip 5 weeks before placement on a normal or high-cholesterol diet (HC) for 4 weeks before assessment of arteriolar function and venular blood cell recruitment using intravital microscopy. Some WT groups received sepiapterin (a precursor of the nitric oxide synthase cofactor tetrahydrobiopterin) or apocynin (NAD(P)H oxidase inhibitor/antioxidant). Endothelium-dependent vasodilation was impaired in mCMV vs mock WT, regardless of diet. This was not affected by sepiapterin, and pharmacological inhibition of nitric oxide synthase reduced dilation similarly in mock and mCMV mice. Apocynin or deficiency of total, but not blood cell or vascular wall only (tested using bone marrow chimeras), gp91phox protected against arteriolar dysfunction. Blood cell recruitment was induced by mCMV–HC. Sepiapterin, but not NAD(P)H oxidase deficiency/apocynin, reduced leukocyte accumulation, whereas platelet adhesion was reduced by sepiapterin, apocynin, or total, platelet-specific, or vascular wall gp91phox deficiency. These data implicate activation of both hematopoietic and vessel wall NAD(P)H oxidase in mCMV-induced arteriolar dysfunction and platelet and vascular NAD(P)H oxidase in the thrombogenic phenotype induced by mCMV–HC. In contrast, findings with sepiapterin suggest that eNOS dysfunction, perhaps uncoupling, mediates venular, but not arteriolar, responses to mCMV–HC, thus indicating that NAD(P)H oxidase and eNOS differentially regulate microvascular responses to mCMV.  相似文献   

8.
Vascular endothelial cell superoxide (O(*)(2)) has an important role in intracellular signaling, in interaction with other reactive species such as nitric oxide, and in vascular dysfunction. Little is known regarding the source and function of O(*)(2) from microvascular endothelial cells from specific tissues. Mouse lung microvascular endothelial cells stimulated with phorbol ester (PMA) or NADPH generated significant O(*)(2), which was inhibited by diphenyleneiodonium (DPI) but not by allopurinol, rotenone, indomethacin, or quinacrine. Optimal O(*)(2) generation required cytosolic as well as particulate cell fractions of cells. In parallel studies, PMA induced increased expression of the p47 component of the NAD(P)H oxidase in the particulate fraction, which was inhibited by staurosporine and calphostin. These data demonstrate that NAD(P)H oxidase is an important source of O(*)(2) generation in lung microvascular endothelial cells.  相似文献   

9.
Proliferation of vascular smooth muscle cells (VSMC), oxidative stress, and elevated inflammatory cytokines are some of the components that contribute to plaque formation in the vasculature. The cytokine tumor necrosis factor-alpha (TNF-α) is released during vascular injury, and contributes to lesion formation also by affecting VSMC proliferation. Recently, an A2B adenosine receptor (A2BAR) knockout mouse illustrated that this receptor is a tissue protector, in that it inhibits VSMC proliferation and attenuates the inflammatory response following injury, including the release of TNF-α. Here, we show a regulatory loop by which TNF-α upregulates the A2BAR in VSMC in vitro and in vivo. The effect of this cytokine is mimicked by its known downstream target, NAD(P)H oxidase 4 (Nox4). Nox4 upregulates the A2BAR, and Nox inhibitors dampen the effect of TNF-α. Hence, our study is the first to show that signaling associated with Nox4 is also able to upregulate the tissue protecting A2BAR.  相似文献   

10.
A fundamental requirement for cellular vitality is the maintenance of plasma ion concentration within strict ranges. It is the function of the kidney to match urinary excretion of ions with daily ion intake and nonrenal losses to maintain a stable ionic milieu. NADPH oxidase is a source of reactive oxygen species (ROS) within many cell types, including the transporting renal epithelia. The focus of this review is to describe the role of NADPH oxidase-derived ROS toward local renal tubular ion transport in each nephron segment and to discuss how NADPH oxidase-derived ROS signaling within the nephron may mediate ion homeostasis. In each case, we will attempt to identify the various subunits of NADPH oxidase and reactive oxygen species involved and the ion transporters, which these affect. We will first review the role of NADPH oxidase on renal Na(+) and K(+) transport. Finally, we will review the relationship between tubular H(+) efflux and NADPH oxidase activity.  相似文献   

11.
A novel superoxide-producing NAD(P)H oxidase in kidney   总被引:34,自引:0,他引:34  
During phagocytosis, gp91(phox), the catalytic subunit of the phagocyte NADPH oxidase, becomes activated to produce superoxide, a precursor of microbicidal oxidants. Currently increasing evidence suggests that nonphagocytic cells contain similar superoxide-producing oxidases, which are proposed to play crucial roles in various events such as cell proliferation and oxygen sensing for erythropoiesis. Here we describe the cloning of human cDNA that encodes a novel NAD(P)H oxidase, designated NOX4. The NOX4 protein of 578 amino acids exhibits 39% identity to gp91(phox) with special conservation in membrane-spanning regions and binding sites for heme, FAD, and NAD(P)H, indicative of its function as a superoxide-producing NAD(P)H oxidase. The membrane fraction of kidney-derived human embryonic kidney (HEK) 293 cells, expressing NOX4, exhibits NADH- and NADPH-dependent superoxide-producing activities, both of which are inhibited by diphenylene iodonium, an agent known to block oxygen sensing, and decreased in cells expressing antisense NOX4 mRNA. The human NOX4 gene, comprising 18 exons, is located on chromosome 11q14.2-q21, and its expression is almost exclusively restricted to adult and fetal kidneys. In human renal cortex, high amounts of the NOX4 protein are present in distal tubular cells, which reside near erythropoietin-producing cells. In addition, overexpression of NOX4 in cultured cells leads to increased superoxide production and decreased rate of growth. The present findings thus suggest that the novel NAD(P)H oxidase NOX4 may serve as an oxygen sensor and/or a regulator of cell growth in kidney.  相似文献   

12.
Oxidative stress occurs in remote liver injury, but the origin of the oxidant generation has yet to be thoroughly delineated. Some reports suggest that the source of the distant oxidative stress originates from the site of initial insult [i.e., xanthine oxidase (XO)]; however, it could also be derived from sources such as phagocytic and/or vascular NAD(P)H oxidase (Nox) enzymes. With a murine model of bilateral hindlimb ischemia-reperfusion, we describe here a mechanism for Nox-dependent oxidant production that contributes, at least in part, to remote hepatic parenchymal injury and sinusoidal endothelial cell (SEC) dysfunction. To determine whether Nox enzymes were the source of oxidants, mice were treated immediately after the onset of hindlimb ischemia with specific inhibitors to XO (50 mg/kg ip allopurinol) or Nox (10 mg/kg ip gp91ds-tat and 3 mg/kg ip apocynin). After 1 h of ischemia, hindlimbs were reperfused for either 3 or 6 h. Inhibition of XO failed to provide any improvement in parenchymal injury, SEC dysfunction, neutrophil accumulation, or microvascular dysfunction. In contrast, the inhibition of Nox enzymes prevented the progression (6 h) of parenchymal injury, significantly protected against SEC dysfunction, and completely prevented signs of neutrophil-derived oxidant stress. At the same time, however, inhibition of Nox failed to protect against the early parenchymal injury and microvascular dysfunction at 3 h of reperfusion. These data confirm that microvascular perfusion deficits are not essential for the pathogenesis of remote hepatic parenchymal injury. The data also suggest that Nox enzymes, not XO, are involved in the progression of compromised hepatic parenchymal and endothelial integrity during a systemic inflammatory response.  相似文献   

13.
Although the cardiovascular morbidity and mortality induced by cigarette smoking exceed those attributable to lung cancer, the molecular basis of smoking-induced vascular injury remains unclear. To test the link between cigarette smoke, oxidative stress, and vascular inflammation, rats were exposed to the smoke of five cigarettes per day (for 1 wk). Also, isolated arteries were exposed to cigarette smoke extract (CSE; 0 to 40 microg/ml, for 6 h) in organoid culture. We found that smoking impaired acetylcholine-induced relaxations of carotid arteries, which could be improved by the NAD(P)H oxidase inhibitor apocynin. Lucigenin chemiluminescence measurements showed that both smoking and in vitro CSE exposure significantly increased vascular O(2)(*-) production. Dihydroethidine staining showed that increased O(2)(*-) generation was present both in endothelial and smooth muscle cells. CSE also increased vascular H(2)O(2) production (dichlorofluorescein fluorescence). Vascular mRNA expression of the proinflammatory cytokines IL-1beta, IL-6, and TNF-alpha and that of inducible nitric oxide synthase was significantly increased by both smoking and CSE exposure, which could be prevented by inhibition of NAD(P)H oxidase (diphenyleneiodonium and apocynin) or scavenging of H(2)O(2). In cultured endothelial cells, CSE elicited NF-kappaB activation and increased monocyte adhesiveness, which were prevented by apocynin and catalase. Thus we propose that water-soluble components of cigarette smoke (which are likely to be present in the bloodstream in vivo in smokers) activate the vascular NAD(P)H oxidase. NAD(P)H oxidase-derived H(2)O(2) activates NF-kappaB, leading to proinflammatory alterations in vascular phenotype, which likely promotes development of atherosclerosis, especially if other risk factors are also present.  相似文献   

14.
Recently, it has been shown that the exogenous addition of hydrogen peroxide (H(2)O(2)) increases endothelial nitric oxide (NO(.)) production. The current study is designed to determine whether endogenous levels of H(2)O(2) are ever sufficient to stimulate NO(.) production in intact endothelial cells. NO(.) production was detected by a NO(.)-specific microelectrode or by an electron spin resonance spectroscopy using Fe(2+)-(DETC)(2) as a NO(.)-specific spin trap. The addition of H(2)O(2) to bovine aortic endothelial cells caused a potent and dose-dependent increase in NO(.) release. Incubation with angiotensin II (10(-7) mol) elevated intracellular H(2)O(2) levels, which were attenuated with PEG-catalase. Angiotensin II increased NO(.) production by 2-fold, and this was prevented by Losartan and by PEG-catalase, suggesting a critical role of AT1 receptor and H(2)O(2) in this response(.) In contrast, NO(.) production evoked by either bradykinin or calcium ionophore was unaffected by PEG-catalase. As in bovine aortic endothelial cells, angiotensin II doubled NO(.) production in aortic endothelial cells from C57BL/6 mice but had no effect on NO(.) production in endothelial cells from p47(phox-/-) mice. In contrast, stimulated NO(.) production to a similar extent in endothelial cells from wild-type and p47(phox-/-) mice. In summary, the present study provides direct evidence that endogenous H(2)O(2), derived from the NAD(P)H oxidase, mediates endothelial NO(.) production in response to angiotensin II. Under disease conditions associated with elevated levels of angiotensin II, this response may represent a compensatory mechanism. Because angiotensin II also stimulates O(2)() production from the NAD(P)H oxidase, the H(2)O(2) stimulation of NO(.) may facilitate peroxynitrite formation in response to this octapeptide.  相似文献   

15.
Chronic ethanol consumption is a risk factor for cardiovascular diseases. We studied whether NAD(P)H oxidase-derived reactive oxygen species (ROS) play a role in ethanol-induced hypertension, vascular dysfunction, and protein expression in resistance arteries. Male Wistar rats were treated with ethanol (20 %?v/v) for 6 weeks. Ethanol treatment increased blood pressure and decreased acetylcholine-induced relaxation in the rat mesenteric arterial bed (MAB). These responses were attenuated by apocynin (30 mg/kg/day; p.o. gavage). Ethanol consumption increased superoxide anion (O2 ?) generation and decreased nitrate/nitrite (NO x ) concentration in the rat MAB and apocynin prevented these responses. Conversely, ethanol did not affect the concentration of hydrogen peroxide (H2O2) and reduced glutathione (GSH) or the activity of superoxide dismutase (SOD) and catalase (CAT) in the rat MAB. Ethanol increased interleukin (IL)-10 levels in the rat MAB but did not affect the levels of tumor necrosis factor (TNF)-α, IL-6, or IL-1β. Ethanol increased the expression of Nox2 and the phosphorylation of SAPK/JNK, but reduced eNOS expression in the rat MAB. Apocynin prevented these responses. However, ethanol treatment did not affect the expression of Nox1, Nox4, p38MAPK, ERK1/2, or SAPK/JNK in the rat MAB. Ethanol increased plasma levels of TBARS, TNF-α, IL-6, IL-1β, and IL-10, whereas it decreased NO x levels. The major finding of our study is that NAD(P)H oxidase-derived ROS play a role on ethanol-induced hypertension and endothelial dysfunction in resistance arteries. Moreover, ethanol consumption affects the expression and phosphorylation of proteins that regulate vascular function and NAD(P)H oxidase-derived ROS play a role in such responses.  相似文献   

16.
A purely chemical system for NAD(P)H oxidation to biologically active NAD(P)+ has been developed and characterized. Suitable amounts of EDTA, manganous ions and mercaptoethanol, combined at physiological pH, induce nucleotide oxidation through a chain length also involving molecular oxygen, which eventually undergoes quantitative reduction to hydrogen peroxide. Mn2+ is specifically required for activity, while both EDTA and mercaptoethanol can be replaced by analogs. Optimal molar ratios of chelator/metal ion (2:1) yield an active coordination compound which catalyzes thiol autoxidation to thiyl radical. The latter is further oxidized to disulfide by molecular oxygen whose one-electron reduction generates superoxide radical. Superoxide dismutase (SOD) inhibits both thiol oxidation and oxygen consumption as well as oxidation of NAD(P)H if present in the mixture. A tentative scheme for the chain length occurring in the system is proposed according to stoichiometry of reactions involved. Two steps appear of special importance in nucleotide oxidation: (a) the supposed transient formation of NAD(P). from the reaction between NAD(P)H and thiyl radicals; (b) the oxidation of the reduced complex by superoxide to keep thiol oxidation cycling.  相似文献   

17.
Tumour–stroma interaction is a prerequisite for tumour progression in skin cancer. Hereby, a critical step in stromal function is the transition of tumour-associated fibroblasts to MFs (myofibroblasts) by growth factors, for example TGFβ (transforming growth factor beta(). In this study, the question was addressed of whether fibroblast-associated NAD(P)H oxidase (NADH/NADPH oxidase), known to be activated by TGFβ1, is involved in the fibroblast-to-MF switch. The up-regulation of αSMA (alpha smooth muscle actin), a biomarker for MFs, is mediated by a TGFβ1-dependent increase in the intracellular level of ROS (reactive oxygen species). This report demonstrates two novel aspects of the TGFβ1 signalling cascade, namely the generation of ROS due to a biphasic NAD(P)H oxidase activity and a ROS-dependent downstream activation of p38 leading to a transition of dermal fibroblasts to MFs that can be inhibited by the selective NAD(P)H oxidase inhibitor apocynin. These data suggest that inhibition of NAD(P)H oxidase activity prevents the fibroblast-to-MF switch and may be important for chemoprevention in context of a ‘stromal therapy’ which was described earlier.  相似文献   

18.
We have previously reported that ANG II stimulation increased superoxide anion (O2-) through the activation of NAD(P)H oxidase and inhibited nitric oxide (NO)-dependent control of myocardial oxygen consumption (MVo2) by scavenging NO. Our objective was to investigate the role of NAD(P)H oxidase, especially the gp91phox subunit, in the NO-dependent control of MVo2. MVo2 in mice with defects in the expression of gp91phox [gp91(phox)(-/-)] was measured with a Clark-type oxygen electrode. Baseline MVo2 was not significantly different between wild-type (WT) and gp91(phox)(-/-) mice. Stimulation of NO production by bradykinin (BK) induced significant decreases in MVo2 in WT mice. BK-induced reduction in MVo2 was enhanced in gp91(phox)(-/-) mice. BK-induced reduction in MVo2 in WT mice was attenuated by 10(-8) mol/l ANG II, which was restored by coincubation with Tiron or apocynin. In contrast to WT mice, BK-induced reduction in MVo2 in gp91(phox)(-/-) mice was not altered by ANG II. There was a decrease in lucigenin (5 x 10(-6) mol/l)-detectable O2- in gp91(phox)(-/-) mice compared with WT mice. ANG II resulted in significant increases in O2- production in WT mice, which was inhibited by coincubation with Tiron or apocynin. However, ANG II had no effect on O2- production in gp91(phox)(-/-) mice. Histological examination showed that the development of abscesses and/or the invasion of inflammatory cells occurred in lungs and livers but not in hearts and kidneys from gp91(phox)(-/-) mice. These results indicate that the gp91(phox) subunit of NAD(P)H oxidase mediates O2- production through the activation of NAD(P)H oxidase and attenuation of NO-dependent control of MVo2 by ANG II.  相似文献   

19.
Although hypercholesterolemia is known to impair endothelium-dependent vasodilation (EDV) long before the appearance of atherosclerotic plaques, it remains unclear whether the immune mechanisms that have been implicated in atherogenesis also contribute to the early oxidative stress and endothelial cell dysfunction elicited by hypercholesterolemia. EDV (wire myography), superoxide generation (cytochrome c reduction), and NAD(P)H oxidase mRNA expression were monitored in aortic rings from wild-type (WT) and mutant mice placed on either a normal diet or a cholesterol-enriched diet (HC) for 2 wk. WT mice on HC exhibited impaired EDV, enhanced superoxide generation, and increased expression of NAD(P)H oxidase subunit Nox-2 mRNA. The impaired EDV and increased superoxide generation induced by HC were significantly blunted in severe combined immunodeficient (SCID) mice and CD4+ T lymphocyte-deficient mice. These responses were also attenuated in HC mice genetically deficient in IFN-gamma; however, adoptive transfer of WT-HC CD4+ T lymphocytes to IFN-gamma-deficient recipients restored HC-induced responses. The HC-induced impaired EDV and oxidative stress were also attenuated in HC mice genetically deficient in Nox-2 (gp91(phox-/-)) and in WT-->gp91(phox-/-)-HC chimeras. HC-induced gp91(phox) mRNA expression was significantly blunted in mice deficient in CD4+ T cells or IFN-gamma and was restored with adoptive transfer of WT-HC CD4+ T cells to IFN-gamma-deficient recipients. These findings implicate the immune system in the early endothelial cell dysfunction associated with hypercholesterolemia and are consistent with a mechanism of impaired EDV that is mediated by CD4+ T cells and IFN-gamma, acting through the generation of superoxide from vascular NAD(P)H oxidase.  相似文献   

20.
Hyperglycemia increases the production of reactive oxygen species (ROS). NAD(P)H oxidase, producing superoxide anion, is the main source of ROS in diabetic podocytes and their production contributes to the development of diabetic nephropathy. We have investigated the effect of an antidiabetic drug, metformin on the production of superoxide anion in cultured podocytes and attempted to elucidate underlying mechanisms.The experiments were performed in normal (NG, 5.6 mM) and high (HG, 30 mM) glucose concentration. Overall ROS production was measured by fluorescence of a DCF probe. Activity of NAD(P)H oxidase was measured by chemiluminescence method. The AMP-dependent kinase (AMPK) activity was determined by immunobloting, measuring the ratio of phosphorylated AMPK to total AMPK. Glucose accumulation was measured using 2-deoxy-[1,2-3H]-glucose.ROS production increased by about 27% (187 ± 8 vs. 238 ± 9 arbitrary units AU, P < 0.01) in HG. Metformin (2 mM, 2 h) markedly reduced ROS production by 45% in NG and 60% in HG. Metformin decreased NAD(P)H oxidase activity in NG (36%) and HG (86%). AMPK activity was increased by metformin in NG and HG (from 0.58 ± 0.07 to. 0.99 ± 0.06, and from 0.53 ± 0.03 to 0.64 ± 0.03; P < 0.05). The effects of metformin on the activities of NAD(P)H oxidase and AMPK were abolished in the presence of AMPK inhibitor, compound C.We have shown that metformin decreases production of ROS through reduction of NAD(P)H oxidase activity. We also have demonstrated relationship between activity of NAD(P)H oxidase and AMPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号