首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The senescence phenotype of Podospora anserina wild-type strains depends on mitochondrial (mt) genome stability. Characterization of activities implicated in the maintenance of the mt DNA is therefore essential for a better understanding of these degenerative processes. To address this question we looked for a nuclease activity in this fungal mitochondria. Here we describe the purification of an endo-exonuclease active on single-stranded, double-stranded and flap DNA. The Podospora nuclease also possesses an RNase H activity. Gel filtration chromatography showed a native molecular mass of 90 kDa for the P. anserina enzyme. The highly purified fraction shows a single polypeptide chain of 49 kDa on SDS-PAGE, indicating that the Podospora enzyme is probably active as a dimer. Purification and sequencing of the endolysine digestion peptides of the Podospora mt nuclease suggested that this enzyme could belong to the 5' structure-specific endo-exonuclease family. The possible involvement of this nuclease in mt DNA recombination during the senescence process is evoked.  相似文献   

2.
A DNA ligase has been purified approximately 2,100-fold, to near-homogeneity, from Drosophila melanogaster 6-12-h embryos and was shown to catalyze the formation of 3',5'-phosphodiester bonds. Polypeptides with molecular weights 83,000, 75,000, and 64,000 were observed when the purified enzyme was electrophoresed under denaturing conditions. These polypeptides were shown by partial proteolysis studies and two-dimensional gel analysis to be structurally related. The two smaller polypeptides were presumably derived from the largest, 83,000 molecular weight protein, by proteolysis during purification or in vivo. All three polypeptides formed enzyme-adenylylate complexes in the absence of DNA. Drosophila DNA ligase had a Stokes radius of 45 A, a sedimentation coefficient of 4.3 S, and a frictional ratio of 1.6, yielding a calculated molecular weight of 79,800. These studies indicate that DNA ligase from Drosophila embryos is a monomer. The purified ligase was free of detectable ATPase, nuclease, topoisomerase, and DNA polymerase activities. The enzyme exhibited an absolute requirement for ATP in the joining reaction. A divalent metal was required and N-ethylmaleimide inhibited the reaction. Formation of phosphodiester bonds by Drosophila ligase required the presence of 5'-phosphoryl and 3'-hydroxyl termini. The purified enzyme restored biological activity to endonucleolytically cleaved pBR322 DNA. The specific activity of Drosophila DNA ligase was highest in unfertilized eggs. Developing embryos had 5-10-fold more ligase activity than at any later time in development.  相似文献   

3.
A type II DNA topoisomerase has been purified from the nuclei of Drosophila melanogaster 6- to 18-h-old embryos. The enzyme, as assayed by its ability to catenate supercoiled DNA, behaved as a single homogeneous species throughout the procedure and the yield was approximately 0.5 mg of protein/100 g of dechorionated embryos. The final product was entirely ATP-dependent and free of topoisomerase I, endonuclease and protease activities. The purified topoisomerase II had a Stokes radius of 69 A and a sedimentation coefficient (S20,w) of 9.2 S, leading to a calculated native molecular weight of approximately 261,000. The protein consists of a single polypeptide of molecular weight 166,000, as determined by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. Taken together with the above hydrodynamic studies, the Drosophila enzyme is probably a homodimer, as has been observed for other eukaryotic type II enzymes. Thus, it appears that during the course of evolution the heterologous subunits which comprise bacterial type II topoisomerases have been combined into a single polypeptide chain in eukaryotes.  相似文献   

4.
An endo-exonuclease has been purified from cultured monkey (CV-1) cells. The enzyme which was purified to near homogeneity to be a 65 kDa monomeric protein. The single-strand DNase activity is endonucleolytic and nonprocessive, whereas the double-strand DNase activity is exonucleolytic and processive. The enzyme was also found to have RNase activity using poly-rA as substrate. The pH optimum for ss-DNase is 8 and for ds-DNase it is 7.5. Both DNase activities require a divalent metal ion (Mg2+, Mn2+, Ca2+, Zn2+) for activity and exhibit the same kinetics of heat inactivation. The purified protein binds to and cleaves a synthetic Holliday junction substrate. The overall enzymatic characteristics of the mammalian protein are very similar to the putative recombination endo-exonucleases purified from Neurospora crassa, Aspergillus nidulans and Saccharomyces cerevisiae.  相似文献   

5.
A protein with specific affinity for the mRNA cap structure was purified both from the postribosomal supernatant and from the ribosomal high-salt wash of Drosophila melanogaster embryos by m7GTP-Sepharose chromatography. This protein had an apparent molecular mass of 35 kilodaltons (kDa) in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a size very different from those of the cap-binding proteins that have been characterized thus far. Drosophila 35-kDa cap-binding protein (CBP) could also be isolated from the ribosomal high-salt wash as part of a salt-stable protein complex consisting of polypeptides of 35, 72, and 140 to 180 kDa. Polyclonal antibodies against Drosophila 35-kDa CBP neither reacted with eucaryotic initiation factor 4E from rabbit reticulocytes nor affected mRNA translation in a rabbit reticulocyte cell-free system. However, in a cell-free system from Drosophila embryos, mRNA translation was specifically inhibited by these antibodies. The requirement of 35-kDa CBP for mRNA translation in Drosophila was diminished under ionic conditions in which the importance of mRNA cap structure recognition was reduced. Despite the structural differences between Drosophila 35-kDa CBP and mammalian initiation factor 4E, both proteins were functionally interchangeable in the in vitro translation system from Drosophila embryos.  相似文献   

6.
A mitochondrial endonuclease from Drosophila melanogaster embryos was purified to near homogeneity by successive fractionation with DEAE-cellulose and heparin--avidgel-F, followed by FPLC chromatography on mono S, Superose 12 and a second mono S column. This enzyme digests double-stranded DNA more efficiently than heat-denatured DNA. The endonuclease activity has a molecular mass of 44 kDa, as determined under native conditions using a gel-filtration Superose 12 column. The prominent peptide detected by SDS/polyacrylamide gel electrophoresis likewise has a molecular mass of 44 kDa, suggesting a monomeric protein. The enzyme has an absolute requirement for divalent cations, preferring Mg2+ over Mn2+. No activity could be detected when these cations were replaced by Ca2+ or Zn2+. The pH optimum for this enzyme activity is 6.5-7.4 and its isoelectric point is 4.9. Both single-strand and double-strand breaks are introduced simultaneously into a supercoiled substrate in the presence of MgCl2 or MnCl2. Endonuclease-treated DNA serves as a substrate for DNA polymerase I from Escherichia coli, suggesting that 3'-OH termini are generated during cleavage. The enzyme is free from any detectable DNA exonuclease activity but not from RNase activity. Partial inhibition by antibodies raised against mitochondrial endonucleases derived from bovine heart and Saccharomyces cerevisiae have revealed a potential structural homology between these nucleases.  相似文献   

7.
The enzyme GTP cyclohydrolase I, which catalyzes the first step in the pteridine biosynthetic pathway, has been purified by at least 4400-fold from Drosophila melanogaster. The active complex has an apparent molecular mass of 575,000 daltons, as estimated from gel filtration. This high molecular mass complex appears to be composed of a number of 39,000-dalton subunits. A polyspecific antiserum generated against the active complex has been used to identify this polypeptide as being severely affected by mutations in Punch, the structural gene for GTP cyclohydrolase. Enzyme activity is inhibited by divalent cations and high ionic strength buffers. No cofactors have been demonstrated to be required for enzyme activity. The enzyme displays positive cooperativity in phosphate buffer, a Hill number of 2.1, but only slight cooperativity in Tris buffer, a Hill number of 1.2.  相似文献   

8.
Acid phosphatase-1 (orthophosphoric monoester phosphohydrolase, acid optimum, EC 3.1.3.2), the major phosphatase in adult Drosophila melanogaster, has been purified to apparent homogeneity. The final product is a glycoprotein homodimer with a subunit molecular weight of about 50,000, as measured by its electrophoretic mobility in denaturing conditions on polyacrylamide gels containing sodium dodecyl sulfate. It has a turnover number of 1720 1-naphthyl phosphate molecules hydrolyzed/s by each acid phosphatase-1 molecule at 37 degrees C, pH 5.0. An average fly contains about 5 ng of enzyme. Pure acid phosphatase-1 displays heterogeneity in isoelectric focusing, with a major band at pH 5.3. The enzyme hydrolyzes a wide variety of phosphate monoesters, including AMP, glucose 6-phosphate, ATP, choline phosphate, or phosphoproteins. The maximum reaction rates are different for all substrates, and some substrates appear to inhibit the reaction at high substrate concentrations. The Michaelis constants for 1-naphthyl phosphate and p-nitrophenyl phosphate are 79 microM and 68 microM, respectively, at pH 5.0 and 37 degrees C. The optimum pH level for 1-naphthyl phosphate is 4.5. Acid phosphatase-1 is inhibited by L(+)-tartrate (but not D(-)-tartrate), phosphate, and fluoride. The reaction rate increases 2.1-fold for every 10 degrees C rise in temperature. Above 48 degrees C, the rate of thermal denaturation is greater than the rate of the enzyme reaction.  相似文献   

9.
A novel endo-exonuclease, DmGEN (Drosophila Melanogaster XPG-like endonuclease), was identified in D.melanogaster. DmGEN is composed of five exons and four introns, and the open reading frame encodes a predicted product of 726 amino acid residues with a molecular weight of 82.5 kDa and a pI of 5.36. The gene locus on Drosophila polytene chromosomes was detected at 64C9 on the left arm of chromosome 3 as a single site. The encoded protein showed a relatively high degree of sequence homology with the RAD2 nucleases, especially XPG. Although the XPG-N- and XPG-I-domains are highly conserved in sequence, locations of the domains are similar to those of FEN-1 and EXO-1, and the molecular weight of the protein is close to that of EXO-1. In vitro, DmGEN showed endonuclease and 3'-5' exonuclease activities with both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), but the endonuclease action with dsDNA was quite specific: 5'-3' exonuclease activity was found to occur with nicked DNA, while dsDNA was endonucleolytically cut at 3-4 bp from the 5' end. Homologs are widely found in mammals and higher plants. The data suggest that DmGEN belongs to a new class of RAD2 nuclease.  相似文献   

10.
DNA polymerase beta is widely distributed in the eukariotes. So far, few examples are known in which a DNA polymerase alpha -like form alone is reported. Surprisingly, DNA polymerase beta was not detected in Drosophila embryos, while it is present in the cells of multicellular species from sponge to mammals. In view of the relevance of Drosophila as a model biological system for studying the role of the various DNA metabolism enzymes in vivo we have reinvestigated the presence of the DNA polymerase beta-like form in Drosophila adult flies.Here we report the occurrence in Drosophila melanogaster adult flies of a DNA polymerase activity that, for its NEM(1) resistance, template specificity, sensitivity to ddTTP, sedimentation coefficient and nuclear localization can be classified as a beta-like form.  相似文献   

11.
A purification procedure is described by which aspartate transcarbamylase was obtained from cultured cells of Drosophila melanogaster as part of a high-molecular-weight enzyme complex. The complex is shown to contain several polypeptides. An antiserum directed against the complex enzyme inhibited in vitro the activity of aspartate transcarbamylase, carbamylphosphate synthetase and dihydro-orotase which were shown to copurify on a sucrose gradient and by gel electrophoresis. A fast preparation procedure using this antiserum yielded a 220 000-molecular-weight protein in addition to the polypeptides present in the complex. A purification procedure is also described to obtain aspartate transcarbamylase from second instar larvae of Drosophila. At this stage, the enzyme is not complexed with carbamylphosphate synthetase and dihydro-orotase but exhibits the same molecular weight as the aspartate transcarbamylase moiety found in the high-molecular-weight complex of cultured cells.  相似文献   

12.
Lipid storage protein 2 (Lsd 2) is a conserved insect protein that belongs to the small PAT family of proteins. PAT proteins are found associated to the lipid droplets of adipocytes and play significant roles in the regulation of triacylglycerides metabolism. Here we describe the expression and purification of Lsd2, its reconstitution in lipoprotein particles, the location of putative lipid binding sites and its secondary structure. This study provides the starting point for future studies on the mechanism of function of Lsd2. The similarities and differences between Lsd1 and Lsd2, the only PAT proteins found in insects, are discussed.  相似文献   

13.
A cyclic nucleotide-independent protein kinase has been isolated from Drosophila melanogaster by chromatography on phosphocellulose and hydroxylapatite followed by gel filtration and glycerol gradient sedimentation. As determined by sodium dodecyl sulfate gel electrophoresis, the purified enzyme is greater than 95% homogeneous and is composed of two distinct subunits, alpha and beta, having Mr = 36,700 and 28,200, respectively. The native form of the enzyme is an alpha 2 beta 2 tetramer having a Stokes radius of 48 A, a sedimentation coefficient of 6.4 S, and Mr approximately 130,000. The purified kinase undergoes an autocatalytic reaction resulting in the specific phosphorylation of the beta subunit, exhibits a low apparent Km for both ATP and GTP as nucleoside triphosphate donor (17 and 66 microM, respectively), phosphorylates both casein and phosvitin but neither histones nor protamine, modifies both serine and threonine residues in casein, and is strongly inhibited by heparin (I50 = 21 ng/ml). These properties are remarkably similar to those of casein kinase II, an enzyme previously described in several mammalian and avian species. The strong similarities among the insect, avian, and mammalian enzymes suggest that casein kinase II has been highly conserved during evolution.  相似文献   

14.
An acid DNase was purified from Drosophila melanogaster till apparent homogeneity by six consecutive chromatographic steps. The enzyme is a lysosomal DNase, because it is glycosylated and carries 1.8-2.4 mol of mannose-6-phosphate/mol of enzyme. The enzyme is fully active without any divalent cation and introduces single stranded nicks into a supercoiled DNA.  相似文献   

15.
J V Garcia  B W Fenton  M R Rosner 《Biochemistry》1988,27(12):4237-4244
An insulin-degrading enzyme (IDE) from the cytoplasm of Drosophila Kc cells has been purified and characterized. The purified enzyme is a monomer with an s value of 7.2 S, an apparent Km for porcine insulin of 3 microM, and a specific activity of 3.3 nmol of porcine insulin degraded/(min.mg). N-Terminal sequence analysis of the gel-purified enzyme gave a single, serine-rich sequence. The Drosophila IDE shares a number of properties in common with its mammalian counterpart. The enzyme could be specifically affinity-labeled with [125I]insulin, has a molecular weight of 110K, and has a pI of 5.3. Although Drosophila Kc cells grow at room temperature, the optimal enzyme activity assay conditions parallel those of the mammalian IDE: 37 degrees C and a pH range of 7-8. The Drosophila IDE activity, like the mammalian enzymes, is inhibited by bacitracin and sulfhydryl-specific reagents. Similarly, the Drosophila IDE activity is insensitive to glutathione as well as protease inhibitors such as aprotinin and leupeptin. Insulin-like growth factor II, equine insulin, and porcine insulin compete for degradation of [125I]insulin at comparable concentrations (approximately 10(-6) M), whereas insulin-like growth factor I and the individual A and B chains of insulin are less effective. The high degree of evolutionary conservation between the Drosophila and mammalian IDE suggests an important role for this enzyme in the metabolism of insulin and also provides further evidence for the existence of a complete insulin-like system in invertebrate organisms such as Drosophila.  相似文献   

16.
Three forms of alpha-glucosidase, I, II, and III, have been purified from the whole body extract of adult flies of Drosophila melanogaster in yields of 2.1, 5.3, and 6.7%, respectively. The purification procedures involved ammonium sulfate fractionation, Con A-Sepharose 4B affinity chromatography, DEAE-Sepharose CL-6B ion exchange chromatography, Sephacryl S-200 gel filtration, and preparative gel electrophoresis. Each purified enzyme showed a single band on polyacrylamide gel on both protein and enzyme activity staining. The molecular weights of alpha-glucosidases I, II, and III were estimated to be 200,000, 56,000, and 76,000, respectively, by gel filtration. SDS gels indicated that alpha-glucosidases II and III were each composed of a single polypeptide chain, whereas alpha-glucosidase I was composed of two identical subunits. Both alpha-glucosidases II and III hydrolyzed sucrose and p-nitrophenyl-alpha-D-glucoside (PNPG), but alpha-glucosidase I hydrolyzed PNPG to a much lesser extent than sucrose. For sucrose the pH optima of alpha-glucosidases I, II, and III were pH 6.0, 5.0, and 6.0 and the Km values were 13.1, 8.9, and 10 mM, respectively. For PNPG the pH optima of alpha-glucosidases II and III were pH 5.5 and 6.5 and the Km values were 0.77 and 0.21 mM, respectively.  相似文献   

17.
A Ca(2+)-activated thiol protease was purified from Drosophila melanogaster. The procedure involves Phenyl-Sepharose, Reactive Red-Agarose and Q-Sepharose fast flow (or MonoQ) chromatographic steps. The enzyme eluting from Q-Sepharose fast flow seems to be homogeneous as judged by silver staining on SDS-PAGE: it consists of a single polypeptide chain of M(r),app = 94K and pI = 5.46. The proteolytic activity of the purified enzyme is absolutely Ca(2+)-dependent, characterized by 0.6 mM free Ca2+ at half-maximal activity. Ca2+ ions cannot be replaced effectively by the divalent cations Mg2+, Mn2+, Zn2+, Ba2+, and Cd2+. The enzyme shows the inhibitor pattern of thiol proteases. Human recombinant calpastatin (domain I) completely inhibits the enzyme at a nearly 1:1 molar ratio. Several of these properties resemble those of vertebrate calpain II. However, various attempts to detect a small subunit of M(r) approximately 30K, common with vertebrate calpains, remained unsuccessful. We suggest that the Drosophila enzyme is a novel calpain II-like protease.  相似文献   

18.
19.
Lipophorin was isolated from homogenized adult Drosophila melanogaster. It is stained by Sudan Black and has a native molecular mass of 640 kD and a density of 1.12 g/ml. It consists of two glycosylated apoproteins of 240 and 75 kDa. Gas chromatography and mass spectrometry showed that lipophorins isolated separately from virgin 3-day-old male and female flies were associated with specific hydrocarbons, and that these were the same hydrocarbons found in male and female cuticles, respectively. Moreover, a pool of internal hydrocarbons was demonstrated for the first time, with chain lengths similar to those of the cuticular pool. Studies on the fate of the hydrocarbons synthesized de novo after topical applications of radiolabelled fatty acid precursors showed a decrease of the internal pool of hydrocarbons with time, concomitant with an increase of the cuticular pool. These results suggest that hydrocarbons synthesized at an internal site, possibly in oenocytes, may be transported to the cuticle of the flies by lipophorin. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The enzyme dihydropterin oxidase has been purified to apparent homogeneity from the fruit fly Drosophila melanogaster. This enzyme uses a variety of 2-amino-4-oxo-7,8-dihydropteridine compounds as substrates, including 2-amino-4-oxo-7,8-dihydropteridine (called dihydropterin), Km = 0.11 microM; 6-lactoyl-7,8-dihydropterin, Km = 1.80 microM; and 7,8-dihydrobiopterin, Km = 1.25 microM. The products in each case are the corresponding fully oxidized compounds 2-amino-4-oxopteridine, oxidized 6-lactoyl-7,8-dihydropterin, and 6-L-erythro-dihydroxypropylpterin, respectively. During the reaction, 1 mol of molecular oxygen is consumed per mole of substrate oxidized, and hydrogen peroxide is produced. The molecular weight of the enzyme is approximately 51,500. The enzyme apparently contains two polypeptide chains of identical molecular weight. The prosthetic group of the enzyme has been identified as FAD. From the determination of the occurrence of the enzyme in the various stages of the life cycle of D. melanogaster and from other considerations, the tentative conclusion is reached that the physiological role of dihydropterin oxidase is to convert dihydropterin to 2-amino-4-oxopteridine, a reaction that is believed to be essential in the formation of 2-amino-4-oxo-7-hydroxypterin in D. melanogaster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号