首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dixon SC  Martin RC  Mok MC  Shaw G  Mok DW 《Plant physiology》1989,90(4):1316-1321
An enzyme catalyzing the formation of O-glucosylzeatin in immature embryos of Phaseolus lunatus was purified 2500-fold using ammonium sulfate precipitation followed by affinity and anion exchange chromatography. The enzyme uses trans-zeatin as substrate (Km 28 micromolar) but not cis-zeatin, ribosylzeatin, or dihydrozeatin. Both UDP-glucose and UDP-xylose can serve as glycosyl donors, with Kms of 0.2 and 2.7 millimolar, respectively, for the formation of O-glucosylzeatin and O-xylosylzeatin. In comparison, the UDPxylose-zeatin:O-xylosyltransferase (JE Turner, DWS Mok, MC Mok, G Shaw [1987] Proc Natl Acad Sci USA 84: 3714-3717) isolated by the same procedures from P. vulgaris embryos uses only UDP-xylose as donor substrate and the Kms for both zeatin and UDP-xylose are much lower (2 and 3 micromolar, respectively). The chromatographic behavior on affinity columns and molecular weights (approximate Mr 44,000 daltons) of the two enzymes are similar. Results from substrate competition experiments and enzyme separation by anion exchange HPLC indicate a single, distinct, zeatin O-glycosylation enzyme occurs in embryos of each of these Phaseolus species.  相似文献   

2.
Functionally-intact chloroplasts were obtained from 11-day-old pea (Pisum sativum cv Midfreezer) seedlings. Enzyme-distribution studies with ribulose bisphosphate carboxylase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase showed that ca 2.1% of the total tissue chloroplasts were present in the chloroplast preparation. The rate of intactness of chloroplast preparations was 34–82%. SAM:caffeic acid methyltransferase, flavanone synthase, UDPG:flavonoid-3-O-glucosyltransferase and SAM:quercetin methyltransferase activities were measured in the homogenate, supernatant and chloroplast lysate fractions. Significant activities of the above four enzymes could only be detected in the homogenate and supernatant fractions. Similar experiments with 11-day-old seedlings of green beans (Phaseolus vulgaris cv Early Gallatin), red cabbage (Brassica oleracea cv Red Danish) and 6-week-old plants of spinach (Spinacia oleracea cv Bloomsdale) showed a similar distribution of the flavonoid synthesizing enzymes. We conclude that under the reported conditions chloroplasts are not involved in flavonoid biosynthesis.  相似文献   

3.
Citrus paradisi 3-O-glucosyltransferase (Cp3GT, Genbank Protein ID: ACS15351) and Citrus sinensis 3-O-glucosyltransferase (Cs3GT, Genbank Protein ID: AAS00612.2) share 95% amino acid sequence identity. Cp3GT was previously established as a flavonol-specific 3-O-glucosyltransferase by direct enzymatic analysis. Cs3GT is annotated as a flavonoid-3-O-glucosyltransferase and predicted to use anthocyanidins as substrates based on gene expression analysis correlated with the accumulation of anthocyanins in C. sinensis cv. Tarocco, a blood orange variety. Mutant enzymes in which amino acids found in Cs3GT were substituted for position equivalent residues in Cp3GT were generated, heterologously expressed in yeast, and characterized for substrate specificity. Structure–function relationships were investigated for wild type and mutant glucosyltransferases by homology modelling using a crystallized Vitis vinifera anthocyanidin/flavonol 3-O-GT (PDB: 2C9Z) as template and subsequent substrate docking. All enzymes showed similar patterns for optimal temperature, pH, and UDP/metal ion inhibition with differences observed in kinetic parameters. Although changes in the activity of the mutant proteins as compared to wild type were observed, cyanidin was never efficiently accepted as a substrate.  相似文献   

4.
Leaves of a novel strain of peas (Pisum sativum L.) were used to determine the distribution of secondary metabolites and their biosynthetic enzymes. Leaf epidermal layers in this strain are easily separated from the parenchyma. Anthocyanins and flavonol glycosides were localized in epidermal vacuoles only. Among the biosynthetic enzymes studied, phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), S-adenosyl-1-methionine (SAM):caffeic acid and SAM:quercetin methyltransferases (o-dihydric phenol methyltransferase, EC 2.1.1.42) and a flavonoid 7-O-glucosyltransferase (EC 2.4.1.91) were chiefly localized in the parenchyma, whereas trans-cinnamate 4-monooxygenase (EC 1.14.13.11), hydroxycinnamate:CoA ligases (EC 6.2.1.12) and a flavonoid 3-O-glucosyltransferase (EC 2.4.1.91) were found mainly in the epidermis. Flavanone (chalcone) synthase activity was found only in the epidermis, whereas chalcone isomerase (EC 5.5.1.6) was evenly distributed in epidermal and parenchyma tissues.  相似文献   

5.
6.
Turner JE  Mok MC  Mok DW 《Plant physiology》1985,79(1):321-322
Zeatin metabolites were isolated from seedcoats and pod tissues of Phaseolus vulgaris and P. lunatus. The differences observed previously between P. vulgaris and P. lunatus embryos, i.e. the formation of O-ribosyl derivatives in the former and O-glucosyl derivatives in the latter, could also be detected in seedcoats, although the levels of these metabolites were much lower and there was a concomitant increase of breakdown products (adenine, adenosine and AMP). Inner pod wall tissues of both genotypes metabolized zeatin at a slow rate and the major metabolite was the mononucleotide of zeatin. The array of metabolites recovered was not influenced by the extraction method (cold ethanol or modified Bieleski solution).  相似文献   

7.
The glutamine synthetase (GS) isozymes in the plant fraction of nodule extracts from 62 cultivars of Phaseolus vulgaris L. and one cultivar of Phaseolus lunatus L. were analyzed by polyacrylamide gel electrophoresis. All P. vulgaris nodule extracts displayed two GS activity bands: a nodule-specific band (GSn1) and a band (GSn2) similar to the single band (GSr) present in root extracts. In nodule extracts of P. lunatus, the GSn1 band was detected, but the GSn2 band was barely detectable. In contrast to P. vulgaris, the GSn2 band and the GSr band of P. lunatus appeared to be different. The electrophoretic mobility of the GSn1 band in P. vulgaris was governed by both the plant cultivar and the development stage of the nodule. In nodule extracts of P. vulgaris and P. lunatus, the zone of GSn1 activity coincided with six to nine distinct protein bands as revealed after treatment of gels, which had previously been stained for GS activity, with Coomassie blue. All these protein bands were shown to consist of polypeptides of identical molecular weight (approximately 47,000 daltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results indicate that P. vulgaris continuously generates isozymes of GSn1 of increasing electrophoretic mobility during the course of nodule development.  相似文献   

8.
A salicylic acid (SA)-inducible uridine 5′-diphosphate (UDP)-glucose:SA 3-O-glucosyltransferase was extracted from oat (Avena sativa L. cv Dal) roots. Reverse phase high-performance liquid chromatography or anion exchange chromatography was used to separate SA from the product, β-O-d-glucosylsalicylic acid. The soluble enzyme was purified 176-fold with 5% recovery using a combination of pH fractionation, anion exchange, gel filtration, and chromatofocusing chromatography. The partially purified protein had a native molecular weight of about 50,000, an apparent isoelectric point at pH 5.0, and maximum activity at pH 5.5. The enzyme had a Km of 0.28 mm for UDP-glucose and was highly specific for this sugar donor. More than 20 hydroxybenzoic and hydroxycinnamic acid derivatives were assayed as potential glucose acceptors. UDP-glucose:SA 3-O-glucosyltransferase activity was highly specific toward SA (Km = 0.16 mm). The enzyme was inhibited by UDP and uridine 5′-triphosphate but not by up to 7.5 mm uridine 5′-monophosphate.  相似文献   

9.
The goal of the study was to obtain a panel of monoclonal antibodies (MAb) against antigens of freshwater polyps of the genus Hydra. Hybrid mice F1(Balb/c × SJL/J) were immunized with cell membrane fraction of H. vulgaris and three months later their splenocytes were fused with cultured mouse myeloma cells 653A. Testing of culture fluids in ELISA with immobilized H. vulgaris cells, 82 hybridomas producing MAb were revealed. Study of MAb specificity in ELISA with H. vulgaris and H. oligactis cells indicated that 22% of them recognized only H. vulgaris antigens. About 50% of MAb recognized equally antigens of the both species. The rest of MAb reacted with H. vulgaris and H. oligactis antigens to different degree. Eight hybridomas producing MAb of all three above groups were adapted for growth as ascitic tumors. The distribution of antigens binding these MAb was studied in indirect immunofluorescence on fixed polyps, living or fixed cells, and on paraffin- embedded sections. Among the best studied MAb, of the greatest interest were the following reagents. One of them (1A10) revealed an antigen on surface membranes of ectodermal epithelial cells of H. vulgaris. The second one (1G10) was specific of the antigen located in mesoglea and basal cytoplasmic areas of ectodermal and entodermal epithelial cells of the both hydra species. The MAb 4G3 interacted with cytoplasmic antigen of ectodermal epithelia-muscular cells of the both hydra species. MAb 4H1 revealed nematocytes in H. vulgaris and H. oligactis. The data obtained indicate that in two species of hydra the epitopes binding the same MAb might be located in cells of different types.  相似文献   

10.
Cultured cells of rose (Rosa damascena) treated with an elicitor derived from Phytophthora spp. and suspension-cultured cells of French bean (Phaseolus vulgaris) treated with an elicitor derived from the cell walls of Colletotrichum lindemuthianum both produced H2O2. It has been hypothesized that in rose cells H2O2 is produced by a plasma membrane NAD(P)H oxidase (superoxide synthase), whereas in bean cells H2O2 is derived directly from cell wall peroxidases following extracellular alkalinization and the appearance of a reductant. In the rose/Phytophthora spp. system treated with N,N-diethyldithiocarbamate, superoxide was detected by a N,N′-dimethyl-9,9′-biacridium dinitrate-dependent chemiluminescence; in contrast, in the bean/C. lindemuthianum system, no superoxide was detected, with or without N,N-diethyldithiocarbamate. When rose cells were washed free of medium (containing cell wall peroxidase) and then treated with Phytophthora spp. elicitor, they accumulated a higher maximum concentration of H2O2 than when treated without the washing procedure. In contrast, a washing treatment reduced the H2O2 accumulated by French bean cells treated with C. lindemuthianum elicitor. Rose cells produced reductant capable of stimulating horseradish (Armoracia lapathifolia) peroxidase to form H2O2 but did not have a peroxidase capable of forming H2O2 in the presence of reductant. Rose and French bean cells thus appear to be responding by different mechanisms to generate the oxidative burst.  相似文献   

11.
Conditions that resulted in unstable expression and heat instability of a cell surface epitope associated with a 66-kDa antigen in Listeria monocytogenes serotypes were identified with the probe monoclonal antibody (MAb) EM-7G1 in an enzyme-linked immunosorbent assay. This epitope appeared to be absent in three serotypes (serotypes 3b, 4a, and 4c), which did not react with MAb EM-7G1 irrespective of the enrichment broth tested. The remaining 10 serotypes were detected by MAb EM-7G1 only when cells were grown in nonselective brain heart infusion broth (BHI) or selective Listeria enrichment broth (LEB). When cells were grown in Listeria repair broth (LRB), only 6 of the 13 serotypes were detected by MAb EM-7G1, and recognition of serogroup 4 was completely lost. None of the 13 serotypes was detected by MAb EM-7G1 when cells were grown in two other commonly used Listeria-selective media, UVM1 broth and Fraser broth (FRB), indicating that possible loss of epitope expression occurred under these conditions. MAb EM-7G1 maintained species specificity without cross-reacting with live or heat-killed cells of six other Listeria spp. (Listeria ivanovii, Listeria innocua, Listeria seeligeri, Listeria welshimeri, Listeria grayi, and Listeria murrayi) irrespective of the enrichment conditions tested. Due to heat instability of the cell surface epitope when it was exposed to 80 or 100°C for 20 min, MAb EM-7G1 is suitable for detection of live cells of L. monocytogenes in BHI or LEB but not in LRB, UVM1, or FRB enrichment medium.  相似文献   

12.
The bean-rhizobia symbiosis allows atmospheric nitrogen fixation through nodule formation. Nevertheless, nodule establishment in Mediterranean areas is subjected to various biotic and abiotic constraints such as phosphorus soils deficiency. This study compares plant-growth response to moderate (75 μmol KH2PO4 plant?1 week?1) versus severe phosphorus deficiency (30 μmol KH2PO4 plant?1 week?1) after inoculation with Rhizobium tropici CIAT 899 and Glomus intraradices of four Phaseolus vulgaris lines contrasting in P use efficiency (PUE) for their symbiotic nitrogen fixation (SNF) in hydroaeroponic culture. After 5 weeks of growth under glasshouse conditions, the oxygen consumption related to nitrogen fixation was measured on intact nodulated roots. The obtained results revealed that mycorrhizal colonization decreased the nodulated-roots O2 consumption of P. vulgaris under both P deficiencies although it increased the growth of all plant organs and the nodulation with a large genotypic variability. Moreover, mycorrhizal colonization was higher under severe P deficiency than under moderate one. In conclusion, the tripartite inoculation improved growth parameters under severe P-deficiency with a decrease in nodulated root O2 consumption.  相似文献   

13.
Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C6H18O24P6) or 75 μmol Pi (K2HPO4), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.  相似文献   

14.
The influence of varied Mg supply (10-1000 micromolar) and light intensity (100-580 microeinsteins per square meter per second) on the concentrations of ascorbate (AsA) and nonprotein SH-compounds and the activities of superoxide dismutase (SOD; EC 1.15.11) and the H2O2 scavenging enzymes, AsA peroxidase (EC 1.11.1.7), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were studied in bean (Phaseolus vulgaris L.) leaves over a 13-day period. The concentrations of AsA and SH-compounds and the activities of SOD and H2O2 scavenging enzymes increased with light intensity, in particular in Mg-deficient leaves. Over the 12-day period of growth for a given light intensity, the concentrations of AsA and SH-compounds and the activities of these enzymes remained more or less constant in Mg-sufficient leaves. In contrast, in Mg-deficient leaves, a progressive increase was recorded, particularly in concentrations of AsA and activities of AsA peroxidase and glutathione reductase, whereas the activities of guaiacol peroxidase and catalase were only slightly enhanced. Partial shading of Mg-deficient leaf blades for 4 days prevented chlorosis, and the activities of the O2.− and H2O2 scavenging enzymes remained at a low level. The results demonstrate the role of both light intensity and Mg nutritional status on the regulation of O2.− and H2O2 scavenging enzymes in chloroplasts.  相似文献   

15.
Major advances in our understanding of the biochemical and enzymological mechanisms of lignin biodegradation have been made in the past three years. Research has principally involved two ligninolytic microorganisms, the white rot fungus Phanerochaete chrysosporium and the actinomycete Streptomyces viridosporus. Research has been centred on attempts to identify the microbial catalysts that mediate lignin decay in these two microbes. Emphasis has been on studies concerned with isolating specific lignin catabolic enzymes and/or reduced forms of oxygen involved in attacking the lignin polymer. The possibility that lignin degradation might be non-enzymatic and mediated by extracellular reduced oxygen species such as hydrogen peroxide (H2O2), superoxide (O2∪c-|_.), hydroxyl radical (·OH) or singlet oxygen (1O2) has been investigated with both microorganisms. Using methods which have not always been unequivocal, the question of involvement of reduced oxygen species in lignin degradation by P. chrysosporium has been examined exhaustively. Evidence for the involvement of H2O2 is conclusive. However, there is little evidence to support the involvement of other extracellular reduced oxygen species, including ·OH, directly in the process of lignin degradation. Scavenger studies have been inconclusive because of questions of their specificity. If activated oxygen species are involved, the activated oxygen is probably held within the active site of an enzyme molecule. With S. viridosporus, scavenger studies also strongly indicate that extracellular reduced oxygen species are not involved in lignin degradation since scavengers generally do not significantly affect the ligninolytic system. The involvement of specific enzymes in lignin degradation by both P. chrysosporium and S. viridosporus has now been confirmed. With P. chrysosporium, ligninolytic enzymes recently discovered include extracellular non-specific peroxidases and oxygenases. They show numerous activities including dehydrogenative, peroxidatic, oxygenative and Cα?Cβ cleavages of lignin side chains. At least one P. chrysosporium enzyme, a unique H2O2-requiring oxygenase, has been purified to homogeneity. Evidence has been presented to show that S. viridosporus also produces a ligninolytic enzyme complex involved in demethylation of lignin's aromatic rings and in the oxidation of lignin side chains and cleavage of β-tether linkages within the polymer. The combined activites of these enzymes generate water-soluble polymeric modified lignin fragments, which are then slowly degraded further by S. viridosporus. The β-ether cleaving enzyme complex is probably membrane associated, but it is not extracellular. These first isolations of ligninolytic enzymes have changed the course of basic research on lignin biodegradation. New research priorities are already emerging and include enzyme purifications, kinetic studies, enzyme reaction mechanism studies and screenings for more enzymes. In addition, genetic studies are being carried out with both P. chrysosporium and S. viridosporus. Genetic manipulations include not only classical mutagenesis techniques, but also recombinant DNA techniques such as protoplast fusion. This latter technique has already been used to generate overproducers of the ligninolytic enzyme complex in S. viridosporus and it has been successfully used to recombine mutant strains of P. chrysosporium.  相似文献   

16.
17.
3-Deoxyanthocyanins are rare anthocyanin pigments produced by some mosses, ferns, and higher plants. The enzymes and genes responsible for biosynthesis of 3-deoxyanthocyanins have not been well characterized. We identified a novel gene encoding UDP-glucose:3-deoxyanthocyanidin 5-O-glucosyltransferase (dA5GT) from Sinningia cardinalis, which accumulates abundant 3-deoxyanthocyanins in its petals. Five candidate genes (ScUGT1 to ScUGT5) were isolated from an S. cardinalis flower cDNA by degenerate PCR targeted for the UGT88 clade. ScUGT1, ScUGT3, and ScUGT5 exhibited 45–47% identity with rose anthocyanidin 5,3-O-glucosyltransferase, which catalyzes glucosylation at the 5- and 3-position of 3-hydroxyanthocyanidin. Based on its temporal and spatial gene expression patterns, and enzymatic activity assays of the recombinant protein, ScUGT5 was screened as a dA5GT candidate. Recombinant ScUGT5 protein expressed in Escherichia coli was used to analyze the detailed enzymatic properties. The results demonstrated that ScUGT5 specifically transferred a glucosyl moiety to 3-deoxyanthocyanidins in the presence of UDP-glucose, but not to other flavonoid compounds, such as 3-hydroxyanthocyanidins, flavones, flavonols, or flavanones.  相似文献   

18.
Changes in the rates of synthesis of three enzymes of phenyl-propanoid biosynthesis in Phaseolus vulgaris L. (dwarf French bean) have been investigated by immunoprecipitation of [35S]methionine-labeled enzyme subunits with mono-specific antisera. Elicitor causes marked, rapid but transient co-ordinated increases in the rate of synthesis of phenyl-alanine ammonia-lyase, chalcone synthase and chalcone isomerase concomitant with the phase of rapid increase in enzyme activity at the onset of accumulation of phenyl-propanoid-derived phytoalexin antibiotics in suspension cultures of P. vulgaris. Co-ordinate induction of enzyme synthesis is also observed in hypocotyl tissue during race:cultivar-specific interactions with Colletotrichum lindemuthianum, causal agent of anthracnose. In an incompatible interaction (host resistant) there are early increases apparently localized to the initial site of infection prior to the onset of phytoalexin accumulation and expression of hypersensitive resistance. In contrast, in a compatible interaction (host susceptible) there is no induction of synthesis in the early stages of infection, but a delayed widespread response at the onset of lesion formation associated with attempted lesion limitation. It is concluded that expression of the phytoalexin defense response in biologically stressed cells of P. vulgaris characteristically involves co-ordinate induction of synthesis of phytoalexin biosynthetic enzymes.  相似文献   

19.
The effects of phosphorus (P) status on arsenate reductase gene (OsACR2.1) expression, arsenate reductase activity, hydrogen peroxide (H2O2) content, and arsenic (As) species in rice seedlings which were exposed to arsenate after ?P or +P pretreatments were investigated in a series of hydroponic experiments. OsACR2.1 expression increased significantly with decreasing internal P concentrations; more than 2-fold and 10-fold increases were found after P starvation for 30 h and 14 days, respectively. OsACR2.1 expression exhibited a significant positive correlation with internal root H2O2 accumulation, which increased upon P starvation or exposure to H2O2 without P starvation. Characterization of internal and effluxed As species showed the predominant form of As was arsenate in P-starved rice root, which contrasted with the +P pretreated plants. Additionally, more As was effluxed from P-starved rice roots than from non-starved roots. In summary, an interesting relationship was observed between P-starvation induced H2O2 and OsACR2.1 gene expression. However, the up-regulation of OsACR2.1 did not increase arsenate reduction in P-starved rice seedlings when exposed to arsenate.  相似文献   

20.
Microalgae are rich resources for high-value nutrients and biodiesel production. However, extraction of these valuable compounds from them requires costly energy-consuming procedures due to their rigid cell walls. Application of cell-disruptive agents, the AES-Bt agents, extracted from an algicidal bacterium, Bacillus thuringiensis ITRI-G1, are a promising way to reduce the cost of cell disruption. Treatment with AES-Bt agents resulted in a rapid decline of photosynthesis ability and caused cell death in Chlorella vulgaris. Hallmarks of programmed cell death (PCD), including chromatin condensation, DNA fragmentation, and phosphatidylserine externalization, were detected in C. vulgaris cells treated with the AES-Bt agents. Therefore, the cell disruption effect caused by application of the AES-Bt agents can be due to the occurrence of PCD. Similar to other PCDs, the PCD caused by AES-Bt agents was also associated with increased reactive oxygen species (ROS). However, co-treatments with diphenyleneiodonium chloride (DPI), an NAD(P)H oxidase inhibitor, or N,N′-dimethylthiourea (DMTU), a hydrogen peroxide (H2O2) trap, with the AES-Bt agents successfully reduced ROS production, and more cells displayed a feature of PCD detected after the co-treatments. In conclusion, the AES-Bt agents can promote PCD of microalgae; however, the mechanism may not be through induction of ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号