首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Maruyama  T Hiwasa    K I Oda 《Journal of virology》1981,37(3):1028-1043
Eight clones of flat revertants were isolated by negative selection from simian virus 40 (SV40)-transformed mouse and rat cell lines in which two and six viral genome equivalents per cell were integrated, respectively. These revertants showed either a normal cell phenotype or a phenotype intermediate between normal and transformed cells as to cellular morphology and saturation density and were unable to grow in soft agar medium. One revertant derived from SV40-transformed mouse cells was T antigen positive, whereas the other seven revertants were T antigen negative. SV40 could be rescued only from the T-antigen-positive revertant by fusion with permissive monkey cells. The susceptibility of the revertants to retransformation by wild-type SV40 was variable among these revertants. T-antigen-negative revertants from SV40-transformed mouse cells were retransformed at a frequency of 3 to 10 times higher than their grandparental untransformed cells. In contrast, T-antigen-negative revertants from SV40-transformed rat cells could not be retransformed. The arrangement of viral genomes was analyzed by digestion of cellular DNA with restriction enzymes of different specificity, followed by detection of DNA fragments containing a viral sequence and rat cells were serially arranged within the length of about 30 kilobases, with at least two intervening cellular sequences. A head-to-tail tandem array of unit length viral genomes was present in at least one insertion site in the transformed rat cells. All of the revertants had undergone a deletion(s), and only a part of the viral genome was retained in T-antigen-negative revertants. A relatively high frequency of reversion in the transformed rat cells suggests that reversion occurs by homologous recombination between the integrated viral genomes.  相似文献   

2.
A well-characterized SV40-transformed Swiss 3T3 line, SV101, and its revertants were tested for the ability to grow in reduced Ca++ (0.01 mM). Transformants and revertants did not differ from the parent 3T3 line in their Ca++ requirements. All three classes of cells grew less well in low Ca++ than in regular Ca++ (2.0 mM). SV40 transformants were then selected for the ability to grow in reduced Ca++. This new class of transformants was found to grow in 1% serum, grow in soft agarose, have a reorganized actin cytoskeleton, and express viral T antigens, as well as grow well in low Ca++. One of the selected clones was found to be T antigen-negative, yet was transformed in the serum, anchorage, actin, and Ca++ assays. It is possible that this clone was a spontaneous transformant. However, Southern blot analysis revealed the presence of integrated SV40 DNA. In addition, this analysis revealed the absence of an intact early region fragment, which codes for the viral T antigens. One explanation of this result may be that the mechanism of viral transformation for growth in low Ca++ involves viral-host DNA interactions that may not require a fully functional T antigen. In this case SV40 integration may be acting as a nonspecific cellular mutagen.  相似文献   

3.
4.
Previous work has suggested the presence of galactosyltransferases on the outer surface of the plasma membrane of a malignant and a nonmalignant cell line. This paper summarizes data indicating that three other classes of glycosyltransfeases are similarly located on cell surfaces. In addition to the original two cell lines examined, BALB/c 3T3 and BALB/c 3T12, two other lines of BALB/c origin have been investigated. These are the SV40–transformed 3T3 line and one of the revertants of the virally infected cells that is no longer malignant but retains a viral genome.  相似文献   

5.
The genome of the simian virus 40 (SV40) temperature-sensitive (ts) mutant tsD202 rescued by passage on transformed permissive monkey lines (see accompanying paper [Y. Gluzman et al., J. Virol. 24:534-540, 1977]) was analyzed by restriction endonuclease cleavage mapping to obtain biochemical evidence that the rescue of the ts phenotype results from recombination with the resident SV40 genome of the transformed cell. It was demonstrated that the endonuclease R. HaeIII cleavage site, which is located at 0.9 map unit in the standard viral genome (and which is in the proximity of the known map position of the tsD lesion), is missing in the DNAs of the parental tsD202 virus and of three independent revertants of tsD202. In contrast, this cleavage site was shown to be present in the DNAs of four out of five independently derived rescued D202 populations and in the DNA of the SV40 strain, 777, used to transform the monkey cells. Comparison of the endonuclease R. Hin(II + III) cleavage patterns of SV40 strain 777 DNA and tsD202 DNA revealed differences in the electrophoretic mobilities of Hin fragments A, B, and F. However, the corresponding Hin fragments from all four rescued D202 genomes were identical in their mobilities to those of tsD202 DNA, indicating that these regions of the rescued D202 genome are characteristic of the tsD202 parent. We conclude, therefore, that the genome of the rescued D202 virus is a true recombinant, since it contains restriction endonuclease cleavage sites characteristic of both parents, the endogenous resident SV40 genome of the transformed monkey cells and the exogenous tsD202 mutant.  相似文献   

6.
Simian virus 40 (SV40) DNA insertions from SV40-transformed mouse cell line W-2K-11 and its revertants M18, M31, and M42 were cloned. W-2K-11 cells contain 1.5 copies of the SV40 sequences in a partially tandem duplicated form. The endpoints of the viral sequences at the virus-host junctions are located very close to those reported by others, indicating that there are some preferred sites for integration and rearrangement in SV40 sequences. One flanking cellular sequence is a long stretch of adenine and thymine with repeated AAAT, and the other is a stretch of guanine and cytosine with repeated CCG. There are patchy homologies between the flanking cellular sequences and the corresponding parental SV40 sequences. The sequences around both junctions were retained in all the revertants, whereas most of the internal SV40 sequences coding for large T antigen were deleted. The coding sequences for small T antigen are intact, and small T antigen was expressed in all the revertants. The fragments cloned from M18 and M42 were identical and 3.9 kilobases of SV40 sequences were deleted. The parental SV40 sequences around the deletion site have sequences capable of forming a secondary structure which might reduce the effective distance between the two regions. The SV40 DNA retained in M31 is colinear with SV40 virion DNA, and a unit length of SV40 DNA was deleted within the SV40 sequences present in W-2K-11 cells. These results indicated that two types of deletion occurred during the reversion, one between homologous sequences and the other between nonhomologous sequences.  相似文献   

7.
Nick-translated simian virus 40 (SV40) [32P]DNA fragments (greater than 2 X 10(8) cpm/micrograms) were resolved into early- and late-strand nucleic acid sequences by hybridization with asymmetric SV40 complementary RNA. Both single-stranded DNA fractions contained less than 0.5% self-complementary sequences; both included [32P]-DNA sequences that derived from all regions of the SV40 genome. In contrast to asymmetric SV40 complementary RNA, both single-stranded [32P]DNAs annealed to viral [3H]DNA at a rate characteristic of SV40 DNA reassociation. Kinetics of reassociation between the single-stranded [32P]DNAs indicated that the two fractions contain greater than 90% of the total nucleotide sequences comprising the SV40 genome. These preparations were used as hybridization probes to detect small amounts of viral DNA integrated into the chromosomes of Chinese hamster cells transformed by SV40. Under the conditions used for hybridization titrations in solution (i.e., 10- to 50-fold excess of radioactive probe), as little as 1 pg of integrated SV40 DNA sequence was assayed quantitatively. Among the transformed cells analyzed, three clones contained approximately one viral genome equivalent of SV40 DNA per diploid cell DNA complement; three other clones contained between 1.2 and 1.6 viral genome equivalents of SV40 DNA; and one clone contained somewhat more than two viral genome equivalents of SV40 DNA. Preliminary restriction endonuclease maps of the integrated SV40 DNAs indicated that four clones contained viral DNA sequences located at a single, clone-specific chromosomal site. In three clones, the SV40 DNA sequences were located at two distinct chromosomal sites.  相似文献   

8.
9.
Apurinic sites cause mutations in simian virus 40   总被引:7,自引:0,他引:7  
SV40 has been used as a molecular probe to study the mutagenicity of apurinic sites (Ap) in mammalian cells. Untreated or UV-irradiated monkey kidney cells were transfected with depurinated DNA from the temperature-sensitive tsB201 SV40 late mutant which grows normally at the permissive temperature of 33 degrees C but which is unable to grow at 41 degrees C. Phenotypic revertants were screened at 41 degrees C for their ability to grow at the restrictive temperature and the mutation frequency was calculated in the viral progeny. Ap sites were introduced into DNA by heating at 70 degrees C under acid conditions (pH 4.8). This treatment induces one Ap site per SV40 genome per 15 min of heating as measured by alkaline denaturation or by treatment with the T4-encoded UV-specific endonuclease which possesses Ap-endonuclease activity. The experiments reported here show that Ap sites strongly decrease virus survival with a lethal hit corresponding roughly to 3 Ap lesions per SV40 genome, and indicate for the first time that apurinic sites produced by heating are highly mutagenic in animal cells. UV irradiation of the host cells 24 h prior to transfection with depurinated DNA did not modify the mutation frequency in the virus progeny.  相似文献   

10.
Fifteen revertant clones exhibiting contact inhibition, one of the typical characteristics of normal cells, were studied after treatment of spontaneously transformed Chinese hamster fibroblasts with SV40. The clones proved to be partial revertants, as regards to other properties of the normal phenotype--loss of the ability to grow in a medium with a low serum content and anchorage-dependence. Viral DNA was detected in all revertant clones. The expression of T-antigen--the product of viral oncogene, was observed in 13 of 15 revertants analyzed. The study of SV40 "rescued" from several revertants in permissive monkey cells has shown that the virus is non-defective. In 7 clones, reversion was accompanied with polyploidization. In the cases, reversion could be due to changes in the balance between oncogenes and suppressor genes (anti-oncogenes). The possibility of induction by SV40 of mutations in anti-oncogenes suppressing the expression of both cellular and viral oncogenes is discussed. It is suggested that reversion to the normal phenotype in clones with a near-diploid karyotype could result from such virus-induced suppressor mutations.  相似文献   

11.
Four T antigen-positive phenotypic revertants were isolated by negative selection with BUdR from SV40-transformed rat and mouse cells which contain six and two viral genome equivalents per cell, respectively. Karyological analysis indicated that one rat and one mouse revertant had a hyperploid number of chromosomes, while the remaining two rat revertants had a subtetraploid number similar to those of the transformed parent cells. The hyperploid revertants were unable to grow in soft agar medium and were nontumorigenic in nude mice. One of the subtetraploid revertants formed large colonies at a very low frequency and induced tumors after a prolonged incubation period. These results indicate that there is a good correlation between the capacity of cells to grow without anchorage and the capacity to form tumors in nude mice and suggest that the revertant phenotype is stable in the presence of T antigen when the number of chromosomes is greatly increased as compared with that of the transformed parent cells.  相似文献   

12.
Passage of the simian virus 40 (SV40) temperature-sensitive (ts) mutant tsD202 at the permissive temperature in each of three permissive lines of SV40-transformed monkey CV1 cells resulted in the emergence of temperature-insensitive virus, which plated like wild-type SV40 at the restrictive temperature on normal CV1 cells. In independent experiments, the amount of temperature-insensitive virus that appeared after passage on transformed cells was from 10(3)- to 10(6)-fold greater than the amount of ts-revertant virus that appeared after an equal number of passages in nontransformed CV1 cells. The virus rescued by passage on transformed cells bred true upon sequential plaque purification, plated on normal CV1 cells with single-hit kinetics at the restrictive temperature, and displayed no selective growth advantage on transformed cells compared to non-transformed cells. Hence, the reversion of the ts phenotype is neither due to complementation effects nor to the selection of preexisting revertants, which grow better on transformed cells. In the accompanying article (T. Vogel et al., J. Virol. 24:541-550, 1977), we present biochemical evidence that the rescue of tsD202 mediated by passage on transformed cells is due to recombination with the resident SV40 genome. Parallel experiments in which tsA, tsB, and tsC SV40 mutants were passaged in each of the three permissive lines of SV40-transformed monkey cells resulted in either only borderline levels of rescue (tsA mutants) or no detectable rescue (tsB and tsC mutants). Evidence is presented that the resident SV40 genome of the transformed monkey lines is itself a late ts mutant, and we suggest that this accounts for the lack of detectable rescue of the tsB and tsC mutants. We furthermore suggest that the borderline level of rescue observed with two tsA mutants is related to a previous finding (Y. Gluzman et al., J. Virol. 22:256-266, 1977) which indicated that the resident SV40 genome of the permissive transformed monkey cells is defective in the function required for initiation of viral DNA synthesis.  相似文献   

13.
The ability to synthesize DNA and enter mitosis was studied in Balb/c and Swiss 3T3 cells, SV40 and MSV-transformed 3T3 cells and revertants of these transformed cells in cultures of different serum concentrations and cell densities. Three ways were found by which cells were able to maintain a constant cell number in non-permissive growth conditions: cessation of DNA synthesis, synthesis of DNA coupled with failure to enter mitosis, and the slow traverse of the cell cycle coupled with cell shedding. Growth control of the revertant of an MSV-transformed Balb/3T3 cell most closely resembled that of Balb or Swiss 3T3. This line did not grow in 1% serum and did not synthesize DNA in either non-permissive condition. Serum-sensitive revertants of SV40-transformed 3T3 cells are also unable to grow in 1% serum and also do not grow beyond confluence in 10% serum, but these cells differ from 3T3 in the manner in which this growth arrest is accomplished. In 1% serum, revertants synthesize DNA but do not enter mitosis. At confluence in 10% serum, they slowly traverse the cell cycle, with dividing cells replacing cells that are shed into the medium.  相似文献   

14.
Structure of integrated simian virus 40 DNA in transformed mouse cells   总被引:10,自引:0,他引:10  
The structure of integrated viral DNA sequences in four lines of simian virus 40 (SV40)-transformed Balb/c 3T3 cells has been probed using restriction endonucleases and the Southern (1975) transfer method. By considering data from a large number of restriction digests of DNA from each line, and by using a novel method of handling the data, we have constructed fairly detailed physical maps of the integrated DNA in each line. The most striking of the features of the maps described here is that none is easily explained by the integration of a single SV40 genome into the DNA of the host cell. Three of the lines contain at least two distinct integrated segments and the fourth contains a single segment longer than the viral DNA. Considered individually, only two of the seven segments that we have mapped might be unit length. Of the remaining five, two are longer and three are shorter than the viral genome. It seems likely, therefore, that at least in SV40-transformed Balb/c 3T3 cells simple, single integrations are rare.The endpoints of these seven segments of integrated DNA fall at many positions distributed over the entire genome, confirming earlier studies (Ketner &; Kelly, 1976; Botchan et al., 1976), which indicated that SV40 integration is not absolutely site-specific.Finally, one of the lines mapped here (SVB209) does not possess an intact SV40 early region, an observation that suggests the possibility that a normal viral large T polypeptide is not synthesized by this line.  相似文献   

15.
The amount of simian virus 40 (SV40) DNA present in various SV40-transformed mouse cell lines and “revertants” isolated from them was determined. The number of viral DNA copies in the different cell lines ranged from 1.35 to 8.75 copies per diploid quantity of mouse cell DNA and from 2.2 to 14 copies per cell. The revertants had the same number of viral DNA copies per diploid quantity of mouse cell DNA as their parental cell lines. (However, they showed an increased number of viral DNA copies per cell due to their increased amount of DNA.) By using separated strands of SV40 DNA, the extent of each DNA strand transcribed into stable RNA species was determined for the transformed and “revertant” cell lines. From 30 to 80% of the “early” strand and from 0 to 20% of the “late” strand was present as stable RNA species in the cell lines tested. There was no alteration in the pattern of the stable viral RNA species present in three concanavalin A-selected revertants, whereas in a fluorodeoxyuridine-selected revertant there appeared to be less viral-specific RNA present in the cells.  相似文献   

16.
17.
Integration and excision of SV40 DNA from the chromosome of a transformed cell   总被引:55,自引:0,他引:55  
The single insertion of SV40 DNA present in the genome of the 14B line of transformed rat cells has been cloned in procaryotic vectors. Analysis of the clones reveals a complex arrangement of viral sequences in which a small tract of DNA is inverted with respect to the major insertion. The nucleotide sequences at the two junctions show sharp transitions between cellular and viral sequences. The sequences which flank the viral insertion have been used as probes to clone the corresponding genomic sequences from the DNA of untransformed rat cells. Analysis of the structure of these clones shows that a rearrangement of cellular sequences has occurred, presumably as a consequence of integration. When 14B cells are fused with uninfected simian cells a heterogeneous set of low molecular weight superhelical DNAs containing viral sequences is generated. These have been cloned in procaryotic vectors and their structures have been analyzed. All of them span the origin of SV40 DNA replication and are colinear with various segments of the integrated viral DNA and its flanking sequences. The shorter molecules contain part of the integrated viral genome and cellular sequences from one side of the insertion. They were therefore generated by recombination between the viral DNA and its flanking cellular sequences. The longer molecules contain cellular sequences from both sides of the insertion as well as an entire copy of the integrated viral DNA. They were therefore generated by recombination between the flanking cellular sequences. These results argue strongly against the involvement of specific excision enzymes, and rather are discussed in terms of a model involving replication of the integrated viral DNA followed by recombination for release of integrated viral sequences.  相似文献   

18.
The growth properties of hamster cells transformed by wild-type Simian virus 40 (SV40), by early SV40 temperature-sensitive mutants of the A complementation group, and by spontaneous revertants of these mutants were studied. All of the tsA mutant-transformed cells were temperature sensitive in their ability to form clones in soft agar and on monolayers of normal cells except for CHLA-30L1, which was not temperature sensitive in the latter property. All cells transformed by stable revertants of well-characterized tsA mutants possessed certain growth properties in common with wild-type-transformed cells at both temperatures. Virus rescued from tsA transformants including CHLA30L1 was temperature sensitive for viral DNA replication, whereas that rescued from revertant and wild-type transformants was not thermolabile in this regard. T antigen present in crude extracts of tsA-transformed cells including CHLA30L1, grown at 33 degreeC, was temperature sensitive by in vitro immunoassay, whereas that from wild-type-transformed cells was relatively stable. T antigen from revertant transformants was more stable than the tsA protein. Partially purified T antigen from revertant-transformed cells was nearly as stable as wild-type antigen in its ability to bind DNA after heating at 44 degrees C, whereas T antigen from tsA30 mutant-transformed cells was relatively thermolabile. These results further indicate that T antigen is a product of the SV40 A gene. Significantly more T antigen was found in extracts of CHLA30L1 grown to high density at the nonpermissive temperature than in any other tsA-transformed cell similarly grown. This is consistent with the suggestion that the amount of T antigen synthesized in CHLA30L1 is large enoughto allow partial expression of the transformed phenotype at the restrictive temperature. Alternatively, the increase in T antigen concentration may be secondary to one or more genetic alterations that independently affect the transformed phenotype of these cells.  相似文献   

19.
A E Smith  R Smith  E Paucha 《Cell》1979,18(2):335-346
In addition to large T and small t antigens, cells transformed by simian virus 40 (SV40) commonly contain other proteins which specifically immunoprecipitate with SV40 anti-T serum and which are not detected in untransformed cells. The additional tumor antigens (T-Ags) fall into two groups: those having a close structural relationship with normal SV40 T-Ags, and those unrelated to large T and small t. The latter are probably nonviral T-Ags (NVT-Ags). The NVT-Ags comprise a family of proteins of molecular weight 50,000-55,000. Fingerprint analysis shows that NVT-Ags have few if any peptides in common with large T or small t, and that they lack the amino terminal tryptic peptide and the peptides unique to small t. NVT-Ags from different species have different fingerprints, but those isolated from different transformants of the same cell line are identical. The size of NVT is unaltered in cells transformed by mutants of SV40 with deletions in the region 0.60-0.55 map units. The mRNA for NVT does not hybridize to SV40 DNA. The other forms of T-Ag isolated from transformed cells fall into three classes: shortened forms of large T (truncated large T); multiple species of T-Ag with molecular weights very similar to, but distinct from, those of normal large T (large T doublets and triplets); and elongated forms of large T (super T). These proteins all contain the normal amino terminus of SV40 T-Ags, and the truncated forms of large T lack peptides from the carboxy terminal half of large T. One species of super T (molecular weight 130,000) contains only those methionine tryptic peptides present in normal large T, although it may contain some peptides in more than one copy.  相似文献   

20.
The susceptibility of two classes of revertants of Simian virus 40 (SV40)-transformed 3T3 cells to retransformation by SV40 or murine sarcoma virus (MSV) was studied. Both serum-sensitive and density-sensitive revertants are not retransformable by SV40. MSV can transform both types of revertants. The MSV-transformed revertants grow to high cell densities and form colonies when suspended in semi-solid methylcellulose medium, but are unable to grow in 1% calf serum. The MSV-transformed revertants produce infectious MSV and murine leukemia virus and possess the same number of chromosomes as the untransformed revertants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号