首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A successful symbiotic relationship between Sinorhizobium meliloti and its host Medicago sativa (alfalfa) depends on several signaling mechanisms, such as the biosynthesis of exopolysaccharides (EPS) by S. meliloti. Previous work in our laboratory has shown that a quorum-sensing mechanism controls the production of the symbiotically active EPS II. Recent microarray analysis of the whole-genome expression profile of S. meliloti reveals that the ExpR/Sin quorum-sensing system regulates additional physiological processes that include low-molecular-weight succinoglycan production, nitrogen utilization, metal transport, motility, and chemotaxis. Nearly half of the flagellar genes and their dependence on quorum sensing are prominently displayed in our microarray analyses. We extend those observations in this work and confirm the findings by real-time PCR expression analysis of selected genes, including the flaF, flbT, flaC, cheY1, and flgB genes, involved in motility and chemotaxis. These genes code for regulators of flagellum synthesis, the chemotactic response, or parts of the flagellar apparatus. Gene expression analyses and visualization of flagella by electron microscopy performed at different points in the growth phase support our proposed model in which quorum sensing downregulates motility in S. meliloti. We demonstrate that the ExpR/Sin quorum-sensing system controls motility gene expression through the VisN/VisR/Rem relay. We also show that the ExoS-dependent two-component system suppresses motility gene expression through VisN and Rem in parallel to quorum sensing. This study contributes to our understanding of the mechanisms that govern motility in S. meliloti.  相似文献   

2.
3.
Rhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified in Azorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation on Sesbania rostrata. However, its functions in a typical rhizobium such as Sinorhizobium meliloti remain unclear. Here we found that the S. meliloti response regulator NtrX but not the histidine kinase NtrY is involved in the regulation of exopolysaccharide production, motility, and symbiosis with alfalfa. A plasmid insertion mutant of ntrX formed mucous colonies, which overproduced succinoglycan, an exopolysaccharide, by upregulating its biosynthesis genes. This mutant also exhibited motility defects due to reduced flagella and decreased expression of flagellins and regulatory genes. The regulation is independent of the known regulatory systems of ExoR/ExoS/ChvI, EmmABC, and ExpR. Alfalfa plants inoculated with the ntrX mutant were small and displayed symptoms of nitrogen starvation. Interestingly, the deletion mutant of ntrY showed a phenotype similar to that of the parent strain. These findings demonstrate that the S. meliloti NtrX is a new regulator of succinoglycan production and motility that is not genetically coupled with NtrY.  相似文献   

4.
5.
6.
7.
Quorum sensing, a population density-dependent mechanism for bacterial communication and gene regulation, plays a crucial role in the symbiosis between alfalfa and its symbiont Sinorhizobium meliloti. The Sin system, one of three quorum sensing systems present in S. meliloti, controls the production of the symbiotically active exopolysaccharide EPS II. Based on DNA microarray data, the Sin system also seems to regulate a multitude of S. meliloti genes, including genes that participate in low-molecular-weight succinoglycan production, motility, and chemotaxis, as well as other cellular processes. Most of the regulation by the Sin system is dependent on the presence of the ExpR regulator, a LuxR homolog. Gene expression profiling data indicate that ExpR participates in additional cellular processes that include nitrogen fixation, metabolism, and metal transport. Based on our microarray analysis we propose a model for the regulation of gene expression by the Sin/ExpR quorum sensing system and another possible quorum sensing system(s) in S. meliloti.  相似文献   

8.
The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti possesses the Sin quorum-sensing system based on N-acyl homoserine lactones (AHLs) as signal molecules. The Sin system consists of SinI, the AHL synthase, and SinR, the LuxR-type regulator. This system regulates the expression of a multitude of S. meliloti genes through ExpR, another LuxR-type regulator. Analysis of the activity of the sinI promoter showed that the expression of sinI is dependent on sinR and enhanced by a combination of expR and Sin AHLs. The characterization of the ExpR binding site upstream of sinI and the identification of binding sites upstream of the galactoglucan biosynthesis genes wgaA (expA1) and wgeA (expE1) allowed the definition of a consensus sequence for these binding sites. Based on this consensus, two additional ExpR binding sites in the promoter regions of exoI and exsH, two genes related to the production of succinoglycan, were found. The specific binding of ExpR to the wgaA and wgeA promoters was enhanced in the presence of oxo-C(14)-HL. Positive regulation of the galactoglucan biosynthesis genes by ExpR was shown to be dependent on WggR (ExpG) and influenced by MucR, both of which are previously characterized regulators of these genes. Based on these results, a reworked model of the Sin-ExpR quorum-sensing regulation scheme of galactoglucan production in S. meliloti is suggested.  相似文献   

9.
Planktonic cells of Sinorhizobium meliloti, a Gram-negative symbiotic bacterium, display autoaggregation under static conditions. ExpR is a LuxR-type regulator that controls many functions in S. meliloti, including synthesis of two exopolysaccharides, EPS I (succinoglycan) and EPS II (galactoglucan). Since exopolysaccharides are important for bacterial attachment, we studied the involvement of EPS I and II in autoaggregation of S. meliloti. Presence of an intact copy of the expR locus was shown to be necessary for autoaggregation. A mutant incapable of producing EPS I displayed autoaggregation percentage similar to that of parental strain, whereas autoaggregation was significantly lower for a mutant defective in biosynthesis of EPS II. Our findings clearly indicate that EPS II is the essential component involved in autoaggregation of planktonic S. meliloti cells, and that EPS I plays no role in such aggregation.  相似文献   

10.
Quorum sensing is a typical communication system among Gram-negative bacteria used to control group-coordinated behavior via small diffusible molecules dependent on cell number. The key components of a quorum sensing system are a LuxI-type synthase, producing acyl-homoserine lactones (AHLs) as signaling molecules, and a LuxR-type receptor that detects AHLs to control expression of specific target genes. Six conserved amino acids are present in the signal-binding domain of AHL-sensing LuxR-type proteins, which are important for ligand-binding and -specificity as well as shaping the ligand-binding pocket. However, many proteobacteria possess LuxR-type regulators without a cognate LuxI synthase, referred to as LuxR solos. The two LuxR solos PluR and PauR from Photorhabdus luminescens and Photorhabdus asymbiotica, respectively, do not sense AHLs. Instead PluR and PauR sense alpha-pyrones and dialkylresorcinols, respectively, and are part of cell-cell communication systems contributing to the overall virulence of these Photorhabdus species. However, PluR and PauR both harbor substitutions in the conserved amino acid motif compared to that in AHL sensors, which appeared to be important for binding the corresponding signaling molecules. Here we analyze the role of the conserved amino acids in the signal-binding domain of these two non-AHL LuxR-type receptors for their role in signal perception. Our studies reveal that the conserved amino acid motif alone is essential but not solely responsible for ligand-binding.  相似文献   

11.
12.
The regulation of the nutrient-deprivation-induced Sinorhizobium meliloti homogentisate dioxygenase (hmgA) gene, involved in tyrosine degradation, was examined. hmgA expression was found to be independent of the canonical nitrogen regulation (ntr) system. To identify regulators of hmgA, secondary mutagenesis of an S. meliloti strain harboring a hmgA-luxAB reporter gene fusion (N4) was carried out using transposon Tn1721. Two independent Tn1721 insertions were found to be located in a positive regulatory gene (nitR), encoding a protein sharing amino acid sequence similarity with proteins of the ArsR family of regulators. NitR was found to be a regulator of S. meliloti hmgA expression under nitrogen deprivation conditions, suggesting the presence of a ntr-independent nitrogen deprivation regulatory system. nitR insertion mutations were shown not to affect bacterial growth, nodulation of Medicago sativa (alfalfa) plants, or symbiotic nitrogen fixation under the physiological conditions examined. Further analysis of the nitR locus revealed the presence of open reading frames encoding proteins sharing amino acid sequence similarities with an ATP-binding phosphonate transport protein (PhnN), as well as transmembrane efflux proteins.  相似文献   

13.
Saprophytic rhizoactinomycetes isolated from the root nodule surface of the nitrogen-fixing actinorhizal plant Discaria trinervis, Streptomyces MM40, Actinoplanes ME3, and Micromonospora MM18, previously shown to stimulate nodulation in Frankia-Discaria trinervis symbiosis, were assayed as co-inoculants with Sinorhizobium meliloti 2011 on Medicago sativa. When plants were fertilized with a low level of N (0.07 mM), the inoculation of the actinomycetes alone did not show any effect on plant growth. Meanwhile, when actinomycetes were co-inoculated with S. meliloti, nodulation and plant growth were significantly stimulated compared to plants inoculated with only S. meliloti. The analysis of nodulation kinetics of simultaneously or delayed co-inoculations suggests that the effect of the actinomycetes operates in early infection and nodule development counteracting the autoregulation of nodulation by the plant. Because the actinomycete effect was found in the symbiotic nitrogen-fixing state of the plant, we investigated the effects of the actinomycetes, in single inoculation or co-inoculation with S. meliloti, on plants grown under a high level of N (7 mM) that was inhibitory for nodulation by S. meliloti. The inoculation of the actinomycetes alone did not show any effect on plant growth although high N was available. Unexpectedly, the co-inoculation of actinomycetes with S. meliloti on plants grown with high N (7 mM) significantly stimulates nodulation, clearly counteracting the inhibition of nodulation by high N. These results corroborate that the interaction of rhizoactinomycetes would interfere with the autoregulation of nodulation in alfalfa mediated by high N, opening new research lines of potential agronomical applications.  相似文献   

14.
1-Aminocyclopropane-1-carboxylate (ACC) deaminase has been found in various plant growth-promoting rhizobacteria, including rhizobia. This enzyme degrades ACC, the immediate precursor of ethylene, and thus decreases the biosynthesis of ethylene in higher plants. The ACC deaminase of Rhizobium leguminosarum bv. viciae 128C53K was previously reported to be able to enhance nodulation of peas. The ACC deaminase structural gene (acdS) and its upstream regulatory gene, a leucine-responsive regulatory protein (LRP)-like gene (lrpL), from R. leguminosarum bv. viciae 128C53K were introduced into Sinorhizobium meliloti, which does not produce this enzyme, in two different ways: through a plasmid vector and by in situ transposon replacement. The resulting ACC deaminase-producing S. meliloti strains showed 35 to 40% greater efficiency in nodulating Medicago sativa (alfalfa), likely by reducing ethylene production in the host plants. Furthermore, the ACC deaminase-producing S. meliloti strain was more competitive in nodulation than the wild-type strain. We postulate that the increased competitiveness might be related to utilization of ACC as a nutrient within the infection threads.  相似文献   

15.
Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.

Precise spatial and temporal characterization of cytokinin (CK) responses reveals the function of the CK biosynthesis gene ISOPENTENYLTRANSFERASE 3 during nodule development in Medicago truncatula.  相似文献   

16.
17.
18.
19.
The aim of this work is to study the genetic diversity and the symbiotic effectiveness of the natural populations of rhizobia nodulating chickpea (Cicer arietinum L.) in six locations of South Tunisia, where chickpea had never been cultivated. Nodules were observed only in the two soil samples from Gafsa (0.8 nodules per plant) and Tataouine (2 nodules per plant). PCR-RFLP typing of 165 rRNA genes of 42 isolates indicated that all analysed strains showed the same ribotype as the reference strainSinorhizobium meliloti RCR2011. These isolates induced ineffective nodules on chickpea andMedicago sativa; however nodules onMedicago laciniata were effective. Analysis of the symbiotic diversity by PCR-RFLP, of thenifDK spacer suggested that all chickpea isolates from the South belong to the biovarmedicaginis ofS. meliloti. The present paper is, to our knowledge, the first report showing that chickpea is selectively nodulated under soil conditions by a specific biovar ofS. meliloti showing specificity toM. laciniata. The specificity of this interaction as well the impact of this inefficient nodulation on chickpea cultivation needs to be investigated further.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号