首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pneumoviruses have been identified as causative agents in several respiratory disease outbreaks in habituated wild great apes. Based on phylogenetic evidence, transmission from humans is likely. However, the pathogens have never been detected in the local human population prior to or at the same time as an outbreak. Here, we report the first simultaneous detection of a human respiratory syncytial virus (HRSV) infection in western lowland gorillas (Gorilla gorilla gorilla) and in the local human population at a field program in the Central African Republic. A total of 15 gorilla and 15 human fecal samples and 80 human throat swabs were tested for HRSV, human metapneumovirus, and other respiratory viruses. We were able to obtain identical sequences for HRSV A from four gorillas and four humans. In contrast, we did not detect HRSV or any other classic human respiratory virus in gorilla fecal samples in two other outbreaks in the same field program. Enterovirus sequences were detected but the implication of these viruses in the etiology of these outbreaks remains speculative. Our findings of HRSV in wild but human-habituated gorillas underline, once again, the risk of interspecies transmission from humans to endangered great apes.  相似文献   

2.
To diagnose respiratory disease among wild great apes, there is a need for noninvasive diagnostic methods. Therefore, we analyzed fecal samples from habituated chimpanzees from Taï National Park, Côte d’Ivoire. Samples had been collected during four distinct outbreaks: two with known aetiology (March 2004 and February 2006) and two with unknown aetiology (October 2004 and August 2005). Fecal samples were screened by polymerase chain reaction (PCR) for the presence of human metapneumovirus (HMPV) and human respiratory syncytial virus (HRSV), two paramyxoviruses previously found in lung tissue of chimpanzees that died due to respiratory disease. In the March 2004 outbreak, 72% of the tested individuals were positive for HMPV, and during the 2006 epidemic, 25% tested HRSV-positive. In the outbreaks where no causative pathogen was previously known, fecal samples tested positive for either HRSV or HMPV, showing that reinfection occurred. Virus sequences were generated and compared with sequences previously found in tissue; nearly identical virus sequences in both tissue and fecal samples were found. These results demonstrate that fecal samples collected during outbreak times can be used for the diagnostic and phylogenetic analysis of HMPV and HRSV. Using such diagnostic tools, systematic noninvasive disease investigation of respiratory outbreaks in wild great apes becomes possible. The methods presented here may also be applied for the investigation of further acute diseases in great apes and other species.  相似文献   

3.
Despite being important conservation tools, tourism and research may cause transmission of pathogens to wild great apes. Investigating respiratory disease outbreaks in wild bonobos, we identified human respiratory syncytial virus and Streptococcus pneumoniae as causative agents. A One Health approach to disease control should become part of great ape programs.  相似文献   

4.
Ryan SJ  Walsh PD 《PloS one》2011,6(12):e29030
Infectious disease has recently joined poaching and habitat loss as a major threat to African apes. Both "naturally" occurring pathogens, such as Ebola and Simian Immunodeficiency Virus (SIV), and respiratory pathogens transmitted from humans, have been confirmed as important sources of mortality in wild gorillas and chimpanzees. While awareness of the threat has increased, interventions such as vaccination and treatment remain controversial. Here we explore both the risk of disease to African apes, and the status of potential responses. Through synthesis of published data, we summarize prior disease impact on African apes. We then use a simple demographic model to illustrate the resilience of a well-known gorilla population to disease, modeled on prior documented outbreaks. We found that the predicted recovery time for this specific gorilla population from a single outbreak ranged from 5 years for a low mortality (4%) respiratory outbreak, to 131 years for an Ebola outbreak that killed 96% of the population. This shows that mortality rates comparable to those recently reported for disease outbreaks in wild populations are not sustainable. This is particularly troubling given the rising pathogen risk created by increasing habituation of wild apes for tourism, and the growth of human populations surrounding protected areas. We assess potential future disease spillover risk in terms of vaccination rates amongst humans that may come into contact with wild apes, and the availability of vaccines against potentially threatening diseases. We discuss and evaluate non-interventionist responses such as limiting tourist access to apes, community health programs, and safety, logistic, and cost issues that constrain the potential of vaccination.  相似文献   

5.
Pasteurella multocida can cause a variety of diseases in various species of mammals and birds throughout the world but nothing is known about its importance for wild great apes. In this study we isolated P. multocida from wild living, habituated chimpanzees from Taï National Park, Côte d''Ivoire. Isolates originated from two chimpanzees that died during a respiratory disease outbreak in 2004 as well as from one individual that developed chronic air-sacculitis following this outbreak. Four isolates were subjected to a full phenotypic and molecular characterisation. Two different clones were identified using pulsed field gel electrophoresis. Multi Locus Sequence Typing (MLST) enabled the identification of previous unknown alleles and two new sequence types, ST68 and ST69, were assigned. Phylogenetic analysis of the superoxide dismutase (sodA) gene and concatenated sequences from seven MLST-housekeeping genes showed close clustering within known P. multocida isolated from various hosts and geographic locations. Due to the clinical relevance of the strains described here, these results make an important contribution to our knowledge of pathogens involved in lethal disease outbreaks among endangered great apes.  相似文献   

6.
The study of comparative energetics offers a valuable way to identify broad ecological principles and assess the functional significance of energetic adaptations during the course of evolution. Yet, the quantification of energetic status for nonhuman primates under natural conditions remains one of the most challenging aspects of comparative energetics research. Here, we report on the development of a noninvasive field method for measuring energetic status in great apes, humans, and possibly other nonhuman primates. Specifically, we have explored measurement of a urinary metabolite of insulin (C-peptide) as a physiological marker of energetic condition in chimpanzees and orangutans. We performed three validation studies and successfully measured C-peptide in urine samples from captive chimpanzees, wild chimpanzees, and wild orangutans. Urinary C-peptide measures gave indications of being a reliable signal of energetic status in both species. For chimpanzees and orangutans in the wild, baseline urinary C-peptide levels were higher during periods of fruit abundance than periods of low fruit availability. Urinary C-peptide levels were also higher for well-fed captive chimpanzees compared with wild chimpanzees. Although sample size was small, top-ranking male chimpanzees showed higher C-peptide levels in the wild than low-ranking males only during the period of fruit abundance. These preliminary results indicate that further development of the urinary C-peptide method could expand opportunities to quantify energetic condition for great apes in the wild and generate new data for comparative research. We highlight specific applications for studying great ape reproduction as well as the nutritional ecology of human foragers.  相似文献   

7.
During the period of December 2004 to January 2005, Bacillus anthracis killed three wild chimpanzees (Pan troglodytes troglodytes) and one gorilla (Gorilla gorilla gorilla) in a tropical forest in Cameroon. While this is the second anthrax outbreak in wild chimpanzees, this is the first case of anthrax in gorillas ever reported. The number of great apes in Central Africa is dramatically declining and the populations are seriously threatened by diseases, mainly Ebola. Nevertheless, a considerable number of deaths cannot be attributed to Ebola virus and remained unexplained. Our results show that diseases other than Ebola may also threaten wild great apes, and indicate that the role of anthrax in great ape mortality may have been underestimated. These results suggest that risk identification, assessment, and management for the survival of the last great apes should be performed with an open mind, since various pathogens with distinct characteristics in epidemiology and pathogenicity may impact the populations. An animal mortality monitoring network covering the entire African tropical forest, with the dual aims of preventing both great ape extinction and human disease outbreaks, will create necessary baseline data for such risk assessments and management plans.  相似文献   

8.
Viruses closely related to human pathogens can reveal the origins of human infectious diseases. Human herpes simplexvirus type 1 (HSV-1) and type 2 (HSV-2) are hypothesized to have arisen via host-virus codivergence and cross-species transmission. We report the discovery of novel herpes simplexviruses during a large-scale screening of fecal samples from wild gorillas, bonobos, and chimpanzees. Phylogenetic analysis indicates that, contrary to expectation, simplexviruses from these African apes are all more closely related to HSV-2 than to HSV-1. Molecular clock-based hypothesis testing suggests the divergence between HSV-1 and the African great ape simplexviruses likely represents a codivergence event between humans and gorillas. The simplexviruses infecting African great apes subsequently experienced multiple cross-species transmission events over the past 3 My, the most recent of which occurred between humans and bonobos around 1 Ma. These findings revise our understanding of the origins of human herpes simplexviruses and suggest that HSV-2 is one of the earliest zoonotic pathogens.  相似文献   

9.
Evidence from DNA sequencing studies strongly indicated that humans and chimpanzees are more closely related to each other than either is to gorillas [1-4]. However, precise details of the nature of the evolutionary separation of the lineage leading to humans from those leading to the African great apes have remained uncertain. The unique insertion sites of endogenous retroviruses, like those of other transposable genetic elements, should be useful for resolving phylogenetic relationships among closely related species. We identified a human endogenous retrovirus K (HERV-K) provirus that is present at the orthologous position in the gorilla and chimpanzee genomes, but not in the human genome. Humans contain an intact preintegration site at this locus. These observations provide very strong evidence that, for some fraction of the genome, chimpanzees, bonobos, and gorillas are more closely related to each other than they are to humans. They also show that HERV-K replicated as a virus and reinfected the germline of the common ancestor of the four modern species during the period of time when the lineages were separating and demonstrate the utility of using HERV-K to trace human evolution.  相似文献   

10.
The transmission of simian immunodeficiency and Ebola viruses to humans in recent years has heightened awareness of the public health significance of zoonotic diseases of primate origin, particularly from chimpanzees. In this study, we analyzed 71 fecal samples collected from 2 different wild chimpanzee (Pan troglodytes) populations with different histories in relation to their proximity to humans. Campylobacter spp. were detected by culture in 19/56 (34%) group 1 (human habituated for research and tourism purposes at Mahale Mountains National Park) and 0/15 (0%) group 2 (not human habituated but propagated from an introduced population released from captivity over 30 years ago at Rubondo Island National Park) chimpanzees, respectively. Using 16S rRNA gene sequencing, all isolates were virtually identical (at most a single base difference), and the chimpanzee isolates were most closely related to Campylobacter helveticus and Campylobacter upsaliensis (94.7% and 95.9% similarity, respectively). Whole-cell protein profiling, amplified fragment length polymorphism analysis of genomic DNA, hsp60 sequence analysis, and determination of the mol% G+C content revealed two subgroups among the chimpanzee isolates. DNA-DNA hybridization experiments confirmed that both subgroups represented distinct genomic species. In the absence of differential biochemical characteristics and morphology and identical 16S rRNA gene sequences, we propose to classify all isolates into a single novel nomenspecies, Campylobacter troglodytis, with strain MIT 05-9149 as the type strain; strain MIT 05-9157 is suggested as the reference strain for the second C. troglodytis genomovar. Further studies are required to determine whether the organism is pathogenic to chimpanzees and whether this novel Campylobacter colonizes humans and causes enteric disease.  相似文献   

11.
12.
The oncogenic Merkel cell polyomavirus (MCPyV) infects humans worldwide, but little is known about the occurrence of viruses related to MCPyV in the closest phylogenetic relatives of humans, great apes. We analyzed samples from 30 wild chimpanzees and one captive gorilla and identified two new groups of polyomaviruses (PyVs). These new viruses are by far the closest relatives to MCPyV described to date, providing the first evidence of the natural occurrence of PyVs related to MCPyV in wild great apes. Similar to MCPyV, the prevalence of these viruses is relatively high (>30%). This, together with the fact that humans in West and Central Africa frequently hunt and butcher primates, may point toward further MCPyV-like strains spreading to, or already existing in, our species.  相似文献   

13.
Simian foamy viruses (SFV) are ancient retroviruses of primates and have coevolved with their host species for as many as 30 million years. Although humans are not naturally infected with foamy virus, infection is occasionally acquired through interspecies transmission from nonhuman primates. We show that interspecies transmissions occur in a natural hunter-prey system, i.e., between wild chimpanzees and colobus monkeys, both of which harbor their own species-specific strains of SFV. Chimpanzees infected with chimpanzee SFV strains were shown to be coinfected with SFV from colobus monkeys, indicating that apes are susceptible to SFV superinfection, including highly divergent strains from other primate species.  相似文献   

14.
Nodular worms (Oesophagostomum spp.) are common intestinal parasites found in cattle, pig, and primates including humans. In human, they are responsible for serious clinical disease called oesophagostomosis resulting from the formation of granulomas, caseous lesions or abscesses in intestinal walls. In wild great apes, the fecal prevalence of this parasite is high, but little information is available concerning the clinical signs and lesions associated. In the present study, we describe six cases of multinodular oesophagostomosis in free-ranging and ex-captive chimpanzees and captive gorillas caused by Oesophagostomum stephanostomum. While severe clinical signs associated with this infection were observed in great apes raised in sanctuaries, nodules found in wild chimpanzees do not seem to affect their health status. One hypothesis to explain this difference would be that in wild chimpanzees, access to natural environment and behavior such as rough leaves swallowing combined with ingestion of plants having pharmacological properties would prevent severe infection and decrease potential symptoms.  相似文献   

15.
The intensification of human activities within the habitats of wild animals is increasing the risk of interspecies disease transmission. This risk is particularly important for great apes, given their close phylogenetic relationship with humans. Areas of high human density or intense research and ecotourism activities expose apes to a high risk of disease spillover from humans. Is this risk lower in areas of low human density? We determined the prevalence of Escherichia coli antibiotic-resistant isolates in a population of the critically endangered western lowland gorilla (Gorilla gorilla gorilla) and other wild mammals in Lopé National Park (LNP), Gabon, and we tested whether the observed pattern could be explained by bacterial transmission from humans and domestic animals into wildlife populations. Our results show a high prevalence of antibiotic-resistant bacterial isolates in humans and low levels in gorillas and other wildlife. The significant differences in the genetic background of the resistant bacteria isolated from humans and gorillas suggest that transmission is low or does not occur between these two species. These findings indicate that the presence of antibiotic-resistant strains in wildlife do not imply direct bacteria transmission from humans. Thus, in areas of low human density, human-wildlife E. coli transmission seems to be low. The presence of antibiotic-resistant isolates in gorillas may be better explained by other mechanisms for resistance acquisition, such as horizontal gene exchange among bacteria or naturally acquired resistance.  相似文献   

16.
17.
To make adaptive choices, individuals must sometimes exhibit patience, forgoing immediate benefits to acquire more valuable future rewards [1-3]. Although humans account for future consequences when making temporal decisions [4], many animal species wait only a few seconds for delayed benefits [5-10]. Current research thus suggests a phylogenetic gap between patient humans and impulsive, present-oriented animals [9, 11], a distinction with implications for our understanding of economic decision making [12] and the origins of human cooperation [13]. On the basis of a series of experimental results, we reject this conclusion. First, bonobos (Pan paniscus) and chimpanzees (Pan troglodytes) exhibit a degree of patience not seen in other animals tested thus far. Second, humans are less willing to wait for food rewards than are chimpanzees. Third, humans are more willing to wait for monetary rewards than for food, and show the highest degree of patience only in response to decisions about money involving low opportunity costs. These findings suggest that core components of the capacity for future-oriented decisions evolved before the human lineage diverged from apes. Moreover, the different levels of patience that humans exhibit might be driven by fundamental differences in the mechanisms representing biological versus abstract rewards.  相似文献   

18.
This study focused on Oeosophagostomum sp., and more especially on O. bifurcum, as a parasite that can be lethal to humans and is widespread among humans and monkeys in endemic regions, but has not yet been documented in apes. Its epidemiology and the role played by non-human primates in its transmission are still poorly understood. O. stephanostomum was the only species diagnosed so far in chimpanzees. Until recently, O. bifurcum was assumed to have a high zoonotic potential, but recent findings tend to demonstrate that O. bifurcum of non-human primates and humans might be genetically distinct. As the closest relative to human beings, and a species living in spatial proximity to humans in the field site studied, Pan troglodytes is thus an interesting host to investigate. Recently, a role for chimpanzees in the emergence of HIV and malaria in humans has been documented. In the framework of our long-term health monitoring of wild chimpanzees from Kibale National Park in Western Uganda, we analysed 311 samples of faeces. Coproscopy revealed that high-ranking males are more infected than other individuals. These chimpanzees are also the more frequent crop-raiders. Results from PCR assays conducted on larvae and dried faeces also revealed that O. stephanostomum as well as O. bifurcum are infecting chimpanzees, both species co-existing in the same individuals. Because contacts between humans and great apes are increasing with ecotourism and forest fragmentation in areas of high population density, this paper emphasizes that the presence of potential zoonotic parasites should be viewed as a major concern for public health. Investigations of the parasite status of people living around the park or working inside as well as sympatric non-human primates should be planned, and further research might reveal this as a promising aspect of efforts to reinforce measures against crop-raiding.  相似文献   

19.
All six great ape species are listed as endangered or critically endangered by the IUCN and experiencing decreasing population trends. One of the threats to these non-human primates is the transmission of pathogens from humans. We conducted a literature review on occurrences of pathogen transmission from humans to great apes to highlight this often underappreciated issue. In total, we found 33 individual occurrences of probable or confirmed pathogen transmission from humans to great apes: 23 involved both pathogen and disease transmission, 7 pathogen transmission only, 2 positive antibody titers to zoonotic pathogens, and 1 pathogen transmission with probable disease. Great ape populations were categorized into captive, semi-free-living, and free-living conditions. The majority of occurrences involved chimpanzees (Pan troglodytes) (n = 23) or mountain gorillas (Gorilla beringei beringei) (n = 8). These findings have implications for conservation efforts and management of endangered great ape populations. Future efforts should focus on monitoring and addressing zoonotic pathogen and disease transmission between humans, great ape species, and other taxa to ensure the health of humans, wild and domestic animals, and the ecosystems we share.  相似文献   

20.
Many of the most virulent emerging infectious diseases in humans, e.g., AIDS and Ebola, are zoonotic, having shifted from wildlife populations. Critical questions for predicting disease emergence are: (1) what determines when and where a disease will first cross from one species to another, and (2) which factors facilitate emergence after a successful host shift. In wild primates, infectious diseases most often are shared between species that are closely related and inhabit the same geographic region. Therefore, humans may be most vulnerable to diseases from the great apes, which include chimpanzees and gorillas, because these species represent our closest relatives. Geographic overlap may provide the opportunity for cross-species transmission, but successful infection and establishment will be determined by the biology of both the host and pathogen. We extrapolate the evolutionary relationship between pathogen sharing and divergence time between primate species to generate “hotspot” maps, highlighting regions where the risk of disease transfer between wild primates and from wild primates to humans is greatest. We find that central Africa and Amazonia are hotspots for cross-species transmission events between wild primates, due to a high diversity of closely related primate species. Hotspots of host shifts to humans will be most likely in the forests of central and west Africa, where humans come into frequent contact with their wild primate relatives. These areas also are likely to sustain a novel epidemic due to their rapidly growing human populations, close proximity to apes, and population centers with high density and contact rates among individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号