首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Endothelin-1(ET-1) is the most potent vasoconstrictor agent known. ET-1 is elevatedin the cerebrospinal fluid following hemorrhage and brain injury andcan compromise cerebral microvascular homeostasis. The modulation ofET-1 production by cerebral microvascular endothelial cells and themechanism by which such changes take place are very important in ourunderstanding of the pathological roles of ET-1. In the present study,we investigated the effects of vasoconstrictor agents that can bereleased from hemolyzed blood, cAMP-dependent dilators, and the role ofprotein kinase C (PKC) in the regulation of ET-1 production by pigletcerebral microvascular endothelial cells in culture. ET-1 was measured by RIA. 1) Cerebral microvascularendothelial cells synthesize and release ET-1 into the media;2) 5-hydroxytryptamine (5-HT), lysophosphatidic acid (LPA), thromboxane analog U-46619, fetal bovineserum (20%), and phorbol 12-myristate 13-acetate significantly increase ET-1 production; 3) basaland vasoconstrictor agent-induced increases in ET-1 production byendothelial cells may be mediated via PKC;4) cAMP-dependent vasodilatorsattenuate the basal production of ET-1 by cerebral microvessels; and5) pretreatment of endothelial cellswith a higher concentration of LPA, U-46619, or 5-HT counterbalances the cAMP-dependent dilator agent-induced reduction in basal ET-1 production. Therefore, by-products of hemolyzed blood can stimulate theproduction of ET-1 by a PKC-mediated mechanism. cAMP-dependent dilatorscan attenuate the vasoconstrictor agent-induced elevation in ET-1production. These results suggest that cerebral microvascular homeostasis could be compromised by effects of interactions among vasoactive agents released during conditions injurious to the brain andthey may further the understanding of potential contributions ofhemolyzed blood clots to subarachnoid hemorrhage-induced vasospasm.  相似文献   

2.
L-type Ca2+ channels in Ca2+ channelopathies   总被引:3,自引:0,他引:3  
Voltage-gated L-type Ca2+ channels (LTCCs) mediate depolarization-induced Ca2+ entry in electrically excitable cells, including muscle cells, neurons, and endocrine and sensory cells. In this review we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within pore-forming alpha1 subunits causing incomplete congenital stationary night blindness, malignant hyperthermia sensitivity or hypokalemic periodic paralysis. However, studies in mice revealed that LTCC dysfunction also contributes to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Ca(v)2.1 alpha1 in tottering mice. Ca2+ channelopathies provide exciting molecular tools to elucidate the contribution of different LTCC isoforms to human diseases.  相似文献   

3.
A role of pertussis toxin (PTX)-sensitive pathway in regulation of glucose-stimulated Ca2+ signaling in rat islet beta-cells was investigated by using clonidine as a selective agonist to alpha2-adrenoceptors which link to the pathway. An elevation of extracellular glucose concentration from 5.5 to 22.2 mM (glucose stimulation) increased the levels of [Ca2+]i of beta-cells, and clonidine reversibly reduced the elevated levels of [Ca2+]i. This clonidine effect was antagonized by yohimbine, and abolished in beta-cells pre-treated with PTX. Clonidine showed little effect on membrane currents including those through ATP-sensitive K+ channels induced by voltage ramps from -90 to -50 mV. Clonidine showed little effect on the magnitude of whole-cell currents through L-type Ca2+ channels (ICa(L)), but increased the inactivation process of the currents. Clonidine increased the magnitude of the voltage-dependent K+ currents (IVK). These clonidine effects on ICa(L) and IVK were abolished in beta-cells treated with PTX or GDP-betaS. These results suggest that the PTX-sensitive pathway increases IVK activity and decreases ICa(L) activity of islet beta-cells, resulting in a decrease in the levels of [Ca2+]i elevated by depolarization-induced Ca2+ entry. This mechanism seems responsible at least in part for well-known inhibitory action of PTX-sensitive pathway on glucose-stimulated insulin secretion from islet beta-cells.  相似文献   

4.
Strong depolarization and dihydropyridine agonists potentiate inward currents through native L-type Ca2+ channels, but the effect on outward currents is less clear due to the small size of these currents. Here, we examined potentiation of wild-type alpha1C and two constructs bearing mutations in conserved glutamates in the pore regions of repeats II and IV (E2A/E4A-alpha1C) or repeat III (E3K-alpha1C). With 10 mM Ca2+ in the bath and 110 mM Cs+ in the pipette, these mutated channels, expressed in dysgenic myotubes, produced both inward and outward currents of substantial amplitude. For both the wild-type and mutated channels, we observed strong inward rectification of potentiation: strong depolarization had little effect on outward tail currents but caused the inward tail currents to be larger and to decay more slowly. Similarly, exposure to DHP agonist increased the amplitude of inward currents and decreased the amplitude of outward currents through both E2A/E4A-alpha1C and E3K-alpha1C. As in the absence of drug, strong depolarization in the presence of dihydropyridine agonist had little effect on outward tail currents but increased the amplitude and slowed the decay of inward tail currents. We tested whether cytoplasmic Mg2+ functions as the blocking particle responsible for the rectification of potentiated L-type Ca2+ channels. However, even after complete removal of cytoplasmic Mg2+, (-)BayK 8644 still potentiated inward current and partially blocked outward current via E2A/E4A-alpha1C. Although zero Mg2+ did not reveal potentiation of outward current by DHP agonist, it did have two striking effects, (a) a strong suppression of decay of both inward and outward currents via E2A/E4A-alpha1C and (b) a nearly complete elimination of depolarization-induced potentiation of inward tail currents. These results can be explained by postulating that potentiation exposes a binding site in the pore to which an intracellular blocking particle can bind and produce inward rectification of the potentiated channels.  相似文献   

5.
The beta subunits of voltage-dependent calcium channels are known to modify calcium channel currents through pore-forming alpha1 subunits. Of the four beta subunits reported to date, the beta3 subunit is highly expressed in smooth muscle cells and is thought to consist of L-type calcium channels. To determine the role of the beta3 subunit in the voltage-dependent calcium channels of the cardiovascular system in situ, we performed a series of experiments in beta3-null mice. Western blot analysis indicated a significant reduction in expression of the alpha1 subunit in the plasma membrane of beta3-null mice. Dihydropyridine binding experiments also revealed a significant decrease in the calcium channel population in the aorta. Electrophysiological analyses indicated a 30% reduction in Ca2+ channel current density, a slower inactivation rate, and a decreased dihydropyridine-sensitive current in beta3-null mice. The reductions in the peak current density and inactivation rate were reproduced in vitro by co-expression of the calcium channel subunits in Chinese hamster ovary cells. Despite the reduced channel population, beta3-null mice showed normal blood pressure, whereas a significant reduction in dihydropyridine responsiveness was observed. A high salt diet significantly elevated blood pressure only in the beta3-null mice and resulted in hypertrophic changes in the aortic smooth muscle layer and cardiac enlargement. In conclusion, this study demonstrates the involvement and importance of the beta3 subunit of voltage-dependent calcium channels in the cardiovascular system and in regulating channel populations and channel properties in vascular smooth muscle cells.  相似文献   

6.
The effects of tetrandrine (TET), a Ca2+ antagonist of bis-benzylisoquinoline alkaloid origin, on cultured single bovine pulmonary artery endothelial cells were examined using fluorescence ratio imaging and whole-cell attached patch-clamp techniques. Thapsigargin (TSG, 100 nM), a selective endoplasmic reticulum Ca2+-ATPase pump inhibitor known to induce the release of nitric oxide (NO) from vascular endothelial cells via a Ca2+-dependent manner, caused a rapid elevation of cytosolic Ca2+ concentration, which was inhibited by 30 microM TET. In whole-cell patch-clamp study using the same vascular endothelial cells, addition of 100 nM TSG caused a significant enhancement of depolarization-evoked Ca2+-dependent, outward K+ currents, which could also be abolished by 30 microM TET. The present results demonstrate directly that TET, in addition to its known inhibitory effects on vascular smooth muscle by virtue of its Ca2+ antagonistic actions, also inhibits NO production by the endothelial cells through blockade of Ca2+ release-activated Ca2+ channels.  相似文献   

7.
Ca2+-activated K+ currents (I(K(Ca)) can contribute to action potential repolarization and after-hyperpolarization in GH3 cells. In this study, we examined how the activation of I(K(Ca) at the cellular level could be functionally coupled to Ca2+ influx through L-type Ca2+ channels. A 30-msec Ca2+ influx step to 0 mV was found to exhibit substantial contribution of Ca2+ influx through the activation of I(Ca,L) to the activation of I(K(Ca)). A bell-shaped relationship between the conditioning potentials and the integrated I(K(Ca)) was observed, suggesting that the magnitude of integrated I(Ca,L) correlates well with that of integrated I(K(Ca)) in the same cell. A linear relationship of integrated I(Ca,L) and integrated I(K(Ca)) was found with a coupling ratio of 69+/-7. The value of the coupling ratio was unaffected by the presence of Bay K 8644 or nimodipine, although these compounds could effectively affect the amplitudes of both I(K(Ca)) and I(Ca,L). However, tetrandrine could decrease the coupling ratio. Paxilline or intracellular Ca2+ buffer with EGTA decreased the coupling ratio, while apamin had no effect on it. Interestingly, phorbol 12-myristate 13-acetate also reduced the coupling ratio significantly, whereas thapsigargin increased this value. Thus, the present study indicates that the activation of I(K(Ca)) during brief Ca2+ influx, which is inhibited by paxilline, is coupled to Ca2+ influx primarily through the L-type channels. The selective modulation of I(K(Ca)) by second messengers or Ca2+ release from internal stores may affect the coupling efficiency and hence cellular excitability.  相似文献   

8.
The spider venom alpha-latrotoxin (alpha-LTX) induces massive exocytosis after binding to surface receptors, and its mechanism is not fully understood. We have investigated its action using toxin-sensitive MIN6 beta-cells, which express endogenously the alpha-LTX receptor latrophilin (LPH), and toxin-insensitive HIT-T15 beta-cells, which lack endogenous LPH. alpha-LTX evoked insulin exocytosis in HIT-T15 cells only upon expression of full-length LPH but not of LPH truncated after the first transmembrane domain (LPH-TD1). In HIT-T15 cells expressing full-length LPH and in native MIN6 cells, alpha-LTX first induced membrane depolarization by inhibition of repolarizing K(+) channels followed by the appearance of Ca(2+) transients. In a second phase, the toxin induced a large inward current and a prominent increase in intracellular calcium ([Ca(2+)](i)) reflecting pore formation. Upon expression of LPH-TD1 in HIT-T15 cells just this second phase was observed. Moreover, the mutated toxin LTX(N4C), which is devoid of pore formation, only evoked oscillations of membrane potential by reversible inhibition of iberiotoxin-sensitive K(+) channels via phospholipase C, activated L-type Ca(2+) channels independently from its effect on membrane potential, and induced an inositol 1,4,5-trisphosphate receptor-dependent release of intracellular calcium in MIN6 cells. The combined effects evoked transient increases in [Ca(2+)](i) in these cells, which were sensitive to inhibitors of phospholipase C, protein kinase C, or L-type Ca(2+) channels. The latter agents also reduced toxin-induced insulin exocytosis. In conclusion, alpha-LTX induces signaling distinct from pore formation via full-length LPH and phospholipase C to regulate physiologically important K(+) and Ca(2+) channels as novel targets of its secretory activity.  相似文献   

9.
10.
Extracellular S3-S4 linkers of domain IV (IVS3-S4) of L-type Ca2+ channels (CaV1) are subject to alternative splicing, resulting into distinct gating profiles serving for diverse physiological roles. However, it has remained elusive what would be the determining factor of IVS3-S4 effects on CaV1 channels. In this study, we systematically compared IVS3-S4 variants from CaV1.1-1.4, and discover that the flexibility of the linker plays a prominent role in gating characteristics. Chimeric analysis and mutagenesis demonstrated that changes in half activation voltage (V1/2) or activation time constant (τ) are positively correlated with the numbers of flexible glycine residues within the linker. Moreover, antibodies that reduce IVS3-S4 flexibility negatively shifted V1/2, emerging as a new category of CaV1 enhancers. In summary, our results suggest that the flexibility or rigidity of IVS3-S4 linker underlies its modulations on CaV1 activation (V1/2 and τ), paving the way to dissect the core mechanisms and to develop innovative perturbations pertaining to voltage-sensing S4 and its vicinities.  相似文献   

11.
Altered calcium homeostasis and increased cytosolic calcium concentrations ([Ca(2+)](c)) are linked to neuronal apoptosis in epilepsy and in cerebral ischemia, respectively. Apoptotic programmed cell death is regulated by the antiapoptotic Bcl2 family of proteins. Here, we investigated the role of Bcl2 on calcium (Ca(2+)) homeostasis in PC12 cells, focusing on L-type voltage-dependent calcium channels (VDCC). Cytosolic Ca(2+) transients ([Ca(2+)](c)) and changes of mitochondrial Ca(2+) concentrations ([Ca(2+)](m)) were monitored using cytosolic and mitochondrially targeted aequorins of control PC12 cells and PC12 cells stably overexpressing Bcl2. We found that: (i) the [Ca(2+)](c) and [Ca(2+)](m) elevations elicited by K(+) pulses were markedly depressed in Bcl2 cells, with respect to control cells; (ii) such depression of [Ca(2+)](m) was not seen either in digitonin-permeabilized cells or in intact cells treated with ionomycin; (iii) the [Ca(2+)](c) transient depression seen in Bcl2 cells was reversed by shRNA transfection, as well as by the Bcl2 inhibitor HA14-1; (iv) the L-type Ca(2+) channel agonist Bay K 8644 enhanced K(+)-evoked [Ca(2+)](m) peak fourfold in Bcl2, and twofold in control cells; (v) in current-clamped cells the depolarization evoked by K(+) generated a more hyperpolarized voltage step in Bcl2, as compared to control cells. Taken together, our experiments suggest that the reduction of the [Ca(2+)](c) and [Ca(2+)](m) transients elicited by K(+), in PC12 cells overexpressing Bcl2, is related to the reduction of Ca(2+) entry through L-type Ca(2+) channels. This may be due to the fact that Bcl2 mitigates cell depolarization, thus diminishing the recruitment of L-type Ca(2+) channels, the subsequent Ca(2+) entry, and mitochondrial Ca(2+) overload.  相似文献   

12.
V. A. Bouryi 《Neurophysiology》1998,30(4-5):301-304
Barium currents through ion channels formed by α1-subunit of L-type Ca2+ channel (I α1) were recorded from cultured chinese hamster ovary (CHO) cells. The cells were stably transfected with either a cardiac or a smooth muscle (SM) variant of α1-subunit. TheI α1 in both cases exhibited similar fast voltage-dependent activation kinetics and slow apparent inactivation kinetics. With 10 mM Ba2+ in the bath solution,I α1 was activated at potentials more positive than −40 mV, peaked between 0 and +10 mV, and reversed at about +50 mV. In addition to slow apparent inactivation of inward current, both subunits provided an extremely slow voltage-dependent inactivation at potentials more positive than −100 mV, with half-maximum inactivation at −43.4 mV for cardiac and −41.4 mV for SM α1-subunits. The onset of inactivation as well as recovery from this process were within a time range of minutes. The voltage dependence of steady-state inactivation could be fitted by the sum of two Boltzmann's equations with slope factors of about 12 mV and 5 mV. A less sloped component has its midpoints at −75.6 and −63.7 mV, and a steeper component has its midpoints at −42.8 and −37.7 mV for cardiac and SM α1-subunits, respectively. Relative contribution of the steeper component was higher in both subunits (0.86 and 0.66 for cardiac and SM subunits, respectively). For comparison, the inactivation curves for 5-sec-long conditioning prepulses could be fitted by single Boltzmann's distribution with a 20 mV more positive midpoint and a slope factor of about 13 mV. In contrast to the steady-state inactivation curves, they showed considerable overlap with the steady-state activation curve. Our results reflect functional consequences of known sequence differences between α1-subunits of the cardiac and SM L-type Ca2+ channels and could be used in structural modeling of Ca2+ channel gating. In addition, they show that depolarization-induced window current has a transient nature and decays with the development of extremely slow inactivation. This is the first demonstration that slow inactivation of the L-type Ca2+ channel is an intrinsic property of its α1-subunits.  相似文献   

13.
14.
Summary In cultured bovine aortic endothelial cells, elementary K+ currents were studied in cell-attached and inside-out patches using the standard patch-clamp technique. Two different cationic channels were found, a large channel with a mean unitary conductance of 150±10 pS and a small channel with a mean unitary conductance of 12.5±1.1 pS. The 150-pS channel proved to be voltag- and Ca2+-activatable and seems to be a K+ channel. Its open probability increased on membrane depolarization and, at a given membrane potential, was greatly enhanced by elevating the Ca2+ concentration at the cytoplasmic side of the membrane from 10–7 to 10–4 m. 150-pS channels were not influenced by the patch configuration in that patch excision neither induced rundown nor evoked channel activity in silent cell-attached patches. However, they were only seen in two out of 55 patches. The 12-pS channel was predominant, a nonselective cationic channel with almost the same permeability for K+ and Na+ whose open probability was minimal near –60 mV but increased on membrane hyperpolarization. An increase in internal Ca2+ from 10–7 to 10–4 m left the open probability unchanged. Although the K+ selectivity of the 150-pS channels remains to be elucidated, it is concluded that they may be involved in controlling Ca2+-dependent cellular functions. Under physiological conditions, 12-pS nonselective channels may provide an inward cationic pathway for Na+.  相似文献   

15.
Based on electrophysiological studies, Ca(2+)-activated K(+) channels and voltage-gated Ca(2+) channels appear to be located in close proximity in neurons. Such colocalization would ensure selective and rapid activation of K(+) channels by local increases in the cytosolic calcium concentration. The nature of the apparent coupling is not known. In the present study we report a direct coassembly of big conductance Ca(2+)-activated K(+) channels (BK) and L-type voltage-gated Ca(2+) channels in rat brain. Saturation immunoprecipitation studies were performed on membranes labeled for BK channels and precipitated with antibodies against alpha(1C) and alpha(1D) L-type Ca(2+) channels. To confirm the specificity of the interaction, precipitation experiments were carried out also in reverse order. Also, additive precipitation was performed because alpha(1C) and alpha(1D) L-type Ca(2+) channels always refer to separate ion channel complexes. Finally, immunochemical studies showed a distinct but overlapping expression pattern of the two types of ion channels investigated. BK and L-type Ca(2+) channels were colocalized in various compartments throughout the rat brain. Taken together, these results demonstrate a direct coassembly of BK channels and L-type Ca(2+) channels in certain areas of the brain.  相似文献   

16.
We previously demonstrated the expression of bitter taste receptors of the type 2 family (T2R) and the -subunits of the G protein gustducin (Ggust) in the rodent gastrointestinal (GI) tract and in GI endocrine cells. In this study, we characterized mechanisms of Ca2+ fluxes induced by two distinct T2R ligands: denatonium benzoate (DB) and phenylthiocarbamide (PTC), in mouse enteroendocrine cell line STC-1. Both DB and PTC induced a marked increase in intracellular [Ca2+] ([Ca2+]i) in a dose- and time-dependent manner. Chelating extracellular Ca2+ with EGTA blocked the increase in [Ca2+]i induced by either DB or PTC but, in contrast, did not prevent the effect induced by bombesin. Thapsigargin blocked the transient increase in [Ca2+]i induced by bombesin, but did not attenuate the [Ca2+]i increase elicited by DB or PTC. These results indicate that Ca2+ influx mediates the increase in [Ca2+]i induced by DB and PTC in STC-1 cells. Preincubation with the L-type voltage-sensitive Ca2+ channel (L-type VSCC) blockers nitrendipine or diltiazem for 30 min inhibited the increase in [Ca2+]i elicited by DB or PTC. Furthermore, exposure to the L-type VSCCs opener BAY K 8644 potentiated the increase in [Ca2+]i induced by DB and PTC. Stimulation with DB also induced a marked increase in the release of cholecystokinin from STC-1 cells, an effect also abrogated by prior exposure to EGTA or L-type VSCC blockers. Collectively, our results demonstrate that bitter tastants increase [Ca2+]i and cholecystokinin release through Ca2+ influx mediated by the opening of L-type VSCCs in enteroendocrine STC-1 cells. type 2 family taste receptors; gastrointestinal peptides; phospholipase C 2; Ca2+ fluxes; enteroendocrine cells; cholecystokinin secretion  相似文献   

17.
Heparin and related polyanions are a new class of compounds interacting with 1,4-dihydropyridine-sensitive L-type Ca2+ channels in a tissue-specific manner. Labeling of membrane-bound Ca2+ channels in rabbit skeletal muscle transverse tubules at the phenylalkylamine, benzothiazepine, and 1,4-dihydropyridine-selective domains was inhibited reversibly by a noncompetitive mechanism as shown by equilibrium saturation analysis and kinetic studies. (+)-cis-diltiazem but not (-)-cis-diltiazem reduced the inhibitory potency of heparin for 1,4-dihydropyridines. Antagonistic but not agonistic 1,4-dihydropyridines reversed heparin inhibition at the benzothiazepine site. Heparin forms a tight complex with the purified Ca2+ channel which is highly sensitive with respect to heparin inhibition (IC50 value: 0.05 microgram/ml) of 1,4-dihydropyridine binding. Reconstituted channel complexes have completely lost 1,4-dihydropyridine binding-inhibition by heparin and are not retained by lectin or heparin affinity columns. In whole cell patch clamp experiments with guinea-pig cardiac myocytes heparin increased the current through L-type Ca2+ channels when applied extracellulary. Synthetic peptides (representing putative heparin binding domains) which were derived from the rabbit skeletal muscle alpha 1-subunit reversed the inhibitory effects of heparin on 1,4-dihydropyridine receptors. Reversal for a peptide representing an extracellular domain occurred by an apparently competitive mechanism. It is suggested that heparin and related polyanions may interact with an evolutionary conserved cluster of basic amino acids in the large putative extracellular domain connecting the fifth and sixth putative transmembrane segment in the first motif of the ionic pore-forming alpha 1-subunit from skeletal muscle.  相似文献   

18.
We recently reported that non-secretory gastrointestinal smooth muscle cells also possessed SNARE proteins, of which SNAP-25 regulated Ca(2+)-activated (K(Ca)) and delayed rectifier K(+) channels (K(V)). Voltage-gated, long lasting (L-type) calcium channels (L(Ca)) play an important role in excitation-contraction coupling of smooth muscle. Here, we show that SNAP-25 could also directly inhibit the L-type Ca(2+) channels in feline esophageal smooth muscle cells at the SNARE complex binding synprint site. SNARE proteins could therefore regulate additional cell actions other than membrane fusion and secretion, in particular, coordinated muscle membrane excitability and contraction, through their actions on membrane Ca(2+) and K(+) channels.  相似文献   

19.
Calmodulin, bound to the alpha(1) subunit of the cardiac L-type calcium channel, is required for calcium-dependent inactivation of this channel. Several laboratories have suggested that the site of interaction of calmodulin with the channel is an IQ-like motif in the carboxyl-terminal region of the alpha(1) subunit. Mutations in this IQ motif are linked to L-type Ca(2+) current (I(Ca)) facilitation and inactivation. IQ peptides from L, P/Q, N, and R channels all bind Ca(2+)calmodulin but not Ca(2+)-free calmodulin. Another peptide representing a carboxyl-terminal sequence found only in L-type channels (designated the CB domain) binds Ca(2+)calmodulin and enhances Ca(2+)-dependent I(Ca) facilitation in cardiac myocytes, suggesting the CB domain is functionally important. Calmodulin blocks the binding of an antibody specific for the CB sequence to the skeletal muscle L-type Ca(2+) channel, suggesting that this is a calmodulin binding site on the intact protein. The binding of the IQ and CB peptides to calmodulin appears to be competitive, signifying that the two sequences represent either independent or alternative binding sites for calmodulin rather than both sequences contributing to a single binding site.  相似文献   

20.
The effect of peroxynitrite (OONO-) on voltage-dependent Ca2+ channels (VDCCs) was examined by measuring [45Ca2+] influx into mouse cerebral cortical neurones. OONO- time- and dose-dependently increased [45Ca2+] influx and this increase was abolished by manganese (III) tetrakis (4-benzoic acid) porphyrin, a scavenger for OONO-. Inhibition of cyclic GMP (cGMP) formation did not alter the OONO(-)-induced [45Ca2+] influx. OONO-, as well as 30 mm KCl, significantly increased fluorescence intensity of cell-associated bis-(1,3-dibutylbarbituric acid) trimethine oxonol (bis-oxonol). Tetrodotoxin and membrane stabilizers such as lidocaine dose-dependently suppressed OONO(-)-induced [45Ca2+] influx. Although each of 1 microM nifedipine and 1 microM omega-agatoxin VIA (omega-ATX) significantly inhibited the OONO(-)-induced [45Ca2+] influx and the concomitant presence of these agents completely abolished the influx, 1 microM omega-conotoxin GVIA (omega-CTX) showed no effect on the influx. On the other hand, OONO- itself reduced 30 mM KCl-induced [45Ca2+] influx to the level of [45Ca2+] influx induced by OONO- alone, and the magnitude of this reduction was as same as that of KCl-induced [45Ca2+] influx by omega-CTX. These results indicate that OONO- increases [45Ca2+] influx into the neurones through opening P/Q- and L-type VDCCs subsequent to depolarization, and inhibits the influx through N-type VDCCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号