首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GH and IGF-I are critical regulators of growth and metabolism. GH interacts with the GH receptor (GHR), a cytokine superfamily receptor, to activate the cytoplasmic tyrosine kinase, Janus kinase 2 (JAK2), and initiate intracellular signaling cascades. IGF-I, produced in part in response to GH, binds to the heterotetrameric IGF-I receptor (IGF-IR), which is an intrinsic tyrosine kinase growth factor receptor that triggers proliferation, antiapoptosis, and other biological actions. Previous in vitro and overexpression studies have suggested that JAKs may interact with IGF-IR and that IGF-I stimulation may activate JAKs. In this study, we explore interactions between GHR-JAK2 and IGF-IR signaling pathway elements utilizing the GH and IGF-I-responsive 3T3-F442A and 3T3-L1 preadipocyte cell lines, which endogenously express both the GHR and IGF-IR. We find that GH induces formation of a complex that includes GHR, JAK2, and IGF-IR in these preadipocytes. The assembly of this complex in intact cells is rapid, GH concentration dependent, and can be prevented by a GH antagonist, G120K. However, it is not inhibited by the kinase inhibitor, staurosporine, which markedly inhibits GHR tyrosine phosphorylation. Moreover, complex formation does not appear dependent on GH-induced activation of the ERK or phosphatidylinositol 3-kinase signaling pathways or on the tyrosine phosphorylation of GHR, JAK2, or IGF-IR. These results suggest that GH-induced formation of the GHR-JAK2-IGF-IR complex is governed instead by GH-dependent conformational change(s) in the GHR and/or JAK2. We further demonstrate that GH and IGF-I can synergize in acute aspects of signaling and that IGF-I enhances GH-induced assembly of conformationally active GHRs. These findings suggest the existence of previously unappreciated relationships between these two hormones.  相似文献   

2.
3.
Insulin-like growth factor-binding protein 2 (IGFBP-2) is a member of a family of six highly conserved IGFBPs that are carriers for the insulin-like growth factors (IGFs). IGFBP-2 levels rise during rapid neonatal growth and at the time of peak bone acquisition. In contrast, Igfbp2(-/-) mice have low bone mass accompanied by reduced osteoblast numbers, low bone formation rates, and increased PTEN expression. In the current study, we postulated that IGFBP-2 increased bone mass partly through the activity of its heparin-binding domain (HBD). We synthesized a HBD peptide specific for IGFBP-2 and demonstrated in vitro that it rescued the mineralization phenotype of Igfbp2(-/-) bone marrow stromal cells and calvarial osteoblasts. Consistent with its cellular actions, the HBD peptide ex vivo stimulated metacarpal periosteal expansion. Furthermore, administration of HBD peptide to Igfbp2(-/-) mice increased osteoblast number, suppressed marrow adipogenesis, restored trabecular bone mass, and reduced bone resorption. Skeletal rescue in the Igfbp2(-/-) mice was characterized by reduced PTEN expression followed by enhanced Akt phosphorylation in response to IGF-I and increased β-catenin signaling through two mechanisms: 1) stimulation of its cytosolic accumulation and 2) increased phosphorylation of serine 552. We conclude that the HBD peptide of IGFBP-2 has anabolic activity by activating IGF-I/Akt and β-catenin signaling pathways. These data support a growing body of evidence that IGFBP-2 is not just a transport protein but rather that it functions coordinately with IGF-I to stimulate growth and skeletal acquisition.  相似文献   

4.
5.
Although insulin-like growth factors (IGF) I and II bind with high affinity to structurally discrete receptors, they bind with a lesser affinity to each other's receptor. We have evaluated the affinity of five different IGF-I preparations (three natural IGF-I preparations, one synthetic preparation, and one recombinant DNA-derived) for the IGF-II receptor in rat placental membranes, 18-54,SF cells and BRL-3A cells. In all tissues tested, the natural IGF-I preparations demonstrated an affinity for the IGF-II receptor which was 10-20% that of IGF-II. However, the recombinant and synthetic IGF-I preparations exhibited substantially lower affinities than natural IGF-I for this receptor, with only 10-25% reduction in (125-I)iodo IGF-II binding at peptide concentrations up to 400 ng/ml. Radioimmunoassay of the natural IGF-I preparations with an antibody directed against the unique C-peptide region of IGF-II demonstrated that contamination of IGF-I preparations with immunoreactive IGF-II could not exceed 5%. These results demonstrate that IGF-I purified from human plasma has a different affinity for the IGF-II receptor than does synthetic or recombinant IGF-I. Furthermore, these data are consistent with the hypothesis that IGF-I, itself, may be heterogeneous, and that subforms may vary in their affinities for the IGF receptors. Alternatively, IGF-I preparations which have been considered to be pure may be contaminated with small amounts of IGF-II, resulting in overestimation of the affinity of IGF-I for the type II IGF receptor.  相似文献   

6.
Recent evidence suggests that a regulated insulin-like growth factor (IGF) system mediates the effects of estrogen, promoting the proliferation and differentiation of specific uterine cell types throughout the estrous cycle and during gestation in the rodent. Previous studies have shown that IGFs are differentially expressed in the mouse uterus during the periimplantation period. In the current study, we examined the expression of IGF binding protein-4 (IGFBP-4), IGF-I receptor (IGF-IR), and IGF-I in the mouse uterus throughout the estrous cycle. Ligand blot analysis was conducted on uterine homogenates using [125I]IGF-I. IGFBP-4 was detected in all uterine homogenates, varying in intensity throughout the estrous cycle. In situ hybridization studies at metestrus and diestrus demonstrated an intense IGFBP-4 mRNA signal in antimesometrial stromal cells between the luminal epithelium and the myometrium, but at proestrus and estrus, no IGFBP-4 signal was detected. No IGF-I mRNA was detected at any stage of the estrous cycle by in situ hybridization. However, by RT-PCR analysis, IGF-I mRNA was detected at all stages of the estrous cycle. RT-PCR analysis also showed IGF-IR mRNA throughout the estrous cycle. Using immunohistochemistry, IGF-IR immunostaining was detected throughout the estrous cycle and on days 2-7 of gestation, but was restricted to the glandular epithelium. These results suggest that uterine IGFBP-4 expression may not be dependent on uterine IGF-I expression. They also suggest that IGFBP-4 may play a role in uterine physiology independent of the inhibition of IGF-I action, and that IGF-IR is constitutively expressed in the mouse uterus.  相似文献   

7.
Binding proteins for insulin-like growth factors (IGFs) IGF-I and IGF-II, known as IGFBPs, control the distribution, function and activity of IGFs in various cell tissues and body fluids. Insulin-like growth factor-binding protein-5 (IGFBP-5) is known to modulate the stimulatory effects of IGFs and is the major IGF-binding protein in bone tissue. We have expressed two N-terminal fragments of IGFBP-5 in Escherichia coli; the first encodes the N-terminal domain of the protein (residues 1-104) and the second, mini-IGFBP-5, comprises residues Ala40 to Ile92. We show that the entire IGFBP-5 protein contains only one high-affinity binding site for IGFs, located in mini-IGFBP-5. The solution structure of mini-IGFBP-5, determined by nuclear magnetic resonance spectroscopy, discloses a rigid, globular structure that consists of a centrally located three-stranded anti-parallel beta-sheet. Its scaffold is stabilized further by two inside packed disulfide bridges. The binding to IGFs, which is in the nanomolar range, involves conserved Leu and Val residues localized in a hydrophobic patch on the surface of the IGFBP-5 protein. Remarkably, the IGF-I receptor binding assays of IGFBP-5 showed that IGFBP-5 inhibits the binding of IGFs to the IGF-I receptor, resulting in reduction of receptor stimulation and autophosphorylation. Compared with the full-length IGFBP-5, the smaller N-terminal fragments were less efficient inhibitors of the IGF-I receptor binding of IGFs.  相似文献   

8.
The cellular microenvironment impacts how signals are transduced by cells and plays a key role in tissue homeostasis. Although pH is generally well regulated, there are a number of situations where acidosis occurs and our work addresses how low pH impacts cell association of insulin-like growth factor-I (IGF-I) in the presence of IGF binding protein-3 (IGFBP-3). We have previously shown that IGF-I cell binding was enhanced in the presence of IGFBP-3 at low pH and now show that this binding is IGFBP-mediated as it is inhibited by Y60L-IGF-I, a mutant with reduced affinity for the IGF receptor (IGF-IR), and unaffected by insulin, which binds but not IGFBPs. Using surface plasmon resonance (SPR), we show that direct binding between IGF-I and IGFBP-3 is pH sensitive. Despite this, the key step in the process appears to be IGFBP-3 cell surface association as Long-R(3)-IGF-I, a mutant with reduced affinity for IGFBPs, shows a similar increase in cell association at pH 5.8 in the presence of IGFBP-3 but does not exhibit pH-dependent binding by SPR. Further, analysis indicates a large increase in low-affinity binding sites for IGF-I in the presence of IGFBP-3 and an elimination of IGF-I enhanced binding when a non-cell associating mutant of IGFBP-3 is added in place of IGFBP-3. That the IGFBP-3-mediated binding localizes IGF-I away from IGF-IR is suggested by triton-solubility testing and indicates additional complexities to IGF-I regulation by IGFBP-3. Identifying the pH-dependent binding partner(s) for IGFBP-3 is a necessary next step in deciphering this process.  相似文献   

9.
10.
We have shown that vitronectin (Vn) binding to a cysteine loop sequence within the extracellular domain of the beta3-subunit (amino acids 177-184) of alphaVbeta3 is required for the positive effects of Vn on IGF-I signaling. When Vn binding to this sequence is blocked, IGF-I signaling in smooth muscle cells is impaired. Because this binding site is distinct from the site on beta3 to which the Arg-Gly-Asp sequence of extracellular matrix ligands bind (amino acids 107-171), we hypothesized that the region of Vn that binds to the cysteine loop on beta3 is distinct from the region that contains the Arg-Gly-Asp sequence. The results presented in this study demonstrate that this heparin binding domain (HBD) is the region of Vn that binds to the cysteine loop region of beta3 and that this region is sufficient to mediate the positive effects of Vn on IGF-I signaling. We provide evidence that binding of the HBD of Vn to alphaVbeta3 has direct effects on the activation state of beta3 as measured by beta3 phosphorylation. The increase in beta3 phosphorylation associated with exposure of cells to this HBD is associated with enhanced phosphorylation of the adaptor protein Src homology 2 domain-containing transforming protein C and enhanced activation MAPK, a downstream mediator of IGF-I signaling. We conclude that the interaction of the HBD of Vn binding to the cysteine loop sequence of beta3 is necessary and sufficient for the positive effects of Vn on IGF-I-mediated effects in smooth muscle cells.  相似文献   

11.
12.
13.
Previous studies revealed altered levels of the circulating insulin-like growth factor-I (IGF-I) and of its binding protein-3 (IGFBP-3) in subjects with coronary atherosclerosis, metabolic syndrome and premature atherosclerosis. Hyperlipidemia is a powerful risk factor of atherosclerosis. We expected IGF-I and IGFBP-3 alterations in subjects with moderate/severe hyperlipidemia but without any clinical manifestation of atherosclerosis. Total IGF-I and IGFBP-3 were assessed in 56 patients with mixed hyperlipidemia (MHL; cholesterol >6.0 mmol/l, triglycerides >2.0 mmol/l), in 33 patients with isolated hypercholesterolemia (IHC; cholesterol >6.0 mmol/l, triglycerides <2.0 mmol/l), and in 29 healthy controls (cholesterol<6.0 mmol/l, triglycerides<2.0 mmol/l). The molar ratio of IGF-I/IGFBP-3 was used as a measure of free IGF-I. IHC subjects differed from controls by lower total IGF-I (164+/-60 vs. 209+/-73 ng/ml, p=0.01) and IGF-I /IGFBP-3 ratio (0.14+/-0.05 vs. 0.17+/-0.04, p=0.04). Compared to controls, MHL subjects had lower total IGF-I (153+/-54 ng/ml, p=0.0002) and IGFBP-3 (2.8+/-0.6 mg/ml, p<0.0001), but higher IGF-I/IGFBP-3 ratio (0.25+/-0.06, p<0.0001). Differences remained significant after the adjustment for clinical and biochemical covariates, except for triglycerides. Patients with both IHC and MHL have lower total IGF-I compared to controls. The mechanism is presumably different in IHC and MHL. Because of prominent reduction of IGFBP-3 in patients with MHL, they have reduced total IGF-I despite the actual elevation IGF-I/IGFBP-3 ratio as a surrogate of free IGF-I.  相似文献   

14.
15.
16.
The MukB protein from Escherichia coli has a domain structure that is reminiscent of the eukaryotic motor proteins kinesin and myosin: N-terminal globular domains, a region of coiled-coil, and a specialised C-terminal domain. Sequence alignment of the N-terminal domain of MukB with the kinesin motor domain indicated an approximately 22% sequence identity. These observations raised the possibility that MukB might be a prokaryotic motor protein and, due to the sequence homology shared with kinesin, might bind to microtubules (Mts). We found that a construct encoding the first 342 residues of MukB (Muk342) binds specifically to Mts and shares a number of properties with the motor domain of kinesin. Visualisation of the Muk342 decorated Mt complexes using negative stain electron microscopy indicated that the Muk342 smoothly decorates the outside of Mts. Biochemical data demonstrate that Muk342 decorates Mts with a binding stoichiometry of one Muk342 monomer per tubulin monomer. These findings strongly suggest that MukB has a role in force generation and that it is a prokaryotic homologue of kinesin and myosin.  相似文献   

17.
Increased expression of the insulin-like growth factor-I receptor (IGF-IR) protein-tyrosine kinase occurs in several kinds of cancer and induces neoplastic transformation in fibroblast cell lines. The transformed phenotype can be reversed by interfering with the function of the IGF-IR. The IGF-IR is required for transformation by a number of viral and cellular oncoproteins, including SV40 large T antigen, Ras, Raf, and Src. The IGF-IR is a substrate for Src in vitro and is phosphorylated in v-Src-transformed cells. We observed that the IGF-IR and IR associated with the C-terminal Src kinase (CSK) following ligand stimulation. We found that the SH2 domain of CSK binds to the tyrosine-phosphorylated form of IGF-IR and IR. We determined the tyrosine residues in the IGF-IR and in the IR responsible for this interaction. We also observed that fibroblasts stimulated with IGF-I or insulin showed a rapid and transient decrease in c-Src tyrosine kinase activity. The results suggest that c-Src and CSK are involved in IGF-IR and IR signaling and that the interaction of CSK with the IGF-IR may play a role in the decrease in c-Src activity following IGF-I stimulation.  相似文献   

18.
AIM: To report effects of weight-based recombinant human insulin-like growth factor-I (rhIGF-I) on IGF axis parameters in children with hyperinsulinism. METHODS: Open label trial with subcutaneous rhIGF-I (40 microg/kg/dose). Patients studied were children (1 month to 11 years) with diffuse hyperinsulinism (n = 7). Serial serum IGF and insulin-like growth factor binding protein (IGFBP) concentrations were measured by RIA and analyzed by linear Pearson regression. RESULTS: Following the initial rhIGF-I dose, total insulin-like growth factor-I (IGF-I) rose by 56% at 30 min (p < 0.01) and 85% at 120 min (p < 0.02). Serum IGF-II, IGFBP-2, and IGFBP-3 levels did not change. Peak serum IGF-I levels within 12 h of the initial rhIGF-I dose were 167-700 mg/ml. The variable peak IGF-I response is attributable in part to IGFBP-3 differences across this pediatric age range. Models of rhIGF-I dosing based upon body surface area (BSA) or initial IGFBP-3 resulted in predictable peak serum IGF-I levels (r = 0.78; p < 0.03). Recalculating rhIGF-I dosing based upon the BSA . IGFBP-3 product correlated closely with peak IGF-I level (r = 0.85; p < 0.007). CONCLUSIONS: Weight-based IGF-I dosing in this cohort resulted in variable IGF-I levels. Considering BSA and serum IGFBP-3 concentration in children is appropriate for subcutaneous IGF-I administration. A combination of these values may yield predictable individualization of rhIGF-I dosing.  相似文献   

19.
We have used Surface Plasmon Resonance (SPR) - based biosensor technology to investigate the interaction of the six high affinity insulin-like growth factor binding proteins (IGFBP 1-6) with the cell binding domain (CBD) of fibronectin. Using a biotinylated derivative of the ninth and tenth TypeIII domains of FN (9-10FNIII), we show that IGFBP-3 and -5 bind to FN-CBD. We show that this binding is inhibited by IGF-I and that, for IGFBP-5, binding occurs through the C-terminal heparin binding domain of the protein. Using site-directed mutagenesis of 9-10FNIII, we show both the “synergy” and RGD sites within these FN domains are required for maximum binding of both IGFBPs. We discuss the possible biological consequences of our results.  相似文献   

20.
Dolichyl monophosphate (Dol-P) has been found to induce apoptosis in human leukemia U937 cells. During this apoptotic execution, the increase of plasma membrane fluidity (5–20 min), caspase-3-like protease activation (2–4 h), chromatin condensation and DNA ladder formation (3–4 h) were observed successively. Here, we report that reduction in mitochondrial transmembrane potential and translocation of apoptosis-inducing factor (AIF) are early events (1–3 h) in the apoptotic process induced by Dol-P in U937 cells. The AIF was concentrated around nuclei and partly translocated to the nuclei, which was confirmed by immunocytochemistry using specific anti-AIF antibody. Both caspase-8 and caspase-3 inhibitors blocked only DNA fragmentation but not mitochondrial processes, AIF migration and chromatin condensation. These results indicate that mitochondrial changes are an early step in the apoptosis induced by Dol-P and AIF is one of the important factors which induce chromatin condensation in nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号