首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of stenbolone acetate (17 beta-acetoxy-2-methyl-5 alpha-androst-1-en-3-one), a synthetic anabolic steroid, has been investigated in man. Nine metabolites were detected in urine either as glucuronic or sulfuric acid aglycones after oral administration of a single 50 mg dose to a male volunteer. Stenbolone, the parent compound, was detected for more than 120 h after administration and its cumulative excretion accounted for 6.6% of the ingested dose. Most of the stenbolone acetate metabolites were isolated from the glucuronic acid fraction, namely: stenbolone, 3 alpha-hydroxy-2-methyl-5 alpha-androst-1-en- 17-one, 3 alpha-hydroxy-2 xi-methyl-5 alpha-androst-17-one; 3 isomers of 3 xi, 16 xi-dihydroxy-2-methyl-5 alpha-androst-1-en-17-one; 16 alpha and 16 beta-hydroxy-2-methyl-5 alpha-androst-1-ene-3, 17-dione; and 16 xi, 17 beta-dihydroxy-2-methyl-5 alpha-androst-1-en-3-one. Only isomeric metabolites bearing a 16 alpha or a 16 beta-hydroxyl group were detected in the sulfate fraction. Interestingly, no metabolite was detected in the unconjugated steroid fraction. The steroids identities were assigned on the basis of their TMS ether, TMS enol-TMS ether, MO-TMS and d9-TMS ether derivatives and by comparison with reference and structurally related steroids. Data indicated that stenbolone acetate was metabolized into several compounds resulting from oxidation of the 17 beta-hydroxyl group and/or reduction of A-ring delta-1 and/or 3-keto functions with or without hydroxylation at the C16 position. Finally, comparison of stenbolone acetate urinary metabolites with that of methenolone acetate shows similar biotransformation pathways for both delta-1-3-keto anabolic steroids. This indicates that the position of the methyl group at the C1 or C2 position in these steroids has little effect on their major biotransformation routes in human, to the exception that stenbolone cannot give rise to metabolites bearing a 2-methylene group since its 2-methyl group cannot isomerize into a 2-methylene function through enolization of the 3-keto group as previously observed for methenolone.  相似文献   

2.
The metabolism of methenolone acetate (17 beta-acetoxy-1-methyl-5 alpha-androst-1-en-3-one), a synthetic anabolic steroid, has been investigated in man. After oral administration of a 50 mg dose of the steroid to two male volunteers, twelve metabolites were detected in urine either in the glucuronide, sulfate or free steroid fractions. Methenolone, the parent steroid was detected in urine until 90 h after administration. Its cumulative urinary excretion accounted for 1.63% of the ingested dose. With the exception of 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, the major biotransformation product of methonolone acetate, metabolites were excreted in urine at lower levels, through minor metabolic routes. Most of methenolone acetate metabolites were isolated from the glucuronic acid fraction, namely methenolone, 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, 3 alpha-hydroxy-1 alpha-methyl-5 alpha-androstan-17-one, 17-epimethenolone, 3 alpha,6 beta-dihydroxy-1-methylen-5 alpha-androstan-17-one, 2 xi-hydroxy-1-methylen-5 alpha-androstan-3,17-dione, 6 beta-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione, 16 alpha-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione and 3 alpha,16 alpha-dihydroxy-1-methyl-5 alpha-androst-1-en-17-one. Interestingly, the metabolites detected in the sulfate fraction were isomeric steroids bearing a 16 alpha- or a 16 beta-hydroxyl group, whereas 1-methyl-5 alpha-androst-1-en-3,17-dione was the sole metabolite isolated from the free steroid fraction. Steroids identity was assigned on the basis of the mass spectral features of their TMS ether, TMS enol-TMS ether, MO-TMS, and d9-TMS ether derivatives and by comparison with reference and structurally related steroids. The data indicated that methenolone acetate was metabolized into several compounds resulting from oxidation of the 17-hydroxyl group and reduction of A-ring substituents, with or without concomitant hydroxylation at the C6 and C16 positions.  相似文献   

3.
The biotransformation of dehydrochloromethyltestosterone (DHCMT, 4-chloro-17β-hydroxy,17α-methylandrosta-1,4-dien-3-one) in man was studied with the aim to discover long-term metabolites valuable for the antidoping analysis. Having applied a high performance liquid chromatography for the fractionation of urinary extract obtained from the pool of several DHCMT positive urines, about 50 metabolites were found. Most of these metabolites were included in the GC-MS/MS screening method, which was subsequently applied to analyze the post-administration and routine doping control samples. As a result of this study, 6 new long-term metabolites were identified tentatively characterized using GC-MS and GC-MS/MS as 4-chloro-17α-methyl-5β-androstan-3α,16,17β-triol (M1), 4-chloro-18-nor-17β-hydroxymethyl,17α-methyl-5β-androsta-1,13-dien-3α-ol (M2), 4-chloro-18-nor-17β-hydroxymethyl,17α-methyl-5β-androst-13-en-3α-ol (M3), its epimer 4-chloro-18-nor-17α-hydroxymethyl,17β-methyl-5β-androst-13-en-3α-ol, 4-chloro-18-nor-17β-hydroxymethyl,17α-methylandrosta-4,13-dien-3α-ol (M4) and its epimer 4-chloro-18-nor-17α-hydroxymethyl,17β-methylandrosta-4,13-dien-3α-ol. The most long-term metabolite M3 was shown to be superior in the majority of cases to the other known DHCMT metabolites, such as 4-chloro-18-nor-17β-hydroxymethyl,17α-methylandrosta-1,4,13-trien-3-one and 4-chloro-3α,6β,17β-trihydroxy-17α-methyl-5β-androst-1-en-16-one.  相似文献   

4.
New analogues of androgens that had never been available as approved drugs are marketed as “dietary supplement” recently. They are mainly advertised to promote muscle mass and are considered by the governmental authorities in various countries, as well as by the World Anti-doping Agency for sport, as being pharmacologically and/or chemically related to anabolic steroids.In the present study, we report the detection of a steroid in a product seized by the State Bureau of Criminal Investigation Schleswig-Holstein, Germany. The product “1-Androsterone” of the brand name “Advanced Muscle Science” was labeled to contain 100 mg of “1-Androstene-3b-ol,17-one” per capsule. The product was analyzed underivatized and as bis-TMS derivative by GC-MS. The steroid was identified by comparison with chemically synthesized 3β-hydroxy-5α-androst-1-en-17-one, prepared by reduction of 5α-androst-1-ene-3,17-dione with LS-Selectride (Lithium tris-isoamylborohydride), and by nuclear magnetic resonance. Semi-quantitation revealed an amount of 3β-hydroxy-5α-androst-1-en-17-one in the capsules as labeled.Following oral administration to a male volunteer, the main urinary metabolites were monitored. 1-Testosterone (17β-hydroxy-5α-androst-1-en-3-one), 1-androstenedione (5α-androst-1-ene-3,17-dione), 3α-hydroxy-5α-androst-1-en-17-one, 5α-androst-1-ene-3α,17β-diol, and 5α-androst-1-ene-3β,17β-diol were detected besides the parent compound and two more metabolites (up to now not finally identified but most likely C-18 and C-19 hydroxylated 5α-androst-1-ene-3,17-diones). Additionally, common steroids of the urinary steroid profile were altered after the administration of “1-Androsterone”. Especially the ratios of androsterone/etiocholanolone and 5α-/5β-androstane-3α,17β-diol and the concentration of 5α-dihydrotestosterone were influenced. 3α-Hydroxy-5α-androst-1-en-17-one appears to be suitable for the long-term detection of the steroid (ab-)use, as this characteristic metabolite was detectable in screening up to nine days after a single administration of one capsule.  相似文献   

5.
Parr MK  Zapp J  Becker M  Opfermann G  Bartz U  Schänzer W 《Steroids》2007,72(6-7):545-551
In human sports doping control analysis most of the steroids are analyzed after enzymatic hydrolysis of the glucuronides as per-trimethylsilyl (TMS) derivatives applying gas chromatography-mass spectrometry (GC-MS). According to the recommendations of the World Anti-Doping Agency the identification of analytes should be based on retention time and on mass spectrometric characterization. This study shows that the bis-TMS derivatives of 16 specific C19 steroids, namely the stereoisomers of 5xi-androst-1-ene-3xi,17xi-diol (8 isomers), androst-4-ene-3xi,17xi-diol (4 isomers), and 17xi-hydroxy-5xi-androstan-3-one (4 isomers), reveal very similar mass spectra. As a rule, when taking the retention times, which are provided as Kovac indices for all these isomers, into account, a restriction to two or three possible isomers is possible. Reliable identification should additionally include a comparison of the retention times of the analytes with the reference compounds measured concomitantly. In some cases standard addition may be appropriate. Due to the limited availability, the above mentioned isomers were synthesized by reduction of the corresponding alpha,beta-unsaturated oxo steroids either with K-Selectride or by catalytic hydrogenation (Pd/C as catalyst). The products of the reactions were identified by means of nuclear magnetic resonance (NMR) characterization and by further reduction to the corresponding 5xi-androstane-3xi,17xi-diols and GC-MS comparison with commercially available reference standards.  相似文献   

6.
Swizdor A  Kołek T 《Steroids》2005,70(12):817-824
A series of 4- and/or 17alpha-substituted testosterone analogues has been incubated with the hydroxylating fungus Fusarium culmorum AM282. It was found that 19-norandrostenedione, 19-nortestosterone, 4-methoxytestosterone, 4-methyltestosterone, and 4-chloro-17alpha-methyltestosterone were hydroxylated exclusively or mainly at the 6beta-position. The mixtures of 6beta-, 15alpha-, and 12beta- or 11alpha-monohydroxy derivatives were obtained from 17alpha-methyltestosterone and 17alpha-ethyl-19-nortestosterone--the substrates with alkyl group at C-17alpha. 4-Chlorotestosterone was predominantly hydroxylated at 15alpha-position, but the reaction was accompanied by the reduction of 4-en-3-one system, which proceeded in the sequence: reduction of ketone to 3beta-alcohol and then reduction of the double 4,5 bond. The results obtained indicate an influence of stereoelectronic and steric effects of substitutes on regioselectivity of the hydroxylation of 4-en-3-one steroids by F. culmorum.  相似文献   

7.
After oral administration of metandienone (17 alpha-methyl-androsta-1,4-dien-17 beta-ol-3-one) to male volunteers conjugated metabolites are isolated from urine via XAD-2-adsorption, enzymatic hydrolysis and preparative high-performance liquid chromatography (HPLC). Four conjugated metabolites are identified by gas chromatography-mass spectrometry (GC/MS) with electron impact (EI)-ionization after derivatization with N-methyl-N-trimethyl-silyl-trifluoroacetamide/trimethylsilyl-imidazole (MSTFA/TMS-Imi) and comparison with synthesized reference compounds: 17 alpha-methyl-5 beta-androst-1-en-17 beta-ol-3-one (II), 17 alpha-methyl-5 beta-androst-1-ene-3 alpha,17 beta-diol (III), 17 beta-methyl-5 beta-androst-1-ene-3 alpha,17 alpha-diol (IV) and 17 alpha-methyl-5 beta-androstane-3 alpha,17 beta-diol (V). After administration of 40 mg of metandienone four bis-hydroxy-metabolites--6 beta,12-dihydroxy-metandienone (IX), 6 beta,16 beta-dihydroxy-metandienone (X), 6 beta,16 alpha-dihydroxy-metandienone (XI) and 6 beta,16 beta-dihydroxy-17-epimetandienone (XII)--were detected in the unconjugated fraction. The metabolites III, IV and V are excreted in a comparable amount to the unconjugated excreted metabolites 17-epimetandienone (VI), 6 beta-hydroxy-metandienone (VII) and 6 beta-hydroxy-17-epimetandienone (VIII). Whereas the unconjugated excreted metabolites show maximum excretion rates between 4 and 12 h after administration the conjugated metabolites III, IV and V are excreted with maximum rates between 12 and 34 h.  相似文献   

8.
1. 19-Nor-17alpha-pregna-1,3,5(10)-trien-20-yne-3,17-diol (ethynyloestradiol) or 17beta-hydroxy-19-nor-17alpha-pregn-4-en-20-yn-3-one (norethindrone) but not 17alpha-ethyl-17beta-hydroxy-19-norandrost-4-en-3-one (norethandrolone) caused a time-dependent loss of cytochrome P-450 when incubated in vitro with rat liver microsomal fractions and NADPH-generating systems. 2. The enzyme system catalysing the norethindrone-mediated loss of cytochrome P-450 had many characteristics of the microsomal mixed-function oxidases. It required NADPH and air, and was inhibited by Co. However, it was unaffected by 1 mM-compound SKF 525A. 3. In microsomal fractions from phenobarbitone-pretreated rats the norethindrone-mediated loss of cytochrome P-450 was increased relative to controls. The norethindrone-mediated cytochrome P-450 loss was less pronounced when the animals were pretreated with 3beta-hydroxy-pregn-5-en-2-one 16alpha-carbonitrile (pregnenolone 16alpha-carbonitrile). Pretreatment with 3-methylcholanthrene rendered the animals resistant to the norethindrone effect. 4. Administration in vivo [100mg/kg, intraperitoneally] of norethindrone or ethinyl oestradiol also produced a time-dependent loss of liver cytochrome P-450. Norethandrolone had a similar, though much less-marked, effect. All three steroids lead to an induction of 5-aminolaevulinate synthase and an accumulation of porphyrins in the liver. 5. The loss of cytochrome P-450 and the accumulation of porphyrins in the liver 2 h after the administration of norethindrone to female rats was similar to that seen in males. 6. Rats pretreated with phenobarbitone and given norethindrone or ethynyloestradiol (100mg/kg, intraperitoneally) formed green pigments in their livers. These had characteristics similar to the green pigments produced in the livers of rats after the administration of 2-allyl-2-isopropylacetamide. No green pigments could be extracted from the livers of control rats or those given norethandrolone, oestradiol or progesterone.  相似文献   

9.
总状毛霉对4-烯-3-酮甾体的生物转化研究   总被引:6,自引:0,他引:6  
从土样中筛选到一株能转化甾体的菌株,经形态观察,鉴定为总状毛霉(Mucor racemosus)。首次利用该菌株对4-烯-3-酮类甾体衍生物进行生物转化,目的是合成具有潜在活性的羟基类4-烯-3-酮衍生物。转化条件为27℃,220r/min振荡培养4d。转化产物经乙酸乙酯萃取,用硅胶柱层析法分离,通过红外、质谱和核磁分析确定了甾体转化产物的化学结构。黄体酮生物转化得到的产物是14α-羟基-4-孕甾烯-3,20-二酮和7α,14α-二羟基-4-孕甾烯-3,20-二酮;4-雄烯二酮的转化产物是14α-羟基-雄甾-4-烯-3,17-二酮1、4α,17β-二羟基-雄甾-4-烯-3-酮和6α,17β-二羟基-雄甾-4-烯-3-酮。研究结果表明总状毛霉具有转化甾体的能力,对4-烯-3-酮类甾体进行生物转化的主要产物是14α-羟基甾体衍生物。  相似文献   

10.
Biotransformation of 3beta-acetoxy-19-hydroxycholest-5-ene (19-HCA, 6 g) by Moraxella sp. was studied. Estrone (712 mg) was the major metabolite formed. Minor metabolites identified were 5alpha-androst-1-en-19-ol-3,17-dione (33 mg), androst-4-en-19-ol-3,17-dione (58 mg), androst-4-en-9alpha,19-diol-3,17-dione (12 mg), and androstan-19-ol-3,17-dione (1 mg). Acidic metabolites were not formed. Time course experiments on the fermentation of 19-HCA indicated that androst-4-en-19-ol-3,17-dione was the major metabolite formed during the early stages of incubation. However, with continuing fermentation its level dropped, with a concomitant increase in estrone. Fermentation of 19-HCA in the presence of specific inhibitors or performing the fermentation for a shorter period (48 h) did not result in the formation of acidic metabolites. Resting-cell experiments carried out with 19-HCA (200 mg) in the presence of alpha,alpha'-bipyridyl led to the isolation of three additional metabolites, viz., cholestan-19-ol-3-one (2 mg), cholest-4-en-19-ol-3-one (10 mg), and cholest-5-en-3beta,19-diol (12 mg). Similar results were also obtained when n-propanol was used instead of alpha,alpha'-bipyridyl. Resting cells grown on 19-HCA readily converted both 5alpha-androst-1-en-19-ol-3,17-dione and androst-4-en-19-ol-3,17-dione into estrone. Partially purified 1,2-dehydrogenase from steroid-induced Moraxella cells transformed androst-4-en-19-ol-3,17-dione into estrone and formaldehyde in the presence of phenazine methosulfate, an artificial electron acceptor. These results suggest that the degradation of the hydrocarbon side chain of 19-HCA does not proceed via C(22) phenolic acid intermediates and complete removal of the C(17) side chain takes place prior to the aromatization of the A ring in estrone. The mode of degradation of the sterol side chain appears to be through the fission of the C(17)-C(20) bond. On the basis of these observations, a new pathway for the formation of estrone from 19-HCA in Moraxella sp. has been proposed.  相似文献   

11.
4-Hydroxyandrost-4-ene-3,17-dione is a second generation, irreversible aromatase inhibitor and commonly used as anti breast cancer medication for postmenopausal women. 4-Hydroxytestosterone is advertised as anabolic steroid and does not have any therapeutic indication. Both substances are prohibited in sports by the World Anti-Doping Agency, and, due to a considerable increase of structurally related steroids with anabolic effects offered via the internet, the metabolism of two representative candidates was investigated. Excretion studies were conducted with oral applications of 100mg of 4-hydroxyandrostenedione or 200mg of 4-hydroxytestosterone to healthy male volunteers. Urine samples were analyzed for metabolic products using conventional gas chromatography-mass spectrometry approaches, and the identification of urinary metabolites was based on reference substances, which were synthesized and structurally characterized by nuclear magnetic resonance spectroscopy and high resolution/high accuracy mass spectrometry. Identified phase-I as well as phase-II metabolites were identical for both substances. Regarding phase-I metabolism 4-hydroxyandrostenedione (1) and its reduction products 3beta-hydroxy-5alpha-androstane-4,17-dione (2) and 3alpha-hydroxy-5beta-androstane-4,17-dione (3) were detected. Further reductive conversion led to all possible isomers of 3xi,4xi-dihydroxy-5xi-androstan-17-one (4, 6-11) except 3alpha,4alpha-dihydroxy-5beta-androstan-17-one (5). Out of the 17beta-hydroxylated analogs 4-hydroxytestosterone (18), 3beta,17beta-dihydroxy-5alpha-androstan-4-one (19), 3alpha,17beta-dihydroxy-5beta-androstan-4-one (20), 5alpha-androstane-3beta,4beta,17beta-triol (21), 5alpha-androstane-3alpha,4beta,17beta-triol (26) and 5alpha-androstane-3alpha,4alpha,17beta-triol (28) were identified in the post administration urine specimens. Furthermore 4-hydroxyandrosta-4,6-diene-3,17-dione (29) and 4-hydroxyandrosta-1,4-diene-3,17-dione (30) were determined as oxidation products. Conjugation was diverse and included glucuronidation and sulfatation.  相似文献   

12.
Deuterated analogs of pregnenolone and pregnenolone sulfate with three atoms of deuterium in position 19 were prepared. The synthetic approach was developed on derivatives of dehydroepiandrosterone, where initial intermediates were well characterized, and then applied to the pregnenolone series. Starting 19-hydroxy compounds were transformed into 3alpha,5-cycloderivatives to simplify the Jones oxidation into the corresponding 19-oic acids. After oxidation, rearrangement to 3-hydroxy-5-enes, and suitable protection, two deuterium atoms were introduced by lithium aluminum deuteride reduction. Mesylate exchange by iodide in the presence of zinc and deuterium oxide added third deuterium atom. Deprotection gave title analogs with about 93-95% content of d3-derivative, the rest was mainly not fully deuterated d2-analogue as followed from the mass spectra analysis. Thus, 3beta-hydroxy[19-2H3]androst-5-en-17-one was prepared in 14 steps from 19-hydroxy-17-oxoandrost-5-en-3beta-yl acetate in 8.9% yield, the analogous sequence in the pregnenolone series gave 3beta-hydroxy[19-2H3]pregn-5-en-20-one in 7.3% yield. Corresponding sulfates were prepared via pyridinium salts in 53 and 57% yields, respectively. Fully assigned NMR data of selected pregnenolone derivatives were given.  相似文献   

13.
Four ring A steroidal epoxyenones as probable intermediate in the formation of catechol estrogens were synthesized. The isomeric 1 alpha,2 alpha-epoxy-17 beta-hydroxyestr-4-en-3-one (9) and 1 beta,2 beta-epoxy-17 beta-hydroxyestr-4-en-3-one (8) were synthesized from 17 beta-hydroxy-5 alpha-estra-3-one. The isomeric 4 alpha,5 alpha-epoxy-17 beta-hydroxyestr-1-en-3-one (11) and 4 beta,5 beta-epoxy-17 beta-hydroxyestr-1-en-3-one (10) were prepared from 19-nortestosterone. The reaction of 9 and 10 with sodium/ethanethiol resulted in the formation of three types of reactions leading to multiple products: 1,4-addition, opening of epoxide, and epoxide opening followed by dehydration. Reaction of 8 with ethanethiol gave only one compound identified as 2-ethanethio-1,4-estradien-17 beta-ol-3-one, while reaction of 9 with ethanethiol gave an unusual product identified as 4-estren-1 alpha,17 beta-diol-3-one. Unlike reaction of ethanethiol with 9 and 10, reaction with N-acetylecysteine or glutathione results in epoxide opening followed by dehydration leading to the formation of estradiol-4-thioethers.  相似文献   

14.
Catharanthus roseus (L.) G. Don cell suspension cultures were used to transform 3b-hydroxyandrost-5-en-17-one, the products were isolated by chromatographic methods. Their structures were established by means of NMR and MS spectral analyses. Nine metabolites were respectively elucidated as: androst-4-ene-3,17-dione (Ⅰ), 6a-hydroxyandrost-4-ene-3,17-dione (Ⅱ), 6a,17b-dihydroxyandrost-4-en-3-one (Ⅲ), 6b-hydroxyandrost-4-ene-3,17-dione (Ⅳ), 17b-hydroxyandrost-4-en-3-one (Ⅴ), 15a,17b-dihydroxyandrost-4-en-3-one (Ⅵ), 15b,17b-dihydroxyandrost-4-en-3-one (Ⅶ), 14a-hydroxyandrost-4-ene-3,17-dione (Ⅷ), 17b-hydroxyandrost-4-ene-3,16-dione (Ⅸ). It is the first time to obtain the above compounds by biotransformation with Catharanthus roseus cell cultures.  相似文献   

15.
Biotransformation of 3β-acetoxy-19-hydroxycholest-5-ene (19-HCA, 6 g) by Moraxella sp. was studied. Estrone (712 mg) was the major metabolite formed. Minor metabolites identified were 5α-androst-1-en-19-ol-3,17-dione (33 mg), androst-4-en-19-ol-3,17-dione (58 mg), androst-4-en-9α,19-diol-3,17-dione (12 mg), and androstan-19-ol-3,17-dione (1 mg). Acidic metabolites were not formed. Time course experiments on the fermentation of 19-HCA indicated that androst-4-en-19-ol-3,17-dione was the major metabolite formed during the early stages of incubation. However, with continuing fermentation its level dropped, with a concomitant increase in estrone. Fermentation of 19-HCA in the presence of specific inhibitors or performing the fermentation for a shorter period (48 h) did not result in the formation of acidic metabolites. Resting-cell experiments carried out with 19-HCA (200 mg) in the presence of α,α′-bipyridyl led to the isolation of three additional metabolites, viz., cholestan-19-ol-3-one (2 mg), cholest-4-en-19-ol-3-one (10 mg), and cholest-5-en-3β,19-diol (12 mg). Similar results were also obtained when n-propanol was used instead of α,α′-bipyridyl. Resting cells grown on 19-HCA readily converted both 5α-androst-1-en-19-ol-3,17-dione and androst-4-en-19-ol-3,17-dione into estrone. Partially purified 1,2-dehydrogenase from steroid-induced Moraxella cells transformed androst-4-en-19-ol-3,17-dione into estrone and formaldehyde in the presence of phenazine methosulfate, an artificial electron acceptor. These results suggest that the degradation of the hydrocarbon side chain of 19-HCA does not proceed via C22 phenolic acid intermediates and complete removal of the C17 side chain takes place prior to the aromatization of the A ring in estrone. The mode of degradation of the sterol side chain appears to be through the fission of the C17-C20 bond. On the basis of these observations, a new pathway for the formation of estrone from 19-HCA in Moraxella sp. has been proposed.  相似文献   

16.
Sertoli cells isolated from 17 day old rats were maintained in culture and incubated with [14C]-progesterone for 20 h. The cells and media were extracted with ether/chloroform and the extracts chromatographed two-dimensionally on TLC and the radioactive metabolites visualized by autoradiography. Nine of the metabolites (constituting about 88% of total metabolite radioactivity) were identified by relative mobilities of the compounds and their derivatives in TLC and GC systems and by recrystallizations with authentic steroids as the following: 20α-hydroxypregn-4-en-3-one, 3α-hydroxy-5α-pregnan-20-one, 5α-pregnane3α,20α-diol, 17β-hydroxy-5α-androstan-3-one, 5α-pregnane-3,20-dione, 17-hydroxypregn-4-ene-3,20-dione, testosterone, 5α-androstane-3α,17β-diol and androst-4-ene-3,17-dione. Over 71% of the metabolite radioactivity was due to 20α-hydroxypregn-4-en-3-one, the major metabolite. 5α-reduced pregnanes constituted about 12% and C19 steroids comprised about 2.9% of the radioactivity of the metabolites. Calculation of relative steroidogenic enzyme activities from initial reaction rates suggested the following activities in μunits/mg Sertoli cell protein: 20α-hydroxysteroid oxidoreductase (20α-HS0; 7.71), 5α-reductase (4.77), 3α-HS0 (3.57), 17α-hydroxylase (0.93), 17β-HS0 (0.34) and C17-C20 lyase (0.34). The relatively high rate of steroidogenic enzyme activities in the Sertoli cells of young rats may indicate that Sertoli cells are less dependent on Leydig cell steroidogenesis than has been assumed. Since nearly all the metabolites of progesterone and testosterone are now identified, it is possible to construct a picture of Sertoli cell steroidogenic activity.  相似文献   

17.
3 beta,16 beta,19-Trihydroxyandrost-5-en-17-one (12) was synthesized from 5 alpha-bromo-3 beta-acetoxy-6 beta,19-epoxyandrostan-17-one (2) through acetoxylation at C-16 beta of the enol acetate 4 with lead tetraacetate and reductive cleavage of the epoxide ring with zinc dust yielding the 3 beta,16 beta-diacetoxy-19-hydroxy steroid 11, followed by hydrolysis of the acetoxy groups with sulfuric acid. Jones oxidation of compound 11 followed by the acid hydrolysis gave the 19-oxo steroid 15. 5 alpha-Bromo-3 beta-hydroxy-16 beta-acetoxy-6 beta,19-epoxyandrostan-17-one (8), obtained by selective hydrolysis of the 3-formate 5 with ammonium hydroxide, was oxidized with Jones reagent to afford the 3-oxo steroid 16, which was converted into the 19-hydroxy derivative 17 by treatment with zinc dust. 16 beta,19-Dihydroxyandrost-4-ene-3,17-dione (18) and its 19-oxo derivative 21 were obtained from compound 17 through a similar reaction sequence.  相似文献   

18.
[4-14C + 7-D0.44]Androstenedione and [4-14C + 7β-D0.42]testosterone were prepared. When they were examined by mass spectrometry, the above proportion of deuterium and protium forms resulted in mass spectra in which the molecular ion (M+) and (M+ + 1) were of equal intensity. Fragment ions that contained deuterium were also twins. When doubly-labeled androstenedione and testosterone were used as substrates for the aromatizing enzymes of human placenta, the mass spectra of metabolites were characteristically labeled and thus readily distinguished from unlabeled material. Metabolites were quantitated by counting 14C. 17β,19-Dihydroxyandrost-4-en-3-one, 19-hydroxyandrost-4-ene-3,17-dione, 17β-hydroxy-3-oxoandrost-4-en-19-al, 3,17-dioxoandrost-4-en-19-al, estradiol-17β, and estrone were isolated, identified by their mass spectra, and quantitated following incubation of doubly-labeled androstenedione and testosterone with human placental microsomes.  相似文献   

19.
Following the subcutaneous administration of estriol-6,7-3H to rats, biliary metabolites were identified and quantitated. Approximately 70% of the metabolites were excreted in the form of “glucosiduronate” conjugates. 3, 17β-Dihydroxy-2-methoxy-1,3,5(10)-estratrien-16-one was the major metabolite in this conjugate fraction. Significant amounts of 3,17β-dihydroxy-1,3,5(10)-estratrien-16-one and 2,3,17β-trihydroxy-1,3,5(10)-estratrien-16-one, as well as smaller quantities of 1,3,5(10)-estratriene-2,3,16α,17β-tetrol and 2-methoxy-1,3,5(10)-estratriene-3,16α, 17β-triol, were also found. In 17α-ethinylestradiol - treated animals, the rate of excretion of radioactivity and the proportion of 16-oxo-17β-ol metabolites found in the “glucosiduronate” fraction were reduced.  相似文献   

20.
A series of 7α- and 7β- alkyl derivatives of steroidal 4-en- and 5-en-3-ones were prepared by 1,6-conjugate addition of organocopper reagents to various steroidal 4,6-dien-3-ones of the androstane, estrane and gonane series. Biological study of these and related compounds revealed that 17β-hydroxy-7α-methyl-5-androsten-3-one (2), 17β-hydroxy-7α-methyl-5-estren-3-one acetate and 17β-hydroxy-7α-methyl-4-estren-3-one acetate had significant anti-implantational and antidecidual activities. The contragestative effects were associated with the latter antihormonal properties, and not with the androgenicity of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号