首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We characterized microbial biofilm communities developed over two very closely located but distinct benthic habitats in the Pensacola Bay estuary using two complementary cultivation-independent molecular techniques. Biofilms were grown for 7 days on glass slides held in racks 10 to 15 cm over an oyster reef and an adjacent muddy sand bottom. Total biomass and optical densities of dried biofilms showed dramatic differences for oyster reef versus non-oyster reef biofilms. This study assessed whether the observed spatial variation was reflected in the heterotrophic prokaryotic species composition. Genomic biofilm DNA from both locations was isolated and served as a template to amplify 16S rRNA genes with universal eubacterial primers. Fluorescently labeled PCR products were analyzed by terminal restriction fragment length polymorphism, creating a genetic fingerprint of the composition of the microbial communities. Unlabeled PCR products were cloned in order to construct a clone library of 16S rRNA genes. Amplified ribosomal DNA restriction analysis was used to screen and define ribotypes. Partial sequences from unique ribotypes were compared with existing database entries to identify species and to construct phylogenetic trees representative of community structures. A pronounced difference in species richness and evenness was observed at the two sites. The biofilm community structure from the oyster reef setting had greater evenness and species richness than the one from the muddy sand bottom. The vast majority of the bacteria in the oyster reef biofilm were related to members of the γ- and δ-subdivisions of Proteobacteria, the Cytophaga-Flavobacterium -Bacteroides cluster, and the phyla Planctomyces and Holophaga-Acidobacterium. The same groups were also present in the biofilm harvested at the muddy sand bottom, with the difference that nearly half of the community consisted of representatives of the Planctomyces phylum. Total species richness was estimated to be 417 for the oyster reef and 60 for the muddy sand bottom, with 10.5% of the total unique species identified being shared between habitats. The results suggest dramatic differences in habitat-specific microbial diversity that have implications for overall microbial diversity within estuaries.  相似文献   

2.
Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the dissemination of antibiotic-resistant strains. Evidence suggests that the ability to form matrix-encased biofilms contributes to the pathogenesis of S. aureus and S. epidermidis. In this study, we investigated the functions of two staphylococcal biofilm matrix polymers: poly-N-acetylglucosamine surface polysaccharide (PNAG) and extracellular DNA (ecDNA). We measured the ability of a PNAG-degrading enzyme (dispersin B) and DNase I to inhibit biofilm formation, detach preformed biofilms, and sensitize biofilms to killing by the cationic detergent cetylpyridinium chloride (CPC) in a 96-well microtiter plate assay. When added to growth medium, both dispersin B and DNase I inhibited biofilm formation by both S. aureus and S. epidermidis. Dispersin B detached preformed S. epidermidis biofilms but not S. aureus biofilms, whereas DNase I detached S. aureus biofilms but not S. epidermidis biofilms. Similarly, dispersin B sensitized S. epidermidis biofilms to CPC killing, whereas DNase I sensitized S. aureus biofilms to CPC killing. We concluded that PNAG and ecDNA play fundamentally different structural roles in S. aureus and S. epidermidis biofilms.  相似文献   

3.
4.
Antibiofilm activity of several human defensin analogs that have the ability to kill planktonic bacteria, against pre-established biofilms of Escherichia coli MG1655 and Staphylococcus aureus NCTC 8530 were examined. Linear and linear fatty acylated analogs did not show any activity while disulfide constrained analogs disrupted pre-established S. aureus biofilms. Chimeric analogs of human β-defensin 1 and θ-defensin, hBTD-1 and [d]hBTD-1 were highly active against S. aureus biofilms. Among the analogs tested, only the d-enantiomer [d]hBTD-1 showed activity against E. coli biofilm. Our study provides insights into the structural requirements for the eradication of pre-established biofilms in defensin analogs.  相似文献   

5.
Streptococcus mutans has been recognized as an important etiological agent in human dental caries. Some strains of S. mutans also produce bacteriocins. In this study, we sought to demonstrate that bacteriocin production by S. mutans strains GS5 and BM71 was mediated by quorum sensing, which is dependent on a competence-stimulating peptide (CSP) signaling system encoded by the com genes. We also demonstrated that interactions with some other oral streptococci interfered with S. mutans bacteriocin production both in broth and in biofilms. The inhibition of S. mutans bacteriocin production by oral bacteria was stronger in biofilms than in broth. Using transposon Tn916 mutagenesis, we identified a gene (sgc; named for Streptococcus gordonii challisin) responsible for the inhibition of S. mutans bacteriocin production by S. gordonii Challis. Interruption of the sgc gene in S. gordonii Challis resulted in attenuated inhibition of S. mutans bacteriocin production. The supernatant fluids from the sgc mutant did not inactivate the exogenous S. mutans CSP as did those from the parent strain Challis. S. gordonii Challis did not inactivate bacteriocin produced by S. mutans GS5. Because S. mutans uses quorum sensing to regulate virulence, strategies designed to interfere with these signaling systems may have broad applicability for biological control of this caries-causing organism.  相似文献   

6.
A 4-year bacteriological survey (2003-2007) of four molluscs cultivated in France and faced with mortality episodes was performed by the French shellfish pathology network. The more abundant bacteria isolated during 92 mortality episodes, occurring mainly in Pacific oyster Crassostrea gigas, were identified by genotyping methods. It allowed us both to confirm the representativeness of Vibrio splendidus and Vibrio aestuarianus bacterial strains and to identify both a large number of Vibrio harveyi-related strains mainly detected during 2007 oyster mortality outbreaks and to a lesser extent bacterial strains identified as Shewanella colwelliana. Because metalloprotease has been reported to constitute a virulence factor in a few Vibrio strains pathogenic for C. gigas, several bacterial strains isolated in this study were screened to evaluate their pathogenicity in C. gigas spat by experimental infection and their ability to produce metalloprotease-like activity in the culture supernatant fluids. A high level (84%) of concordant results between azocaseinase activities and virulence of strains was obtained in this study. Because bacterial metalloprotease activities appeared as a common feature of pathogenic bacteria strains associated with mortality events of C. gigas reared in France, this phenotypic test could be useful for the evaluation of virulence in bacterial strains associated with such mortality episodes.  相似文献   

7.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxSSm) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

8.
The quantity of microorganisms that may be transferred to a food that comes into contact with a contaminated surface depends on the density of microorganisms on the surface and on the attachment strengths of the microorganisms on the materials. We made repeated contacts between pieces of meat and various surfaces (stainless steel and conveyor belt materials [polyvinyl chloride and polyurethane]), which were conditioned with meat exudate and then were contaminated with Listeria monocytogenes, Staphylococcus sciuri, Pseudomonas putida, or Comamonas sp. Attachment strengths were assessed by the slopes of the two-phase curves obtained by plotting the logarithm of the number of microorganisms transferred against the order number of the contact. These curves were also used to estimate the microbial population on the surface by using the equation of A. Veulemans, E. Jacqmain, and D. Jacqmain (Rev. Ferment. Ind. Aliment. 25:58-65, 1970). The biofilms were characterized according to their physicochemical surface properties and structures. Their exopolysaccharide-producing capacities were assessed from biofilms grown on polystyrene. The L. monocytogenes biofilms attached more strongly to polymers than did the other strains, and attachment strength proved to be weaker on stainless steel than on the two polymers. However, in most cases, it was the population of the biofilms that had the strongest influence on the total number of CFU detached. Although attachment strengths were weaker on stainless steel, this material, carrying a smaller population of bacteria, had a weaker contaminating capacity. In most cases the equation of Veulemans et al. revealed more bacteria than did swabbing the biofilms, and it provided a better assessment of the contaminating potential of the polymeric materials studied here.  相似文献   

9.
Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA.  相似文献   

10.
The shell of the bivalve Montacuta ferruginosa, a symbiont living in the burrow of an echinoid, is covered with a rust-colored biofilm. This biofilm includes different morphotypes of bacteria that are encrusted with a mineral rich in ferric ion and phosphate. The aim of this research was to determine the genetic diversity and phylogenetic affiliation of the biofilm bacteria. Also, the possible roles of the microorganisms in the processes of mineral deposition within the biofilm, as well as their impact on the biology of the bivalve, were assessed by phenotypic inference. The genetic diversity was determined by denaturing gradient gel electrophoresis (DGGE) analysis of short (193-bp) 16S ribosomal DNA PCR products obtained with primers specific for the domain Bacteria. This analysis revealed a diverse consortium; 11 to 25 sequence types were detected depending on the method of DNA extraction used. Individual biofilms analyzed by using the same DNA extraction protocol did not produce identical DGGE profiles. However, different biofilms shared common bands, suggesting that similar bacteria can be found in different biofilms. The phylogenetic affiliations of the sequence types were determined by cloning and sequencing the 16S rRNA genes. Close relatives of the genera Pseudoalteromonas, Colwellia, and Oceanospirillum (members of the γ-Proteobacteria lineage), as well as Flexibacter maritimus (a member of the Cytophaga-Flavobacter-Bacteroides lineage), were found in the biofilms. We inferred from the results that some of the biofilm bacteria could play a role in the mineral formation processes.  相似文献   

11.
Streptococcus mutans is a member of oral plaque biofilms and is considered the major etiological agent of dental caries. We have characterized the survival of S. mutans strain UA159 in both batch cultures and biofilms. Bacteria grown in batch cultures in a chemically defined medium, FMC, containing an excess of glucose or sucrose caused the pH to decrease to 4.0 at the entry into stationary phase, and they survived for about 3 days. Survival was extended up to 11 days when the medium contained a limiting concentration of glucose or sucrose that was depleted by the time the bacteria reached stationary phase. Sugar-limited cultures maintained a pH of 7.0 throughout stationary phase. Their survival was shortened to 3 days by the addition of exogenous lactic acid at the entry into stationary phase. Sugar starvation did not lead to comparable survival in biofilms. Although the pH remained at 7.0, bacteria could no longer be cultured from biofilms 4 days after the imposition of glucose or sucrose starvation; BacLight staining results did not agree with survival results based on culturability. In both batch cultures and biofilms, survival could be extended by the addition of 0.5% mucin to the medium. Batch survival increased to an average of 26 (±8) days, and an average of 2.7 × 105 CFU per chamber were still present in biofilms that were starved of sucrose for 12 days.  相似文献   

12.
The newly described green-pigmented bacterium Pseudoalteromonas tunicata (D2) produces target-specific inhibitory compounds against bacteria, algae, fungi, and invertebrate larvae and is frequently found in association with living surfaces in the marine environment. As part of our studies on the ecology of P. tunicata and its interaction with marine surfaces, we examined the ability of P. tunicata to form biofilms under continuous culture conditions within the laboratory. P. tunicata biofilms exhibited a characteristic architecture consisting of differentiated microcolonies surrounded by water channels. Remarkably, we observed a repeatable pattern of cell death during biofilm development of P. tunicata, similar to that recently reported for biofilms of Pseudomonas aeruginosa (J. S. Webb et al., J. Bacteriol. 185:4585-4595, 2003). Killing and lysis occurred inside microcolonies, apparently resulting in the formation of voids within these structures. A subpopulation of viable cells was always observed within the regions of killing in the biofilm. Moreover, extensive killing in mature biofilms appeared to result in detachment of the biofilm from the substratum. A novel 190-kDa autotoxic protein produced by P. tunicata, designated AlpP, was found to be involved in this biofilm killing and detachment. A ΔalpP mutant derivative of P. tunicata was generated, and this mutant did not show cell death during biofilm development. We propose that AlpP-mediated cell death plays an important role in the multicellular biofilm development of P. tunicata and subsequent dispersal of surviving cells within the marine environment.  相似文献   

13.
Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered and attached to the bottom of the plate when cells were grown in the presence of pyrimidinedione. Scanning electron microscopy analysis demonstrated the absence of an extracellular polysaccharide matrix in pyrimidinedione-grown biofilms compared to control-biofilms. Pyrimidinedione also significantly inhibited MRSA, MSSA, and Staphylococcus epidermidis biofilm growth in vitro. Furthermore, pyrimidinedione does not exhibit eukaryotic cell toxicity. In a microarray analysis, 56 genes were significantly up-regulated and 204 genes were significantly down-regulated. Genes involved in galactose metabolism were exclusively up-regulated in pyrimidinedione-grown biofilms. Genes related to DNA replication, cell division and the cell cycle, pathogenesis, phosphate-specific transport, signal transduction, fatty acid biosynthesis, protein folding, homeostasis, competence, and biofilm formation were down regulated in pyrimidinedione-grown biofilms. This study demonstrated that the small molecule Dam inhibitor, pyrimidinedione, inhibits pneumococcal biofilm growth in vitro at concentrations that do not inhibit planktonic cell growth and down regulates important metabolic-, virulence-, competence-, and biofilm-related genes. The identification of a small molecule (pyrimidinedione) with S. pneumoniae biofilm-inhibiting capabilities has potential for the development of new compounds that prevent biofilm formation.  相似文献   

14.
Experiments were conducted to ascertain whether there is chemotactic attraction by Bacillus megaterium and Micrococcus varians, both Gram-positive species, and Escherichia coli and Vibrio parahaemolyticus, both Gram-negative species, for hemocytes of the American oyster, Crassostrea virginica. It was ascertained quantitatively that oyster hemocytes are attracted to live E. coli, B. megaterium, and M. varians but not to heat-killed bacteria. Furthermore, oyster cells are not attracted to either live or heat-killed V. parahaemolyticus. It is concluded that the chemoattractant is some molecule emitted by living vegetative cells of certain Gram-positive as well as Gramnegative bacteria.  相似文献   

15.
The Florida stone crab, Menippe mercenaria, is an economically and ecologically important species that ranges from North Carolina throughout the Caribbean and the southeastern Gulf of Mexico. However, there is little known about its early life history stages as compared to other commercially important species in the region. The goal of this research was to examine effects of putative cues on metamorphosis from the megalopa stage to the first juvenile stage. Our study investigated the effect of water-soluble exudates from four substrata, as well as natural biofilms, and exudates from adult stone crabs. In addition, the influence of natural substrata was compared to that of artificial substrata. Adult exudate had no significant effect on metamorphosis, despite a wide range of tested concentrations. In contrast, there was a significant effect on mean time to metamorphosis in experimental groups exposed to multiple cues associated with the brown alga Sargassum fluitans, rubble from stone crab habitat, the eastern oyster Crassostrea virginica, and biofilms associated with the oyster. Furthermore, we provide evidence for metamorphic responses to water-soluble chemical cues, as well as biochemical and physical cues associated with different substrata. Overall results were coherent with the relevant body of previous work on metamorphosis of brachyuran crab larvae and indicate that both physical and chemical cues are important factors in facilitating the settlement and metamorphosis of M. mercenaria larvae in juvenile nursery habitat.  相似文献   

16.
17.
The acorn barnacle Balanus amphitrite (syn. Amphibalanus amphitrite) is a model organism to investigate pelago-benthic transitions in marine invertebrates. A driver for larval settlement in this organism is the need to attach close to conspecifics, to allow reproduction to take place. Adult barnacles are covered by microbial biofilms and the contribution of these biofilms to conspecific recognition is not fully understood. Little information is available on microbial communities associated with B. amphitrite. We compared biofilm communities from the barnacle shell surface with those from the surrounding rocks using the culture-independent methods of quantitative PCR and denaturing gradient gel electrophoresis. Quantification of the relative abundances of higher bacterial taxa showed that barnacles hosted a greater proportion of α-Proteobacteria compared to rock-associated biofilms (p < 0.01). Differences in relative abundances of other taxa were not observed but DGGE profiling suggested that differences were present at lower taxonomic levels. The capacity of these communities to influence larval settlement was assessed by growing multispecies biofilms on artificial medium, obtained by extracting nutrients from adult barnacles. Biofilms composed of shell-associated bacteria were capable of promoting conspecific settlement by 67% compared to control surfaces (p < 0.05), while rock-associated communities showed contrasting effects. A taxonomic comparison of settlement-stimulating and -inhibiting bacteria was performed by DGGE and band sequencing. All partial 16S rRNA genes sequenced were similar to members of the Vibrio and Pseudoalteromonas genera, suggesting that larvae can detect and respond to variations in the composition of microbial biofilms at low taxonomic levels. Our results indicate that barnacle larvae may be able to detect parentally-associated biofilms and use this information to settle close to members of its own species.  相似文献   

18.

 

Shed cells or disrupted parts of the biofilm may enter the circulation causing serious and very hard to treat biofilm-associated infections. The activity of antimicrobial agents against the shed cells/disrupted biofilms is largely unknown.

Methods

We studied the in vitro susceptibility of intact and disrupted biofilms of thirty clinical isolates of methicillin-resistant and methicillin–susceptible Staphylococcus aureus (MRSA and MSSA) and Staphylococcus epidermidis to vancomycin, quinupristin/dalfopristin, and linezolid and compared it to that of the suspended (planktonic) cells.

Results

Bacteria in the disrupted biofilms were as resistant as those in the intact biofilms at the minimum inhibitory concentrations of the antibiotics. At higher concentrations, bacteria in the disrupted biofilms were significantly (P < 0.001) less resistant than those in the intact biofilms but more resistant than the planktonic cells. Quinupristin/dalfopristin showed the best activity against cells of the disrupted biofilms at concentrations above MICs and vancomycin, at 500 and 1,000 μg/ml, was significantly more active against the biofilms of MRSA and S. epidermidis

Conclusion

The difficulty of treating biofilm-associated infections may be attributed not only to the difficulty of eradicating the biofilm focus but also to the lack of susceptibility of cells disrupted from the biofilm to antimicrobial agents.  相似文献   

19.
Shewanella colwelliana, a marine bacterium isolated in association with the oyster Crassostrea virginica, produces an abundant exopolysaccharide with potential commercial value as an adhesive under aqueous conditions. Its utilization of glucose was modulated by stoichiometric concentrations of yeast extract. In Brain Heart Infusion medium containing glucose, growth was diauxic with delayed glucose utilization and incorporation into exopolysaccharide. Data from radio-respirometry protocols indicate that glucose is catabolized through a combination of the hexose monophosphate and Entner-Doudoroff pathways. Exopolysaccharide production could be significantly enhanced by adjusting glucose concentrations of the growth medium.G.O. Abu was and R. Weiner and R.R. Colwell are with the Department of Microbiology, University of Maryland, College Park, MD 20742, USA. G. O. Abu is now with the Department of Microbiology, University of Port Harcourt, P.M.B. 5323, PH, Nigeria.  相似文献   

20.
In the environment, multiple microorganisms coexist as communities, competing for resources and often associated as biofilms. In this study, single- and dual-species biofilm formation by, and specific activities of, six heterotrophic intergeneric bacteria were determined using 96-well polystyrene plates over a 72-h period. These bacteria were isolated from drinking water and identified by partial 16S rRNA gene sequencing. A series of planktonic studies was also performed, assessing the bacterial growth rate, motility, and production of quorum-sensing inhibitors (QSI). This constituted an attempt to identify key attributes allowing bacteria to effectively interact and coexist in a drinking-water environment. We observed that in both pure and dual cultures, all of the isolates formed stable biofilms within 72 h, with specific metabolic activity decreasing, in most cases, with an increase in biofilm mass. The largest single- and dual-biofilm amounts were found for Methylobacterium sp. and the combination of Methylobacterium sp. and Mycobacterium mucogenicum, respectively. Evidences of microbial interactions in dual-biofilm formation, associated with appreciable biomass variation in comparison with single biofilms, were found for the following cases: synergy/cooperation between Sphingomonas capsulata and Burkholderia cepacia, S. capsulata and Staphylococcus sp., and B. cepacia and Acinetobacter calcoaceticus and antagonism between S. capsulata and M. mucogenicum, S. capsulata and A. calcoaceticus, and M. mucogenicum and Staphylococcus sp. A neutral interaction was found for Methylobacterium sp.-M. mucogenicum, S. capsulata-Staphylococcus sp., M. mucogenicum-A. calcoaceticus, and Methylobacterium sp.-A. calcoaceticus biofilms, since the resultant dual biofilms had a mass and specific metabolic activity similar to the average for each single biofilm. B. cepacia had the highest growth rate and motility and produced QSI. Other bacteria producing QSI were Methylobacterium sp., S. capsulata, and Staphylococcus sp. However, only for S. capsulata-M. mucogenicum, S. capsulata-A. calcoaceticus, and M. mucogenicum-Staphylococcus sp., dual-biofilm formation seems to be regulated by the QSI produced by S. capsulata and Staphylococcus sp. and by the increased growth rate of S. capsulata. The parameters assessed by planktonic studies did not allow prediction and generalization of the exact mechanism regulating dual-species biofilm formation between the drinking-water bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号