首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NADPH-dependent enzymatic reduction of aromatic aldehydes and ketones observed in the cytosol of guinea pig liver was mediated by at least three distinct reductases (AR 1, AR 2, and AR 3), which were separated by DEAE-cellulose chromatography. By several procedures AR 2 and AR 3 were purified to homogeneity, but AR 1 could be purified only 30-fold because of the small amount. These enzymes were found to have similar molecular weights of 34,000 to 36,000 and similar Stokes radii of about 2.5 nm. AR 3 was identical to aldehyde reductase [EC 1.1.1.2] in substrate specificity for aromatic aldehydes and D-glucuronate and specific inhibition by barbiturates. AR 1 and AR 2 acted on aromatic ketones and cyclohexanone as well as aromatic aldehydes at optimal pHs of 5.4 and 6.0, respectively, and were immunochemically distinguished from AR 3. AR 1 was the most sensitive to sulfhydryl reagents, and AR 2 was more stable at 50 degrees C than the other enzymes. Similar heterogeneity was observed in the kidney enzymes, but other tissues had little aldehyde reductase activity and contained only AR 3. In addition, lung contained a high molecular weight aromatic ketone reductase different from the above reductases.  相似文献   

2.
3.
Purification and properties of methyl sulfoxide reductases from rat kidney   总被引:1,自引:0,他引:1  
Two kinds of enzymes (tentatively designated methyl sulfoxide reductases I and II) responsible for the reduction of the methyl sulfoxide group on various xenobiotics have been purified about 223- and 155-fold, respectively, from rat kidney cytosol. The molecular weight was determined to be 12,000 +/- 1000 for methyl sulfoxide reductase I and 24,000 +/- 1000 for methyl sulfoxide reductase II. Thioredoxin or dithiothreitol is essential in order for the reducing activity to occur. The respective Km values of p-bromophenylmethyl sulfoxide were 2.75 and 1.30 mM for methyl sulfoxide reductases I and II. Replacement of the methyl group on the sulfur atom with a longer alkyl group or phenyl group caused a markedly low or negligible substrate activity.  相似文献   

4.
5.
1. Galactokinase has been purified from the liver of young pigs by high-speed centrifugation, chromatography on Sephadex G-100 and DEAE-cellulose, and ammonium sulphate fractionation. 2. The enzyme preparation has a specific activity of 10-18mumoles of galactose phosphorylated/mg. of protein/min. at 37 degrees and has been purified 400-fold from the liver supernatant. 3. Purified liver galactokinase has Michaelis constants of 1x10(-4)-3x10(-4)m for galactose and 2x10(-4)m for ATP-Mg(2+), and the enzyme reaction produces equimolar amounts of galactose 1-phosphate and ADP. 4. Galactokinase phosphorylates 2-deoxygalactose and galactosamine in addition to galactose, has a pH optimum of 7.8, a Q(10) of 2, and is stimulated by cysteine and other thiols. 5. With the exception of substrate specificity, the properties of liver galactokinase are similar to galactokinase purified from yeast and Escherichia coli.  相似文献   

6.
7.
Purification and properties of pig liver kynureninase.   总被引:1,自引:0,他引:1  
Kynureninase [L-kynurenine hydrolase, EC 3.7.1.3] was purified from pig liver by a procedure including DEAE-cellulose chromatography, hydroxyapatite chromatography, ammonium sulfate fractionation, DEAE-Bio Gel chromatography, Sephacryl S-200 gel filtration, kynurenine-Sepharose affinity chromatography, and Sephadex G-200 gel filtration. The enzyme was found to be homogeneous by the criterion of disc-gel electrophoresis. The enzyme has a molecular weight of about 100,000 and exhibits absorption maxima at 280 and 420 nm. The optimum pH and the isoelectric point of the enzyme are 8.5 and 5.0, respectively. The Michaelis constants were determined to be as follows: L-kynurenine, 7.7 X 10(-4) M; L-3-hydroxykynurenine, 1.3 X 10(-5) M; and pyridoxal 5'-phosphate, 1.8 X 10(-6) M. L-3-Hydroxykynurenine is hydrolyzed more rapidly than L-kynurenine; the liver enzyme can be regarded as a 3-hydroxy-kynureninase.  相似文献   

8.
Three enzyme forms (T1, T2, T3) from rat testis and two from rat vas deferens (V1, V2) of carbonyl reductase have been highly purified to apparent homogeneity. These carbonyl reductases from rat reproductive organs have several similarities in terms of molecular mass (32-33 kDa), isoelectric point (pI 5.9-6.4), immunochemical properties, cofactor requirement (NADPH dependency) and sensitivity to sulfhydryl reagents. The isoenzymes from the vas deferens (V1, V2) have similar catalytic activities, whereas those from the testis (T1, T2, T3) showed different catalytic activities from each other. All enzymes, however, reduced quinones, aromatic aldehydes and ketones, while T3, V1 and V2 were characterized as possessing high affinity towards prostaglandins. An immunoinhibition study using a specific antibody indicated that these enzymes were solely responsible for the overall catalytic activities of 13, 14-dihydro-15-oxo-prostaglandin F2 alpha, 4-benzoylpyridine, and 4-nitroacetophenone reduction and prostaglandin F2 alpha oxidation in both testis and vas deferens cytosol. The immunohistochemical staining revealed a positive immunoreactivity to antibody only in the Leydig cells of the testis, but neither the germ cells nor Sertoli cells in the seminiferous tubule. The staining also showed that the enzymes in the vas deferens were primarily localized in mucosal epithelium cells.  相似文献   

9.
10.
11.
12.
Asparagine synthetase (L-aspartate:ammonia ligase (AMP-forming, EC 6.3.1.1) activity in rat liver increased when the animals were put on a low casein diet. The enzyme was purified about 280-fold from the supernatant of rat liver homogenate by a procedure comprising ammonium sulfate fractionation. DEAE-Sepharose column chromatography, and Sephadex G-100 gel filtration. The optimal pH of the enzyme was in the range 7.4-7.6 with glutamine as an amide donor. The molecular weight was estimated to be approximately 110,000 by gel filtration. Chloride ion was required for the enzyme activity. The apparent Km values for L-aspartate, L-glutamine, ammonium chloride, ATP, and Cl- were calculated to be 0.76, 4.3, 10, 0.14, and 1.7 mM, respectively. The activity was inhibited by L-asparagine, nucleoside triphosphates except ATP, and sulfhydryl reagents. It has been observed that the properties of asparagine synthetase from rat liver are not so different from those of tumors such as Novikoff hepatoma and RADA 1.  相似文献   

13.
p-Nitrophenol conjugating activity associated with liver microsomal UDP-glucuronosyltransferase (EC 2.4.1.17) was purified 150- to 200-fold from cell-free homogenates. The purification scheme included solubilization with the nonionic detergent Lubrol WX, anion exchange chromatography at pH 6.0 and 7.5, and affinity chromatography with UDP-hexanolamine Sepharose 4B. The enzyme purified as a phospholipid-protein complex and was shown to consist of a single polypeptide chain of molecular weight 59,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino acid analysis indicated approximately 531 mol of amino acids/59,000 g of enzyme and a molar ratio of nonpolar to polar residues of 1.08. During fractionation, the enzyme displayed instability with such steps as gel filtration, dialysis, or ultrafiltration of dilute samples; however, upon adsorption to ion exchange resins or storage in concentrated form, the enzyme was reasonably stable. The active lipoprotein complex showed both size and charge heterogeneity as judged by gel filtration and electrofocusing. Three forms of the enzyme resolved by isoelectric focusing had isoelectric points which averaged pH 6.68, 6.56, and 6.31. Polypeptide compositions of these electrophoretically distinct phospholipid protein complexes were indistinguishable on the basis of sodium dodecyl sulfate-polyacryl-amide gel electrophoresis, suggesting that the charge heterogeneity may be the result of differences in the phospholipid content of the lipoprotein complex.  相似文献   

14.
An NADP(+)-dependent D-xylose dehydrogenase from pig liver cytosol was purified about 2000-fold to apparent homogeneity with a yield of 15% and specific activity of 6 units/mg of protein. An Mr value of 62,000 was obtained by gel filtration. PAGE in the presence of SDS gave an Mr value of 32,000, suggesting that the native enzyme is a dimer of similar or identical subunits. D-Xylose, D-ribose, L-arabinose, 2-deoxy-D-glucose, D-glucose and D-mannose were substrates in the presence of NADP+ but the specificity constant (ratio kcat./Km(app.)) is, by far, much higher for D-xylose than for the other sugars. The enzyme is specific for NADP+; NAD+ is not reduced in the presence of D-xylose or other sugars. Initial-velocity studies for the forward direction with xylose or NADP+ concentrations varied at fixed concentrations of the nucleotide or the sugar respectively revealed a pattern of parallel lines in double-reciprocal plots. Km values for D-xylose and NADP+ were 8.8 mM and 0.99 mM respectively. Dead-end inhibition studies to confirm a ping-pong mechanism showed that NAD+ acted as an uncompetitive inhibitor versus NADP+ (Ki 5.8 mM) and as a competitive inhibitor versus xylose. D-Lyxose was a competitive inhibitor versus xylose and uncompetitive versus NADP+. These results fit better to a sequential compulsory ordered mechanism with NADP+ as the first substrate, but a ping-pong mechanism with xylose as the first substrate has not been ruled out. The presence of D-xylose dehydrogenase suggests that in mammalian liver D-xylose is utilized by a pathway other than the pentose phosphate pathway.  相似文献   

15.
16.
17.
18.
Deoxyadenosine kinase (ATP: deoxyadenosine 5'-phosphotransferase, EC 2.7.1.76, AdR kinase) from rat liver mitochondria has been partially purified and compared with partially purified AdR kinase from the cytosol of the same biological material. Some physical properties of both enzymes, including molecular weight, gel electrophoresis and gel isoelectric focusing were investigated and considerable differences between these data for mitochondrial and cytosol AdR kinase were found.  相似文献   

19.
4-Aminobutyrate-transaminase (4-aminobutyrate: 2-oxoglutarate amino-transferase, EC 2.6.1.19) from pig liver has been purified to electrophoretic homogeneity. It has a molecular weight of about 110 000 and is composed of two subunits of the same molecular weight but of different charges. Two forms of pig liver 4-aminobutyrate-transaminase were isolated by DEAE-cellulose chromatography and designated as 4-aminobutyrate-transaminase I and 4-aminobutyrate-transaminase II, corresponding to a cationic and anionic form. Some physical and kinetic properties of liver enzyme were compared to those of brain enzyme and no significant difference were found, except for their sedimentation coefficients and the charges of their subunits. The role of 4-aminobutyrate-transaminase in liver remains a matter of speculation, but could be related to a metabolic function.  相似文献   

20.
A phosphoprotein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) has been partially purified from rat liver homogenates by (NH4)2SO4 and ethanol precipitations followed by DEAE-cellulose and Sepharose 6B chromatography. The phosphoprotein phosphatase is capable of cleaving [32P]phosphate from radiolabelled phosphopyruvate kinase (type L) (EC 2.7.1.40), phosphohistones, and phosphoprotamine. However, it did not detectably dephosphorylate ATP, ADP, DL-phosphorylserine or beta-glycerophosphate. Dephosphorylation of [32P]phosphopyruvate kinase was stimulated by divalent cations and inhibited by ATP, ADP, Fru-1,6-P2, and orthophosphate. Divalene cations could reverse inhibition induced by ADP or ATP. At least one function of the phosphoprotein phosphatase may be to remove phosphate groups from the phosphorylated form of pyruvate kinase in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号