首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Lysis of modified walls from Lactobacillus fermentum.   总被引:6,自引:0,他引:6       下载免费PDF全文
The N and O substitution in wall peptidoglycan from Lactobacillus fermentum was studied in relation to growth phase, as well as the lytic activities and the effect of trypsin on them. The N-nonsubstituted sites were determined by dinitrophenylation techniques. The results indicate that an extensive substitution at the O groups takes place as cells go into the stationary growth phase, concomitant with a decrease in their lysozyme sensitivity. N-nonsubstituted residues, mainly glucosamine, occurred in both exponential-phase and stationary-phase walls but not in the corresponding peptidoglycans. Small amounts of N-nonsubstituted muramic acid were detected in walls and peptidoglycan from cells in the stationary growth phase only. N acetylation of isolated walls did not increase their lysozyme sensitivity but rather decreased it. Autolysis of walls was completely inhibited by the chemical modifications used. Trypsin stimulates the lysozyme sensitivity of native walls but has no effect on walls that had been O deacetylated and N acetylated. It is suggested that the effect of trypsin is due to its action as an esterase removing the O acetylation in lysozyme-resistant walls.  相似文献   

2.
Depending on the moment of cellobiose starvation, Clostridium cellulolyticum cells behave in different ways. Cells starved during the exponential phase of growth sporulate at 30%, whereas exhaustion of the carbon substrate at the beginning of growth does not provoke cell sporulation. Growth in the presence of excess cellobiose generates 3% spores. The response of C. cellulolyticum to carbon starvation involves changes in proteolytic activities; higher activities (20% protein degradation) corresponded to a higher level of sporulation; lower proteolysis (5%) was observed in cells starved during the beginning of exponential growth, when sporulation was not observed; with an excess of cellobiose, an intermediate value (10%), accompanied by a low level of sporulation, was observed in cells taken at the end of the exponential growth phase. The basal percentage of the protein breakdown in nonstarved culture was 4%. Cells lacking proteolytic activities failed to induce sporulation. High concentrations of cellobiose repressed proteolytic activities and sporulation. The onset of carbon starvation during the growth phase affected the survival response of C. cellulolyticum via the sporulation process and also via cell-cellulose interaction. Cells from the exponential growth phase were more adhesive to filter paper than cells from the stationary growth phase but less than cells from the late stationary growth phase.  相似文献   

3.
Planktonic bacteria passing to a sessile state during the formation of a biofilm undergo many gene expression and phenotypic changes. These transformations require a significant time to establish. Inversely, cells extracted from a biofilm should also require a significant time before acquiring the same physiological characteristics as planktonic cells. Relatively few studies have addressed the kinetics of this inverse transformation process. We tested one aspect, namely, the contamination potential of freshly extracted Escherichia coli biofilm cells, precultured in a synthetic medium, in a rich liquid growth medium. We compared the time between inoculation and the beginning of the growth phase of freshly extracted biofilm cells, and suspended exponential and suspended stationary phase cells precultured in the same synthetic medium. Unexpectedly, the lag time for the extracted biofilm cells was the same as the lag time of the suspended exponential phase cells and significantly less than the lag time of the suspended stationary phase cells. The lag times were determined by an impedance technique. Cells extracted from biofilms, i.e., biofilms formed in canalizations and broken up by hydrodynamic forces, are an important source of contamination. Our work shows, in the case of E. coli, the high potential of freshly extracted biofilm cells to reinfect a new medium.  相似文献   

4.
Cells of Dictyostelium discoideum are agglutinated by by concanavalin A (Con A). Agglutination is dependent upon Con A concentration and is inhibited by preincubation with α-methyl-glucoside. Agglutination by Con A has no adverse effect on cell viability. Cells harvested from exponential growth phase are agglutinated by lower concentrations of Con A, than are cells harvested during the stationary growth phase or during differentiation. The possible significance of these findings to the process of differentiation in D. discoideum is discussed.  相似文献   

5.
The lipid and biochemical composition of the haptophyte Isochrysis galbana TK1 was examined. Cultures were grown at 15 °C and 30 °C, and harvested in the exponential and early stationary growth phases. Carbohydrate and protein content varied at the two culture temperatures and growth phases. The highest protein content was found at the exponential growth phase at 15 °C, and the highest carbohydrate content was found at the stationary phase at the same culture temperature. Lipid accumulated in the stationary growth phase and its content was higher at 30 °C than at 15 °C regardless of the growth phase. The neutral lipids were the major class of lipid found in all the cultures. The stationary phase culture had a higher proportion of neutral lipids than the exponential phase culture and the proportion decreased slightly when culture temperature was increased from 15 °C to 30 °C. Phospholipid levels remained constant at the two temperatures, but slightly decreased in the stationary phase. Glycolipids in the exponentially growing cells were higher than those from stationary growth phase and increased with temperature. Polyunsaturated fatty acids (PUFAs) predominated in glycolipids and phospholipids. Cells grown at 15 °C contained higher proportion of 18:3 (n–3) and 22:6 (n–3) with a corresponding decrease in 18:2 (n–6), monounsaturated and saturated fatty acids. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The Salmonella plasmid virulence spvABCD genes are growth phase regulated and require RpoS for maximal expression in stationary phase. We identified a growth phase-independent expression of spv which is mediated by short-chain fatty acids. During this fatty acid-mediated expression of spv, RpoS is required for induction only during exponential phase. In stationary phase, an rpoS-independent mechanism is responsible for expression of spv.  相似文献   

7.
Lactobacillus strains of numerous species isolated from several animal sources exhibited cellular hydrophobicities that differed from those expected on the basis of their abilities to colonize the keratinizing stratified squamous epithelium in the mouse stomach. Cells of Lactobacillus fermentum 100-33, grown to either exponential or stationary phase, were strongly hydrophilic. By contrast, cells of L. fermentum RI and six transformant derivatives of strain RI and 100-33, strains DM101 through DM106, were hydrophobic to various degrees in either growth phase. Most of them were less hydrophobic, however, when in the stationary phase than in the exponential phase. Cells of strains RI and 100-33 in the exponential phase adhered in the same number in vitro to disks of keratinized mouse gastric mucosa. By contrast, when in stationary phase, strain RI and two transformants, DM103 and DM104, adhered to the surface in higher numbers than 100-33. In contrast to their cellular progenitor, 100-33, the transformant strains share with their DNA donor, RI, the capacity to colonize the keratinizing gastric epithelium in mice. These findings indicate that lactobacilli able to colonize the surface of the keratinocytes in the murine stomach can adhere to that surface by either hydrophilic or hydrophobic molecules.  相似文献   

8.
Lactobacillus strains of numerous species isolated from several animal sources exhibited cellular hydrophobicities that differed from those expected on the basis of their abilities to colonize the keratinizing stratified squamous epithelium in the mouse stomach. Cells of Lactobacillus fermentum 100-33, grown to either exponential or stationary phase, were strongly hydrophilic. By contrast, cells of L. fermentum RI and six transformant derivatives of strain RI and 100-33, strains DM101 through DM106, were hydrophobic to various degrees in either growth phase. Most of them were less hydrophobic, however, when in the stationary phase than in the exponential phase. Cells of strains RI and 100-33 in the exponential phase adhered in the same number in vitro to disks of keratinized mouse gastric mucosa. By contrast, when in stationary phase, strain RI and two transformants, DM103 and DM104, adhered to the surface in higher numbers than 100-33. In contrast to their cellular progenitor, 100-33, the transformant strains share with their DNA donor, RI, the capacity to colonize the keratinizing gastric epithelium in mice. These findings indicate that lactobacilli able to colonize the surface of the keratinocytes in the murine stomach can adhere to that surface by either hydrophilic or hydrophobic molecules.  相似文献   

9.
Abstract Staphylococcus simulans biovar staphylolyticus secreted two bacteriolytic peptidoglycan hydrolases as proproteins that were activated as they were processed by an extracellular sulphydryl protease. This processing resulted in the production of multiple molecular-mass forms of each enzyme. Cells from early exponential phase cultures were susceptible to lysis by the mature forms of each of the peptidoglycan hydrolases whereas stationary phase cells were resistant. Thus secretion of these bacteriolytic enzymes during early exponential growth as precursors that are activated later by the protease would provide time for the cells to become resistant.  相似文献   

10.
Patterns of newly synthesized proteins of Vero cells in different growth states were obtained using two-dimensional gel electrophoresis. The 240 most prevalent peptide spots were then compared. Cells in exponential growth and in the stationary phase were found to have patterns of peptide spots characteristic of their state of growth. The transition between these patterns is progressive, and the cells acquire a pattern characteristic of quiescent cells by the late exponential phase. These observations suggest that a series of modulations in gene expression occurs during the transition of growth states in animal cells that leads to the specific appearance or disappearance of certain cellular peptides.  相似文献   

11.
Inducible thermotolerance in Lactobacillus bulgaricus   总被引:4,自引:0,他引:4  
The effect of a sublethal heat challenge on the subsequent thermotolerance of Lactobacillus bulgaricus at different stages of growth was investigated along with the effect of heating menstrum on survival.
The response of the cells to heat stress was shown to be dependent upon both cell age and heating menstrum. Heat-inducible thermotolerance could be provoked in cells which had been growing exponentially when they were subjected to the sublethal heat stress: pre-incubation at 10°C above the optimum growth temperature. The same effect could not, however, be reproduced in cells taken from the stationary phase.
Cells from the stationary phase were shown to always be more thermotolerant as compared to exponential phase cells. Cells showed a greater thermotolerance when heated in milk as compared to buffer.  相似文献   

12.
Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed‐batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed‐batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. Biotechnol. Bioeng. 2013; 110: 1735–1747. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
C.E. DEUTCH AND G.S. PERERA. 1992. Arthrobacter globiformis was grown in a semi-defined liquid medium containing added solutes to determine the effects of osmotic stress on its reproduction and cell morphology. There was a progressive reduction in the specific growth rate during exponential phase as the concentration of NaCl was increased, although the final yields of the cultures during stationary phase were not affected. Clusters of branching myceloid cells rather than the typical bacillary forms predominated during exponential phase. These myceloids did not undergo complete septation and persisted into stationary phase. Similar responses were observed with potassium sulphate as the exogenous solute but less dramatic morphological effects were found with added polyethylene glycol or sucrose. The myceloids formed in response to osmotic stress could not be disrupted mechanically but were more sensitive than normal cells to lysozyme, particularly during stationary phase. Addition of osmoprotective compounds such as proline, glutamate, glycine betaine, or trehalose to the growth medium did not significantly relieve the effects of osmotic stress on growth rate or morphology. A. simplex also formed myceloid cells during osmotic stress but A. crystallopoietes did not. These results indicate that arthrobacters exhibit characteristic responses to osmotic stress and suggest these bacteria may contain novel osmoprotective compounds.  相似文献   

14.
Arthrobacter globiformis was grown in a semi-defined liquid medium containing added solutes to determine the effects of osmotic stress on its reproduction and cell morphology. There was a progressive reduction in the specific growth rate during exponential phase as the concentration of NaCl was increased, although the final yields of the cultures during stationary phase were not affected. Clusters of branching myceloid cells rather than the typical bacillary forms predominated during exponential phase. These myceloids did not undergo complete septation and persisted into stationary phase. Similar responses were observed with potassium sulphate as the exogenous solute but less dramatic morphological effects were found with added polyethylene glycol or sucrose. The myceloids formed in response to osmotic stress could not be disrupted mechanically but were more sensitive than normal cells to lysozyme, particularly during stationary phase. Addition of osmoprotective compounds such as proline, glutamate, glycine betaine, or trehalose to the growth medium did not significantly relieve the effects of osmotic stress on growth rate or morphology. A. simplex also formed myceloid cells during osmotic stress but A. crystallopoietes did not. These results indicate that arthrobacters exhibit characteristic responses to osmotic stress and suggest these bacteria may contain novel osmoprotective compounds.  相似文献   

15.
BACKGROUND AND AIMS: Cryopreservation is a practical method of preserving plant cell cultures and their genetic integrity. It has long been believed that cryopreservation of plant cell cultures is best performed with cells at the late lag or early exponential growth phase. At these stages the cells are small and non-vacuolated. This belief was based on studies using conventional slow prefreezing protocols and survival determined with fluorescein diacetate staining or 2,3,5-triphenyltetrazolium chloride assays. This classical issue was revisited here to determine the optimum growth phase for cryopreserving a bromegrass (Bromus inermis) suspension culture using more recently developed protocols and regrowth assays for determination of survival. METHODS: Cells at different growth phases were cryopreserved using three protocols: slow prefreezing, rapid prefreezing and vitrification. Stage-dependent trends in cell osmolarity, water content and tolerance to freezing, heat and salt stresses were also determined. In all cases survival was assayed by regrowth of cells following the treatments. KEY RESULTS: Slow prefreezing and rapid prefreezing protocols resulted in higher cell survival compared with the vitrification method. For all the protocols used, the best regrowth was obtained using cells in the late exponential or early stationary phase, whereas lowest survival was obtained for cells in the late lag or early exponential phase. Cells at the late exponential phase were characterized by high water content and high osmolarity and were most tolerant to freezing, heat and salt stresses, whereas cells at the early exponential phase, characterized by low water content and low osmolarity, were least tolerant. CONCLUSIONS: The results are contrary to the classical concept which utilizes cells in the late lag or early exponential growth phase for cryopreservation. The optimal growth phase for cryopreservation may depend upon the species or cell culture being cryopreserved and requires re-investigation for each cell culture. Stage-dependent survival following cryopreservation was proportionally correlated with the levels of abiotic stress tolerance in bromegrass cells.  相似文献   

16.
The effect of low, nonfreezing temperatures on the viability of five strains of Chromobacterium violaceum was studied. The viability of cultures grown at 30 C was determined after exposure to various diluents held at 0 to 2 C. A culture diluted at its growth temperature served as the control. Cells of strain N were most sensitive in the early part of the exponential phase of growth. Cells of strains 252 and 341 were most sensitive in the late exponential, early stationary phase of growth. Cells of strain 9 showed greatest loss of viability during the maximal stationary phase. Strain 69 was completely resistant throughout its growth cycle to cold injury. Cell viability was much greater in buffered salts solution than in distilled water, broth, or physiological saline, whether cultures were diluted at room temperature or in the cold. The proportion of cells surviving after exposure to cold, however, was the same regardless of the composition of the diluent. Loss of viability was progressive at 0 to 2 C and reached a maximum after 2 hr. There was no loss of viability of cells exposed to 20 C, but there was some loss at 12 C. Strain 341 cultivated at 15 C was much less sensitive to 0 to 2 C than when it was cultivated at 30 C. The composition of the growth medium seemed to have no effect on the survival of cells exposed to cold. The polyamines, spermine and trimethylenediamine, as well as erythritol and sucrose, exerted some protective action against the effects of cold but not uniformly for all strains studied.  相似文献   

17.
The relationship between the phenomena alkane oxidation, extreme hydrophobicity of the cell surface, and crude-oil emulsification in Rhodococcus sp. strain 094 was investigated. Compounds that induce the emulsifying ability simultaneously induced the cytochrome P450-containing alkane oxidizing system and the transition from low to high cell-surface hydrophobicity. Exposed to inducers of crude-oil emulsification, the cells developed a strong hydrophobic character during exponential growth, which was rapidly lost when entering stationary phase. The loss in hydrophobicity coincided in time with the crude-oil emulsification, indicating that the components responsible for the formation of cell-surface hydrophobicity act as excellent emulsion stabilisers only after release from the cells. Rhodococcus sp. strain 094 possessed three distinct levels of cell-surface hydrophobicity. One level of low hydrophobicity was characteristic of cells in late stationary phase and was independent of growth substrate. A second and more hydrophobic level was observed for cells in exponential phase grown on water-soluble substrates, while a third level, characterised by extreme cell hydrophobicity, was observed for cells in exponential phase cultivated on hydrophobic substrates such as hexadecane. The production of the oil-emulsifying agents seems to require external sources of nitrogen and phosphate.  相似文献   

18.
Cultures of Euglena gracilis (strain Z from French CNRS collection) can be made cadmium resistant if grown in a medium with 5x10-4M cadmium chloride. This resistance is reflected by the appearance of a second exponential growth phase. The development of this resistance was studied at the cellular level by determining the relative content of DNA at different stages of the cell cycle in an asynchronously grown culture. The culture was followed until the second, cadmium resistant, growth phase had reached its stationary state. During the first exponential growth phase, cells were mostly in the late period of DNA synthesis (stage S of the cell cycle), or in the gap preceding mitosis (stage G2 of the cell cycle). In addition, some cells contained high multiples of the normal amount of DNA. In the beginning of the second exponential growth phase, a few cells were again in G1 (the post mitotic stage of the cell cycle preceding DNA synthesis). These G1 cells were predominant at the end of the second growth period. During the second stationary phase the DNA content of the cadmium treated cells was similar to the stationary phase of the control culture. Cells had stopped growing in G1 with an unreplicated genome. The implications of these data are discussed.  相似文献   

19.
20.
Distribution of Saccharomyces cerevisiae, Candida boidinii and Candida tropicalis cells according to DNA content was investigated using laser flow cytofluorometry. Cells distribution curves according to DNA content possessed two maxima in case the sample belonged to the exponential phase of the asynchronous batch culture, or one maximum in case the sample was from the stationary phase of growth. In synchronous cultures variations of cells distribution curves according to DNA content (age structure of the population) were demonstrated and the curves with one maximum and plateau were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号