首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A previously unidentified cytochrome P-450AP possessing the highest aminopyrine-N-demethylase activity has been isolated from liver microsomes of 4-isopropylaminoantipyrine-induced rats, using affinity chromatography in combination with ion-exchange chromatography with subsequent separation on hydroxyl apatite. Using radioisotope techniques, it was found that 4-isopropylaminoantipyrine induces cytochrome P-450AP synthesis de novo. The isolated cytochrome P-450AP has the following characteristics: Mr = 49,000 Da. CO-peak maximum at 450.5 mm, rate of aminopyrine demethylation in a reconstituted system-20 nmol HCHO/min/nmol of cytochrome P-450, benzphetamine-15. The hemoprotein synthesis is paralleled with the synthesis of a protein with Mr of 51,000 Da. Immunochemical analysis permitted to identify the latter protein as cytochrome P-450b. It was demonstrated that cytochrome P-450AP does not interact with the antibodies to the major phenobarbital-induced form, i.e., with cytochrome P-450b.  相似文献   

2.
Aromatase cytochrome P-450, which catalyzes the conversion of androgens to estrogens, was purified from human placental microsomes. The enzyme was extracted with sodium cholate, fractionated by ammonium sulfate precipitation, and subjected to column chromatography in the presence of its substrate, androstenedione, and the nonionic detergent, Nonidet P-40. The preparation exhibits a single major band when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and has a specific content of 11.5 nmol of P-450/mg of protein. The purified enzyme displays spectroscopic properties typical of the ferric and ferrous forms of cytochrome P-450. Full enzymatic activity can be reconstituted with rabbit liver microsomal cytochrome P-450 reductase and Nonidet P-40. Purified aromatase cytochrome P-450 displays catalytic characteristics similar to the enzyme in intact microsomes in the aromatization of androstenedione, 19-hydroxyandrostenedione and 19-oxoandrostenedione. Testosterone and 16 alpha-hydroxytestosterone are aromatized at maximal rates similar to androstenedione, and all substrates exhibit relative affinities corresponding to those observed in microsomes. We have raised rabbit antibodies to the purified enzyme which show considerable specificity and sensitivity on immunoblots.  相似文献   

3.
Cytochrome P-450 catalyzing 25-hydroxylation of cholecalciferol (cytochrome P-450 cc25 ) was purified from rat liver microsomes based on its catalytic activity at each purification step. The specific cytochrome P-450 content of the final preparation was 15.1 nmol/mg of protein. Reconstituted activity of 25-hydroxylation of cholecalciferol with the purified enzyme was 2.3 nmol/min/mg of protein, which was 4,300 times as high as that in microsomes. The minimum molecular weight of the enzyme was 50,000 based on SDS-polyacrylamide gel electrophoretogram. Amino terminal sequence of the P-450 cc25 was H2N-Met-Asp-Pro-Val-Leu-Val-. Immunochemical study showed that the purified P-450 cc25 was homogeneous and the cytochrome was immunochemically different from either cytochrome P-450(PB-1) or cytochrome P-448(MC-1).  相似文献   

4.
Aromatase cytochrome P-450 (P-450AROM) was partially purified from human placental microsomes by hydrophobic affinity chromatography using Phenyl-Sepharose and ion-exchange chromatography on DEAE-cellulose. The resulting preparation had a specific activity of 2 nmol/mg protein with respect to cytochrome P-450 content and displayed a type I difference spectrum upon addition of the substrate androstenedione. When the cytochrome P-450-enriched fractions were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and stained with Coomassie blue, there was an enrichment of two proteins having apparent molecular weights of 50,000 and 55,000. The bands containing these proteins were removed from unstained polyacrylamide gels and injected separately or together into three rabbits. An aliquot of the serum or an immunoglobulin (IgG) fraction prepared from the serum of the rabbit injected with the 55-kDa band or with both the 50- and 55-kDa bands inhibited aromatase activity of human placental microsomes by 80%; this IgG had no effect on 17 alpha-hydroxylase or 21-hydroxylase activities of human fetal adrenal microsomes. In contrast, the serum of the rabbit injected with the 50-kDa band had little capacity to inhibit placental aromatase activity. By immunoblot analysis, it was found that the IgG from the serum of the rabbit immunized with the 55-kDa protein bound specifically to a protein of 55 kDa in human placental microsomes. Monoclonal antibodies were prepared from a hybridoma cell line derived from the spleen cells of mice immunized against the 55-kDa protein. The monoclonal IgG was covalently linked to a Sepharose 4B column and was used for immunoaffinity chromatography of cytochrome P-450AROM. The finding that cytochrome P-450 and the 55-kDa protein were selectively retained by the affinity column and eluted with NaCl (2 M) and glycine (0.2 M, pH 3.0) and that this fraction contained aromatase activity upon reconstitution with purified NADPH-cytochrome P-450 reductase and phospholipid, is indicative that the 55-kDa protein is indeed cytochrome P-450AROM. These findings are also indicative that both the monoclonal and polyclonal IgGs are specific for human cytochrome P-450AROM.  相似文献   

5.
Purification of a new cytochrome P-450 from human liver microsomes   总被引:3,自引:0,他引:3  
Using a classical methodology of purification consisting of three chromatographic steps (Octyl-Sepharose, DEAE-cellulose, CM-cellulose) we have purified a new cytochrome P-450 from human liver microsomes. It was called cytochrome P-450(9). It has been proven to be different from all precedingly purified human liver microsomal cytochrome P-450 isozymes by its immunological and electrophoretical properties. It does not cross-react with any rat liver cytochrome P-450 and anti-cytochrome P-450(9) does not recognize rat liver microsomes; thus this cytochrome P-450(9) is specific to humans. This cytochrome P-450 isozyme exists in low amounts in human liver microsomes and exhibits an important quantitative polymorphism. In reconstituted system, cytochrome P-450(9) is able to hydroxylate all substrates tested but is not specific of any; its exact role in xenobiotic metabolism in man remains to be elucidated.  相似文献   

6.
L E Vickery  J T Kellis 《Steroids》1987,50(1-3):29-36
Aromatase cytochrome P-450 (P-450arom) was purified from human placental microsomes. Preparations exhibit a single major band of approximately 55 kDa on SDS-polyacrylamide gel electrophoresis and have a specific content of 11-13 nmol P-450/mg protein. The purified enzyme exhibits spectral properties typical of ferric and ferrous forms of cytochromes P-450. Full enzymatic activity can be reconstituted with rabbit liver P-450 reductase, and catalytic characteristics similar to aromatase in microsomes are observed. Rabbit antibodies to purified P-450arom were affinity purified and show high specificity and sensitivity on immunoblots.  相似文献   

7.
1. Cytochrome P-450LgM2 was purified from sheep lung microsomes in the presence of detergents, Emulgen 913 and cholate. 2. The purification procedure involved the chromatography of the detergent solubilized microsomes on DEAE-cellulose and hydroxylapatite. 3. Cytochrome P-450LgM2 was further purified on second DEAE-cellulose and hydroxylapatite columns. 4. The specific content of the highly purified P-450LgM2 was 16-18 nmol P-450/mg protein and purified 164-fold. 5. The yield was 16% of the initial content in microsomes. 6. The SDS-polyacrylamide slab gel electrophoresis (PAGE) of the purified lung cytochrome P-450LgM2 showed one protein band having the monomer molecular weight of 49,500. 7. The absolute CO-difference spectrum of dithionate-reduced P-450LgM2 gave a peak at 451 nm. 8. When sheep lung cytochrome P-450LgM2 and P-450LM2 purified from liver of phenobarbital (PB)-induced rabbit were subjected to Western Blotting and visualized immunochemically with anti-P-450LM2, they showed identical mobilities. 9. P-450LgM2 was found to be very active in N-demethylation of benzphetamine in a reconstituted system containing purified sheep lung reductase and synthetic lipid. 10. Turnover numbers (min-1) for benzphetamine, aniline, ethylmorphine and p-nitrophenol were determined to be 273, 1.2, 15.5 and 1.05, respectively, in a reconstituted microsomal lung monooxygenase system. 11. Spectral, electrophoretic, biocatalytic and immunochemical properties of sheep lung P-450LgM2 were found to be similar to those of P-450 isozyme 2, purified from PB-treated rabbit liver and of rabbit lung microsomes.  相似文献   

8.
Experimental hepatomas induced with 5,9-dimethyldibenzo[c,g]carbazole in female XVIInc/Z mice display a strong microsomal steroid 15 alpha-hydroxylation activity. A cytochrome P-450 isoenzyme (cytochrome P-450tu), specific for this activity, has been isolated by an HPLC derived method using various Fractogel TSK and hydroxyapatite supports. On SDS polyacrylamide gel electrophoresis the purified protein appeared as one major band with an apparent Mr of 50,000. Its specific cytochrome P-450 content was 7.55 nmol/mg protein. As deduced from the visible spectrum, the heme iron of the isolated P-450tu was to 72% in the high-spin state. The CO-bound reduced form showed an absorption maximum at 450 nm. In addition to the stereospecific 15 alpha-hydroxylation of progesterone (2.3 min-1) and testosterone (2.5 min-1), the enzyme catalyzed also 7-ethoxycoumarin O-deethylation, benzphetamine N-demethylation and aniline 4-hydroxylation. Its N-terminal amino-acid sequence (21 residues) was identical to that of cytochrome P-450(15) alpha, isolated by Harada and Negishi from liver microsomes of 129/J mice. P-450tu differed from P-450(15) alpha by its higher molecular weight, its 40-times lower steroid 15 alpha-hydroxylation and its 4-times higher benzphetamine N-demethylation.  相似文献   

9.
Two forms of phenobarbital-induced cytochrome P-450 were partially purified from the Rutgers diazinon-resistant strain of house fly using cholate solubilization, polyethylene glycol 6000 precipitation, and chromatography on DEAE cellulose. The preparation of highest purity had an absorbance maximum of 452 nm, a specific content of 10.0 nmol/mg protein, and an apparent molecular weight of 60,000 when examined by sodium dodecyl sulfate polyacrylamide electrophoresis. The yield of the highly purified cytochrome P-450 was 2–3%. This form contained proportionately less cytochrome P-420 than the original cholate solubilized microsomes, and is thus apparently more stable. A second form of cytochrome P-450 having a specific content of 0.50–0.89 nmol/mg protein was eluted from DEAE cellulose with a 0-0.25 M salt gradient. This is consistent with a previously reported elution pattern for Emulgen 913-solubilized house fly microsomes. Several methods of solubilizing house fly microsomes were examined. High salt, 2M KCI, in the absence of detergents effectively solubilized cytochrome P-450 (50–70% recovery) with little or no conversion to cytochrome P-(420).  相似文献   

10.
The effect of musk xylene on contents of both cytochrome P-450IA1 and cytochrome P-450IA2 in rat liver was investigated using Western blotting analysis. Rats were treated i.p. for five consecutive days with either 50, 100 or 200 mg musk xylene/kg body weight. Musk xylene increased both total cytochrome P-450 and cytochrome b5 contents in rat liver microsomes. Musk xylene induced cytochrome P-450IA2 (384 pmol/mg protein) strongly and preferentially and the ratio of cytochrome P450IA2/P-450IA1 was about 12 at the lowest dose tested. Musk xylene also induced the cytochrome P-450IA1 dose-dependently, but these extents were very small (32-174 pmol/mg protein). These results suggest that musk xylene may be a more specific inducer for cytochrome P-450IA2 than any other inducers reported.  相似文献   

11.
Cytochrome P-450 which catalyzes the 7 alpha-hydroxylation of cholesterol was purified from liver microsomes of untreated rabbits. The minimum molecular weight of the cytochrome P-450 was estimated to be 48,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The preparation contained 7 nmol of cytochrome per mg of protein. The oxidized form of the P-450 showed absorption maxima at 568, 535, and 417 nm, which are characteristic of a low spin hemoprotein, while the reduced form showed maxima at 545 and 413 nm. The carbon monoxide complex of the reduced form showed maxima at 550 and 447 nm. The cholesterol 7 alpha-hydroxylase system of untreated rabbit liver microsomes was reconstituted with the purified P-450, NADPH-cytochrome P-450 reductase, and cytochrome b5. The P-450 catalyzed the 7 alpha-hydroxylation of cholesterol 500 times more efficiently than the starting microsomes. The reconstituted hydroxylase system showed a substantial salt dependency. In the presence of cytochrome b5 the activity was maximum at 0.4 M KCl (4.55 nmol product formed/mg of protein per min), whereas in the absence of cytochrome b5 the activity was marginal (0.65 nmol product formed/mg of protein per min) and inhibited by KCl. Thus, cytochrome b5 stimulated the hydroxylase activity by one order of magnitude. These results indicate that cytochrome b5 is an essential component of the cholesterol 7 alpha-hydroxylase system of untreated rabbit liver microsomes.  相似文献   

12.
Reduction of cytochrome P-450S21 (SF) (SF, substrate-free; purified from bovine adrenocortical microsomes) with sodium dithionite (Na2S2O4) in the presence of phenylisocyanide produced a ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex with Soret absorbance maxima at 429 and 456 nm. On the other hand, when a preformed ferric cytochrome P-450S21 (SF)-NADPH-cytochrome-P-450 reductase (Fp2) complex was reduced chemically or enzymatically under the same conditions, the absorbance spectrum of the ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex changed drastically, as characterized by an increase in absorbance intensity at 429 nm and a decrease at 456 nm. Similar spectral changes were observed by addition of reduced Fp2 to the preformed ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex. Experiments to reduce a ferric cytochrome P-450S21 (SF)-phenylisocyanide complex with sodium dithionite in the presence of various amounts of Fp2 showed that; (1), the spectral change reached maxima for both absorption increase at 429 nm and decrease at 456 nm when cytochrome P-450S21 and Fp2 were previously mixed at the cytochrome P-450S21:Fp2 ratio of 1:5; (2), the spectral change was suppressed in 300 mM potassium phosphate buffer (pH 7.4). These results suggest that the absorbance spectral change is due to a conformational change around the heme moiety induced by association with reduced Fp2.  相似文献   

13.
A form of cytochrome P-450, namely P-450HFLa of human fetal livers, was purified to a specific content of 12.6 nmol/mg protein. The cytochrome P-450 preparation was electrophoretically homogeneous and had an apparent monomeric molecular weight of 51,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The cytochrome showed catalytic activities as oxidations of N-methylaniline, ethylmorphine, N,N-dimethylaniline, N,N-dimethylnitrosamine, benzphetamine, aminopyrine, aniline, p-nitroanisole, and 7-ethoxycoumarin to various extents. In fetal liver homogenate, the amount of cytochrome P-450 that reacted with the antiserum to P-450HFLa accounted for more than 36% of the total cytochrome P-450 in three different fetal livers. On the other hand, the amount of P-450HFLa was less than 5% of the total cytochrome P-450 in adult liver microsomes.  相似文献   

14.
We have developed a specific radioimmunoassay to quantify NADPH: cytochrome P-450 reductase. The assay is based on the use of 125I-labelled NADPH: cytochrome P-450 reductase as the radiolabelled antigen and can detect quantities of this protein in amounts as low as 30 pg. The results of the radioimmunoassay demonstrates that the 2.7-fold increase in enzyme activity in rat liver microsomal membranes after phenobarbital treatment is due to increased amounts of the protein. beta-Naphthoflavone treatment, however, did not alter the activity or the quantity of this enzyme in microsomes. The quantification of NADPH: cytochrome P-450 reductase in the microsomes isolated from control and phenobarbital- and beta-naphthoflavone-treated animals permits the calculation of the ratio of this protein to that of total cytochromes P-450. A molar ratio of 15:1 (cytochromes P-450/NADPH: cytochrome P-450 reductase) was calculated for control and phenobarbital-treated animals. This ratio increased to 21:1 after beta-naphthoflavone treatment. Thus the molar ratio of these proteins in liver microsomes can vary with exposure of the animals to particular xenobiotics.  相似文献   

15.
A molecular species of cytochrome P-450 that catalyzes the 25-hydroxylation of cholecalciferol (P-450cc25) was purified from rat liver microsomes on the basis of its catalytic activity. The purification procedure consisted of polyethylene glycol fractionation, and column chromatographies on octylamino Sepharose 4B, hydroxylapatite, DEAE-Sepharose CL-6B, and CM-Sepharose CL-6B. The specific cytochrome P-450 content of the final preparation was 17.0 nmol/mg of protein. The enzymatic activity was reconstituted with the purified cytochrome P-450, NADPH-cytochrome P-450 reductase, an NADPH-generating system, and dilauroylglyceryl-3-phosphorylcholine, the specific activity obtained being 3.7 nmol/min/mg of protein, which was 4,000 times as high as that in microsomes. The apparent molecular weight of the P-450cc25 was 50,000, based on the results of sodium dodecyl sulfate polyacrylamide gel electrophoresis. The absorption spectra of the oxidized form of the enzyme showed a Soret band at 416 nm, which is typical of the low spin state of cytochrome P-450, and alpha and beta bands at 570 and 536 nm, respectively. The Soret peak of the reduced cytochrome P-450-CO complex was at 450 nm. The purified enzyme not only catalyzed the 25-hydroxylation of cholecalciferol but also showed hydroxylation activity toward a variety of substrates, i.e. 1 alpha-hydroxycholecalciferol (at 25), testosterone (at 2 alpha and 16 alpha) and dehydroepiandrosterone (at 16 alpha). Amino terminal sequence of the purified cytochrome P-450 was determined by the manual sequence method to be H2N-Met-Asp-Pro-Val-leu-Val-Leu-Val-. The antibody elicited against the purified enzyme in a rabbit inhibited the cholecalciferol 25-hydroxylation activity by more than 90% with a concentration of 2 mg of immunoglobulin per nmol of cytochrome P-450.  相似文献   

16.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

17.
A protein immunochemically related to P-450 HFLa, a form of cytochrome P-450 purified from human fetal livers, was detected in rat liver microsomes. The content of the immunoreactive protein in rat liver microsomes was increased by treatments with phenobarbital, pregnenolone 16 alpha-carbonitrile (PCN), erythromycin, erythromycin estolate, and oleandomycin but not with 3-methylcholanthrene, imidazole, ethanol, isosafrole, josamycin, midecamycin, or miocamycin. The activity of erythromycin N-demethylase correlated with the content of the immunoreactive protein in rat liver microsomes (r = 0.72). In addition, anti-P-450 HFLa IgG inhibited erythromycin N-demethylase in liver microsomes from erythromycin- or oleandomycin-pretreated rats. Furthermore, the content of the immunoreactive protein highly correlated with that of P-450 PB-1, which is distinct from Waxman's terminology, and is one of the forms of PCN-inducible cytochrome P-450s (r = 0.95). From these results and the results reported so far, it seems possible that P-450 HFLa is one of the forms of cytochrome P-450 inducible by glucocorticoids.  相似文献   

18.
We have studied the activation of aflatoxin B1 by hamster liver microsomes and purified hamster cytochrome P-450 isozymes using a umu mutagen test. The hamster liver microsomes or S-9 fractions were much more active than rat liver microsomes or S-9 fractions in the activation of umu gene expression by aflatoxin B1 metabolites. 3-Methyl-cholanthrene treatment increased aflatoxin B1 activation by hamster liver microsomes. Two major 3-methylcholanthrene-inducible cytochrome P-450 isozymes, P-450 MC1 (IIA) and P-450 MC4 (IA2), were purified from 3-methylcholanthrene-treated hamster liver microsomes, and the metabolism of aflatoxin B1 by these two cytochromes was studied. In the reconstituted enzyme system, both P-450 MC1 and P-450 MC4 were highly active in the activation of aflatoxin B1, and antibodies against these P-450s specifically inhibited these activities. Antibody against P-450 MC1 inhibited the activation of aflatoxin B1 by 20% in the presence of 3-methyl-cholanthrene-treated hamster liver microsomes. In contrast, antibody against P-450 MC4 stimulated the activity by 175%. These results indicated that hamster P-450 MC1 might convert aflatoxin B1 to more toxic metabolite(s), whereas P-450 MC4 might convert aflatoxin B1 to less toxic metabolite(s), than aflatoxin B1 in liver microsomes. The metabolite(s) produced by both hamster cytochrome P-450 MC1 and MC4 were genotoxic in the umu mutagen test.  相似文献   

19.
A constitutive cytochrome P-450 catalyzing 25-hydroxylation of C27-steroids and vitamin D3 was purified from rat liver microsomes. The enzyme fraction contained 16 nmol of cytochrome P-450/mg of protein and showed only one protein band with a minimum molecular weight of 51,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified cytochrome P-450 catalyzed 25-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha-diol, 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, and 1 alpha-hydroxyvitamin D3 up to 50 times more efficiently, and 25-hydroxylation of vitamin D3 about 150 times more efficiently than the microsomes. The cytochrome P-450 showed no detectable 25-hydroxylase activity towards vitamin D2 and was inactive in cholesterol 7 alpha-hydroxylation as well as in 12 alpha- and 26-hydroxylations of C27-steroids. It catalyzed hydroxylations of testosterone and demethylation of ethylmorphine at the same rates as, or lower rates than, microsomes. The 25-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol and vitamin D3 with the purified cytochrome P-450 was not stimulated by addition of phospholipid or cytochrome b5 to the reconstituted system. Emulgen inhibited 25-hydroxylase activity towards both substrates. The possibility that 25-hydroxylation of C27-steroids and vitamin D3 is catalyzed by the same species of cytochrome P-450 is discussed.  相似文献   

20.
A purified low-spin form of cytochrome P-450 was isolated from phenobarbital-induced rabbit liver microsomes. The preparation was functionally active and free from cytochromes b5 and P-420 and phospholipids. The specific content of the cytochrome was 18 nmoles per mg of protein. At the molecular weight of the hemoprotein of 50,000, it corresponds to 90% of purification. The purified hemoprotein binds substrates of type II and some substrates of type I. The complexes formed reveal spectral properties, similar to those for the complexes of these substrates with the microsomal form of cytochrome P-450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号