首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azospirillum brasilense, a nitrogen-fixing bacterium found in the rhizosphere of various grass species, was investigated to establish the effect on plant growth of growth substances produced by the bacteria. Thin-layer chromatography, high-pressure liquid chromatography, and bioassay were used to separate and identify plant growth substances produced by the bacteria in liquid culture. Indole acetic acid and indole lactic acid were produced by A. brasilense from tryptophan. Indole acetic acid production increased with increasing tryptophan concentration from 1 to 100 μg/ml. Indole acetic acid concentration also increased with the age of the culture until bacteria reached the stationary phase. Shaking favored the production of indole acetic acid, especially in a medium containing nitrogen. A small but biologically significant amount of gibberellin was detected in the culture medium. Also at least three cytokinin-like substances, equivalent to about 0.001 μg of kinetin per ml, were present. The morphology of pearl millet roots changed when plants in solution culture were inoculated. The number of lateral roots was increased, and all lateral roots were densely covered with root hairs. Experiments with pure plant hormones showed that gibberellin causes increased production of lateral roots. Cytokinin stimulated root hair formation, but reduced lateral root production and elongation of the main root. Combinations of indole acetic acid, gibberellin, and kinetin produced changes in root morphology of pearl millet similar to those produced by inoculation with A. brasilense.  相似文献   

2.
Association of Azospirillum with Grass Roots   总被引:20,自引:13,他引:7       下载免费PDF全文
The association between grass roots and Azospirillum brasilense Sp 7 was investigated by the Fahraeus slide technique, using nitrogen-free medium. Young inoculated roots of pearl millet and guinea grass produced more mucilaginous sheath (mucigel), root hairs, and lateral roots than did uninoculated sterile controls. The bacteria were found within the mucigel that accumulated on the root cap and along the root axes. Adherent bacteria were associated with granular material on root hairs and fibrillar material on undifferentiated epidermal cells. Significantly fewer numbers of azospirilla attached to millet root hairs when the roots were grown in culture medium supplemented with 5 mM potassium nitrate. Under these growth conditions, bacterial attachment to undifferentiated epidermal cells was unaffected. Aseptically collected root exudate from pearl millet contained substances which bound to azospirilla and promoted their adsorption to the root hairs. This activity was associated with nondialyzable and proteasesensitive substances in root exudate. Millet root hairs adsorbed azospirilla in significantly higher numbers than cells of Rhizobium, Pseudomonas, Azotobacter, Klebsiella, or Escherichia. Pectolytic activities, including pectin transeliminase and endopolygalacturonase, were detected in pure cultures of A. brasilense when this species was grown in a medium containing pectin. These studies describe colonization of grass root surfaces by A. brasilense and provide a possible explanation for the limited colonization of intercellular spaces of the outer root cortex.  相似文献   

3.
The occurrence and the dynamics of phototrophic purple nonsulphur bacteria (PPNSB) as well as Azospirillum, Azotobacter, Clostridium, and cyanobacteria at different rice growth stages were studied in two ricefields, at Kafr-El-Shiekh and Al-Fayoum in Egypt.The PPNSB existed in the both rice fields examined, but their numbers varied according to field conditions, habitat and rice growth stage. After transplanting, the number of PPNSB increased gradually, reached its maximum at maximum tillering stage, and thereafter declined toward harvest time. Numbers of PPNSB were generally comparable with that of the heterotrophic N2-fixers namely Azospirillum, Azotobacter, Clostridium and cyanobacteria, while that of phototrophic purple and green sulphur bacteria were relatively lower.The highest PPNSB numbers were generally found in rhizosphere (103–106 per g–1 dw soil) followed by soil (103–105 per g–1 dw soil) and floodwater (10–102 per ml). Rice plants showed a positive rhizosphere effect on PPNSB, clostridia, Azotobacter and Azospirillum, negative rhizosphere effect on cyanobacteria and green sulphur bacteria, and no effect on purple sulphur bacteria.  相似文献   

4.
Seven strains of Azospirillum brasilense were compared for their effect on the growth of Zea mays grown under temperate conditions in sand--vermiculite pot cultures. Inoculation with all seven strains tested, including Fix(-) mutant strains, increased dry weight and total nitrogen content of shoots, but nitrogen concentrations were unaffected. Low and variable rates of acetylene reduction activity were observed from excised roots of inoculated plants without preincubation. Estimates of N2-fixing A. brasilense associated with inoculated roots showed differences between strains in establishing themselves in the rhizosphere and endorhizosphere. In some strains enrichment in the endorhizosphere of roots occurred following inoculation, but the relative numbers and location of the strains did not appear to affect the yield response.  相似文献   

5.
The effect of direct inoculation of seeds with the plant growth promoting rhizobacteria (PGPR) Azospirillum lipoferum CRT1 was assessed on maize (Zea mays) grown for 35 days after sowing (d.a.s.) in controlled conditions (greenhouse) in a luvisol soil from south-eastern France. WhinRhizo® software was used to describe the following changes in the root system morphology for each plant: distribution and average root diameter, root surface and the number of tips. The stress at breakage and stiffness of the roots in tension were also determined. Evaluation of biochemical components of roots was achieved by direct Attenuated Total Reflectance (or reflection) (ATR)-Fourier transform infrared (FTIR) on root section. Inoculated roots exhibited significantly larger numbers of tips and extending surface to rhizosphere when compared to controls. Measured mechanical parameters of inoculated roots showed a slight increase in rupture stress up to the largest diameter (1.2 mm) when compared to controls. Stiffness (Young’s modulus) values were nearly constant for inoculated plants with higher values than for non-inoculated plants at day 26 and day 35. Using Principal Components Analysis of ATR-FTIR profiles, the polysaccharide enrichment of inoculated roots compared to controls was found at day 35. Noticeable absorbance at wavenumber specific to aromatic ether (lignin) was observed in control plants. All these data had a pattern of immature root properties, when maize was inoculated with Azospirillum lipoferum CRT1. Observed modifications of root development are possibly conducive to unseen beneficial effects, like water retention, resistance to mechanical stress, or root litter quality. Studies on more mature plants are required to assess if the differences between inoculated and control plants would persist or become accentuated with time until harvest.  相似文献   

6.
Summary Finger millet or locally known asragi (Eleusine coracana Gaertn.), sorghum (Sorghum vulgare Pers.), greengram (Phaseolus aureus Roxb.) and soybean (Glycine max L.) plants were raised on sterilized, sterilized and reinoculated with soil microflora and unsterile sandy loam soil in pots for 45 days. Qualitative studies on the edaphosphere microflora indicated the continuation of rhizosphere effect beyond the root surface (rhizosphere) region. Increased microbial population in the sterilized soil was attributed to the effect of sterilization in favour of faster establishment of added microorganisms. In general, steam sterilization had detrimental effects, whereas crop growth had beneficial effects on the soil physical properties. Ragi and greengram were found superior to sorghum and soybean in improving soil structure as evidenced by increased aggregate stability and hydraulic conductivity and decreased dispersion. Soil aggregates of less than 2.00 mm size were found to be increased due to crop growth. The rhizosphere microflora in association with roots of the growing plants is suggested to play a pivotal role in improving soil structure.  相似文献   

7.
Iron (Fe) is an essential element for plant growth and development. Some plant growth-promoting rhizobacteria can increase Fe uptake by plants through reduction of Fe(III) to Fe(II) at the root surface. The aim of this work was to identify novel bacterial strains with high Fe(III) reduction ability and to evaluate their role in plant Fe uptake. Four bacterial strains (UMCV1 to UMCV4) showing dissimilatory Fe-reducing activity were isolated from the rhizosphere of bean and maize plants and further identified by 16S rDNA amplification and sequence analysis. From these analyses, UMCV1 and UMCV2 isolates were identified as Bacillus megaterium and Arthrobacter spp., respectively, whereas UMCV3 and UMCV4 were identified as Stenotrophomonas maltophilia. All four isolates showed Fe reduction in a nonflooded soil and when associated with roots of bean plants grown in alkaline soil or in mineral medium. In addition, the bacterial isolates were able to stimulate plant growth in vitro and on a broad level, plants grown in inoculated soil were generally bigger and with higher Fe content than those grown in sterilized soil. These results indicate that bacterial species isolated from the rhizosphere of bean and maize plants contribute significantly to Fe uptake by plants likely through increased Fe(III) reduction in the rhizosphere.  相似文献   

8.
Method for Establishing a Bacterial Inoculum on Corn Roots   总被引:4,自引:3,他引:1       下载免费PDF全文
Few bacteria from the corn rhizosphere grew in media with 50 μg of mancozeb per ml. A mancozeb-resistant Pseudomonas strain from the rhizosphere was serially subcultured in media containing mancozeb and spectinomycin until it was resistant to 175 μg of mancozeb and 850 μg of spectinomycin per ml. The population of the pseudomonad added to soil fell to low numbers in 6 days in unamended or glucose-amended soil, but its numbers exceeded 105/g for at least 12 days if the soil was supplemented with mancozeb. The numbers of this organism remained small on corn roots derived from untreated, inoculated seeds, but the population was two or more orders of magnitude greater on roots derived from mancozeb-coated seeds. The abundance of the inoculum strain on the 3-cm portion of roots nearest the stem declined markedly after about 1 week, but applying urea to the foliage reduced or prevented the decline. The numbers of the pseudomonad on segments of roots 3- to 6- and 6- to 9-cm from the stem were higher on plants derived from the mancozeb-coated seeds. Applying spectinomycin to the foliage did not promote growth of the bacterium. This method is proposed as a means to establish an introduced bacterium on plant roots.  相似文献   

9.
Saubidet  María I.  Fatta  Nora  Barneix  Atilio J. 《Plant and Soil》2002,245(2):215-222
Azospirillium brasilense is a rhizosphere bacteria that has been reported to improve yield when inoculated on wheat plants. However, the mechanisms through which this effect is induced is still unclear. In the present work, we have studied the effects of inoculating a highly efficient A. brasilense strain on wheat plant grown in 5 kg pots with soil in a greenhouse, under three N regimes (0, 3 or 16 mM NO3 , 50 ml/pot once or twice-a -week), and in disinfected or non-disinfected soil. At the booting stage, the inoculated roots in both soils showed a similar colonization by Azospirillum sp. that was not affected by N addition. The plants grown in the disinfected soil showed a higher biomass, N content and N concentration than those in the non-disinfected soil, and in both soils the inoculation stimulated plant growth, N accumulation, and N and NO3 concentration in the tissues.At maturity, the inoculated plants showed a higher biomass, grain yield and N content than the uninoculated ones in both soils, and a higher grain protein concentration than the uninoculated. It is concluded that in the present experiments, A. brasilenseincreased plant growth by stimulating nitrogen uptake by the roots.  相似文献   

10.
Mohammad MJ  Pan WL  Kennedy AC 《Mycorrhiza》2005,15(4):259-266
Plexiglass pot growth chamber experiments were conducted to evaluate the chemical alterations in the rhizosphere of mycorrhizal wheat roots after inoculation with Glomus intraradices [arbuscular mycorrhizal fungus (AMF)]. Exchange resins were used as sinks for nutrients to determine whether the inoculated plant can increase the solubility and the uptake of P and micronutrients. Treatments included: (1) soil (bulk soil); (2) AMF inoculation no P addition (I–P); (3) no inoculation with no P addition (NI–P); (4) AMF inoculation with addition of 50 mg P (kg soil)–1 (I+P), and (5) no inoculation with addition of 50 mg P (kg soil)–1 (NI+P). The AMF inoculum was added at a rate of four spores of G. intraradices (g soil)–1. The exchange resin membranes were inserted vertically 5 cm apart in the middle of Plexiglass pots. Spring wheat (Triticum aestivum cv. Len) was planted in each Plexiglass pot and grown for 2 weeks in a growth chamber where water was maintained at field capacity. Rhizosphere pH and redox potential (Eh), nutrient bioavailability indices and mycorrhizal colonization were determined. Mycorrhizal inoculation increased the colonization more when P was not added, but did not increase the shoot dry weight at either P level. The rhizosphere pH was lower in the inoculated plants compared to the noninoculated plants in the absence of added P, while the Eh did not change. The decrease in pH in the rhizosphere of inoculated plants could be responsible for the increased P and Zn uptake observed with inoculation. In contrast, Mn uptake was decreased by inoculation. The resin-adsorbed P was increased by inoculation, which, along with the bioavailability index data, may indicate that mycorrhizal roots were able to increase the solubility of soil P.  相似文献   

11.
The influence of rhizosphere microorganisms and vesicular-arbuscular (VA) mycorrhiza on manganese (Mn) uptake in maize (Zea mays L. cv. Tau) plants was studied in pot experiments under controlled environmental conditions. The plants were grown for 7 weeks in sterilized calcareous soil in pots having separate compartments for growth of roots and of VA mycorrhizal fungal hyphae. The soil was left either uninoculated (control) or prior to planting was inoculated with rhizosphere microorganisms only (MO-VA) or with rhizosphere microorganisms together with a VA mycorrhizal fungus [Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe] (MO+VA). Mycorrhiza treatment did not affect shoot dry weight, but root dry weight was slightly inhibited in the MO+VA and MO-VA treatments compared with the uninoculated control. Concentrations of Mn in shoots decreased in the order MO-VA > MO+VA > control. In the rhizosphere soil, the total microbial population was higher in mycorrhizal (MO+VA) than nonmycorrhizal (MO-VA) treatments, but the proportion of Mn-reducing microbial populations was fivefold higher in the nonmycorrhizal treatment, suggesting substantial qualitative changes in rhizosphere microbial populations upon root infection with the mycorrhizal fungi. The most important microbial group taking part in the reduction of Mn was fluorescent Pseudomonas. Mycorrhizal treatment decreased not only the number of Mn reducers but also the release of Mn-solubilizing root exudates, which were collected by percolation from maize plants cultivated in plastic tubes filled with gravel quartz sand. Compared with mycorrhizal plants, the root exudates of nonmycorrhizal plants had two fold higher capacity for reduction of Mn. Therefore, changes in both rhizosphere microbial population and root exudation are probably responsible for the lower acquisition of Mn in mycorrhizal plants.  相似文献   

12.
Bacterial growth rates on the rhizoplane of rape seedlings grown in sand were determined using 3H-thymidine incorporation into DNA. Axenic roots incorporated thymidine into DNA, which had to be subtracted from values for roots with associated bacteria. Thymidine incorporation into rhizoplane bacterial DNA ranged between 0.6 and 1.4 pmol thymidine h–1 root–1 for 6 to 26-day-old plants. Using a conversion factor, the turnover time of bacteria was calculated to decrease from 9.2 h for 6-day-old plants to 160h for 26-day-old plants. A similar value was found for rhizosphere bacteria of plants grown for 26 days in natural soil.  相似文献   

13.
Growth and nitrogen fixation were followed during the life cycle of Setaria italica (foxtail millet) inoculated with Azospirillum brasilense in controlled-environment growth chambers. The plants were fertilized at seeding with a limiting amount of combined nitrogen and maintained with an N-free mineral solution. During maturation of the plants, substantial nitrogenase activity, measured by acetylene reduction, developed in the rhizosphere, with total fixation estimated to be equivalent to 20% of the N in the inoculated plants. The peak of this activity coincided with depletion of soluble nitrogen from the system, which in turn was reflected by a sharp decrease in the nitrate reductase activity of the leaves. A. brasilense was found in association with the root populations at 8 × 107 cells per gram of dry weight. An increase in shoot growth occurred at this time, but no significant increase in total plant nitrogen could be demonstrated. 15N2 enrichment experiments confirmed that fixation was occurring, but only about 5% of the nitrogen fixed by A. brasilense was incorporated into the plants within 3 weeks. There was thus no evidence of direct bacterium-to-plant transport of fixed nitrogen, but rather a slow transfer suggesting the gradual death of bacteria and subsequent mineralization of their nitrogen, at least under growth-room conditions.  相似文献   

14.
To assess the influence of bacteria inoculation on carbon flow through maize plant and rhizosphere,14C allocation after14CO2 application to shoots over a 5-day period was determined. Plants were grown on C- and N-free quartz sand in two-compartment pots, separating root and shoot space. While one treatment remained uninoculated, treatments two and three were inoculated withPantoea agglomerans (D5/23) andPseudomonas fluorescens (Ps I A12), respectively, five days after planting. Bacterial inoculation had profound impacts on carbon distribution within the system. Root/rhizosphere respiration was increased and more carbon was allocated to roots of plants being inoculated. After five days of14CO2 application, more ethanol-soluble substances were found in roots of inoculated treatments and lower rhizodeposition indicated intensive C turnover in the rhizosphere. In both inoculated treatments the intensity of photosynthesis measured as net-CO2-assimilation rates were increased when compared to the uninoculated plants. However, high C turnover in the rhizosphere reduced shoot growth of D5/23 inoculated plants, with no effect on shoot growth of Ps I A12 inoculated plants. A separation of labeled compounds in roots and rhizodeposition revealed that neutral substances (sugars) constituted the largest fraction. The relative fractions of sugars, amino acids and organic acids in roots and rhizodeposition suggest that amino acid exudation was particularly stimulated by bacterial inoculation and that turnover of this substance group is high in the rhizosphere.  相似文献   

15.
Responses to inoculation with N2-fixing bacteria were studied in relation to genotypic differences in pearl millet, effect of nitrogen levels, and FYM additions in India. In some experiments, inoculation increased mean grain yield up to 33% over the uninoculated control, whereas in the remaining 11 experiments there was no significant increase. Increased grain yields, >10% over the uninoculated controls were observed in 46% of the experiments withAzospirillum lipoferum (18.7% average increase) and withAzotobacter chroococcum (13.6% average increase). Yield increases were nil or reduced in three experiments withAzos. lipoferum and four experiments withAztb. chroococcum. In two experiments continued inoculation for two or three years resulted in increased grain, plant biomass yield, and N uptake. Interactions of bacterial cultures with cultivars or years were not observed. The counts of the inoculated strains increased two to three-fold when inoculation was continued for three years. Repeated inoculations increased the mean cumulative N uptake from season 1 to season 3 by 19 kg ha–1. Repeated inoculations withAztb. chroococcum andAzos. lipoferum increased mean grain yield of a succeeding crop by 14.4% and 9.8%, respectively, over the uninoculated control. Inoculation increased the efficiency of N-assimilation by pearl millet. Marginal increase in nitrogenase activity, associated with the inoculated plants was observed during later stages of plant growth. Increased leaf nitrate reductase activity (NRA) was observed after inoculation with these bacteria. The responses to inoculation are mainly attributable to increased plant N assimilation which could be the effect of growth promoting substances secreated by the bacteria; and thus the contribution from BNF may be small.CRISAT, journal article 732.  相似文献   

16.
Diversity of the native diazotrophs associated with the rhizosphere of pearl millet (P. glaucumn), grown in nutritionally poor soils of semi-arid regions was studied with a view to isolate effective nitrogen fixing and plant growth stimulating bacteria with root associative characteristics. The native population varied from 10(3)-10(4) g(-1) of rhizosphere soil after 40 d growth and belonged to genera Azospirillum, Azotobacter and Klebsiella. Another non-diazotrophic root associative group was Pseudomonas sp., which also produced IAA and enhanced plant growth. Some of these rhizobacteria showed high in vitro acetylene reduction activity along with production of indole acetic acid. Out of 11 selected diazotrophs used as seed inoculants, M10B (Azospirillum sp.), M11E (Azotobacter sp.) and M12D4 (Klebsiella sp.) resulted in significant increase in total root and shoot nitrogen at 45 and 60 days of plant growth under pot culture conditions.  相似文献   

17.
Roots of actinorhizal plants can develop nitrogen-fixing nodules with actinomycetic bacteria of the genus Frankia. We aimed to know if unrestricted growth of roots in pots could influence the pattern of nodule development that we had previously observed for Discaria trinervis growing in pouches. Growth pouches, although being a space saving device convenient for the analysis of nodule development, do restrict root growth. Thus, the pattern of root nodule development was analysed in actinorhizal D. trinervis growing in pots with inert substrates. Inoculation of axenic seedlings growing in perlite resulted in clustering of nodules in a defined region of the taproot and upper lateral roots. When surface sterilized seeds were sown in pots containing vermiculite that had been previously inoculated with Frankia cells, nodules were again concentrated in defined portions of the main and lateral roots. Potted plants developed comparable numbers of nodules with respect to plants grown in pouches. However, a significant proportion of nodules appeared in lateral roots. As it was first inferred from field grown plants, these results confirm that D. trinervis plants growing in pots display the same autoregulatory mechanism for nodule formation that was previously observed in growth pouches.  相似文献   

18.
Summary The effect of reduced solar radiation on associative N2-fixation and plant parameters was studied in three field experiments (1978–80). Gahi-3 pearl millet (Pennisetum americanum (L.) K. Monch.) field plots were shaded with saran shade cloth that reduced solar radiation by 50% and 75%. Acetylene reduction activity (ARA) was reduced by shading in one of the three experiments. The two non-responding experiments were conducted on a wall-drained, low-activity site (ARA means ranging 17–68 n moles ethylene core–1 h–1), the responding experiment was conducted on a poorly drained, high-ARA site.Shading affected the plants drastically, reducing fresh weight and dry matter yields up to 46% (50% shade) and 57% (75% shade). Shading also reduced dry matter percentage from 19.6 (no shade) to 15.3 (75% shade) and increased nitrogen content from 0.6% (no shade) to 1.53% (75% shading). However, shading did not affect protein yield. Inoculation withAzospirillum brasilense had no measurable effect on yield or acetylene reduction in the first two experiments.In the third experiment, shading reduced mean ARA of inoculated plots over 100% but had no significant effect on control plots. Inoculation significantly increased ARA in the nonshaded plots but not in shaded plots. Acetylene reduction activity was high, with means ranging between 208 and 465 n moles ethylene evolved core–1 h–1. Soil moisture and millet growth stage also affected acetylene reduction activity.  相似文献   

19.
Three field inoculation experiments, two in Florida and one in New Mexico, were conducted with Azospirillum brasilense Cd. Each of the Florida experiments evaluated two crop species. One species in each of the Florida experiments responded to inoculation with a significant dry matter yield increases of 11 to 24% and nitrogen yield increases of 9 to 39%. No inoculation response was noted in the New Mexico experiment. The responding species were Sorghum bicolor (L.) Moench (sorghum) and the interspecific hybrid between Pennisetum americanum (L.) K. Schum. (pearl millet) and P. purpureum Schumach. (napiergrass). Nonresponding species were pearl millet (Florida) and Sorghum sudanense (Piper) Staph. (New Mexico). Acetylene reduction activity of inoculated plots in Florida was low, showing no increase over the natural uninoculated background rates and, in one case, was negatively correlated with yield. Acetylene reduction activity was not measured in New Mexico. In Florida, A. brasilense populations were found to decline from 5 × 103 to 5 × 102 bacteria g of soil−1 in about 3 weeks (quadratic regressions). Continued decline to less than 102 by week 5 indicated that the inoculated bacteria did not become established in the soil in high numbers. The A. brasilense population declined at about the same rate in the New Mexico experiment. The erractic inoculation responses in these experiments are similar to those observed in earlier work at the University of Florida. The lack of acetylene reduction activity response to inoculation and the rapid population decline of the inoculated bacteria suggest that N2 fixation is not the major mechanism causing yield responses after inoculation.  相似文献   

20.
Time course absorption and desorption of metalaxyl by seeds of pearl millet was analysed by following chemical kinetics equations. Uptake of metalaxyl through roots, leaves and seed, its translocation and distribution in different plant parts and persistence following seed application were studied in pearl millet using 14C-metalaxyl. Both uptake and efflux of metalaxyl by pearl millet seeds were complex and compartmentalized. Distribution inside the seed was not uniform. A major part of applied fungicide remained within the treated plant part, particularly after seed and foliar applications. Metalaxyl was ambimobile inside the plant and was found to get accumulated at apex and margins of leaf blade. No metalaxyl could be detected in grains, harvested from plants grown from metalaxyl treated seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号