首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Ab initio calculations have been performed using the complete basis set model (CBS-QB3) to study the reaction mechanism of butane radical (C4H9•) with oxygen (O2). On the calculated potential energy surface, the addition of O2 to C4H9• forms three intermediates barrierlessly, which can undergo subsequent isomerization or decomposition reaction leading to various products: HOO• + C4H8, C2H5• + CH2CHOOH, OH• + C3H7CHO, OH• + cycle-C4H8O, CH3• + CH3CHCHOOH, CH2OOH• + C3H6. Five pathways are supposed in this study. After taking into account the reaction barrier and enthalpy, the most possible reaction pathway is C4H9• + O2 → IM1 → TS5 → IM3 → TS6 → IM4 → TS7 → OH• + cycle-C4H8O.  相似文献   

2.
Yields based on carbon are usually reported in prebiotic experiments, while energy yields (moles cal–1) are more useful in estimating the yields of products that would have been obtained from the primitive atmosphere of the earth. Energy yields for the synthesis of HCN and H2CO from a spark discharge were determined for various mixtures of CH4, CO, CO2, H2, H2O, N2 and NH3. The maximum yields of HCN and H2CO from CH4, CO, and CO2 as carbon sources are about 4×10–8 moles cal–1.  相似文献   

3.
Using the Iterative Extended Huckel Theory (IEHT), energy-conformation studies have been carried out for H2CN (I),trans-HCNH (IIA), andcis-HCNH (IIB), three possible isomers formed by addition of a hydrogen atom to hydrogen cyanide. Calculations show that the order of decreasing thermodynamic stability is I≫IIA>IIB. Additionally, from calculated energies along simulated reaction pathways, the formation of I from HCN+H appears to be kinetically favored over IIA. Calculated properties of the minimum energy conformers of I and IIA are described and the potential role of H2CN (I) as a reactive intermediate in prebiotic organic synthesis and its possible relevance to interstellar organic chemistry are discussed.  相似文献   

4.
Electrochemical CO2 reduction reaction (CO2RR) provides a potential pathway to mitigate challenges related to CO2 emissions. Pd nanoparticles have shown interesting properties as CO2RR electrocatalysts, while how different facets of Pd affect its performance in CO2 reduction to synthesis gas with controlled H2 to CO ratios has not been understood. Herein, nanosized Pd cubes and octahedra particles dominated by Pd(100) and Pd(111) facets are, respectively, synthesized. The Pd octahedra particles show higher CO selectivity (up to 95%) and better activity than Pd cubes and commercial particles. For both Pd octahedra and cubes, the ratio of H2/CO products is tunable between 1 and 2, a desirable ratio for methanol synthesis and the Fischer–Tropsch processes. Further studies of Pd octahedra in a 25 cm2 flow cell show that a total CO current of 5.47 A is achieved at a potential of 3.4 V, corresponding to a CO partial current density of 220 mA cm?2. In situ X‐ray absorption spectroscopy studies show that regardless of facet Pd is transformed into Pd hydride (PdH) under reaction conditions. Density functional theory calculations show that the reduced binding energies of CO and HOCO intermediates on PdH(111) are key parameters to the high current density and Faradaic efficiency in CO2 to CO conversion.  相似文献   

5.
The mechanism of the cycloaddition reaction CH3M≡MCH3 (M=C, Si, Ge) with C2H4 has been studied at the CCSD(T)/6-311++G(d,p)//MP2/6-311++G(d,p) level. Vibrational analysis and intrinsic reaction coordinate (IRC), calculated at the same level, have been applied to validate the connection of the stationary points. The breakage and formation of the chemical bonds of the titled reactions are discussed by the topological analysis of electron density. The calculated results show that, of the three titled reactions, the CH3Si≡SiCH3+C2H4 reaction has the highest reaction activity because it has the lowest energy barriers and the products with the lowest energy. The CH3C≡CCH3+C2H4 reaction occurs only with difficulty since it has the highest energy barriers. The reaction mechanisms of the title reactions are similar. A three-membered-ring is initially formed, and then it changed to a four-membered-ring structure. This means that these reactions involve a [2+1] cycloaddition as the initial step, instead of a direct [2+2] cycloaddition.  相似文献   

6.
A reliable model for the composition and evolution of interstellar ices inregions of active star formation is fundamental to our quest to determinethe organic inventory of planetesimals in the early Solar System. This hasbecome a realistic goal since the launch of the Infrared Space Observatory,which provides a facility for infrared spectroscopy unhindered by telluricabsorption over the entire spectral range of vibrational modes in solids ofexobiological interest. Interstellar molecules detected in the solid phaseto date include H_2O, NH3, CO, CO2,CH3OH, CH4, H2CO, OCS andHCOOH, together with a CN-bonded absorber generically termed`XCN'. In this article, we focus on cosmic synthesis of CN-bearing species,as this important class of prebiotic molecules may not have formedendogenously in significant quantities on early Earth if conditions were nothighly reducing. Experiments in which interstellar ice analogs are subjectto UV photolysis or energetic ion bombardment yield CN-rich residues with aspectral signature that matches a corresponding feature observed in youngprotostars enshrouded in dust and gas. CN-bearing species are also presentin cometary ices, with a combined abundance comparable to the lower end of therange observed in protostars. Energetic processing of interstellar ices isthus a viable and potentially significant source of CN compounds inprotoplanetary disks.  相似文献   

7.
The reaction of Fe3(CO)12 with N-methyl-4- mercaptopiperidine gives the title compound. Crystals are monoclinic, space group P21/c with a = 12.922(2), b = 14.784(5), c = 13.607(2) Å, β = 112.41(1)°. With Z = 4 the calculated density is 1.49 g cm−3. Solution of the structure by direct methods led to a final weighted R factor of 0.029 for 2270 independent reflections. The FeFe bond length is 2.534(1) Å and the S···S distance of 2.940(1) suggests bonding interactions. By heating upon reflux in toluene during 10 h, the IR spectrum of the chromatographed solution indicates the syn isomer formation. The reaction with CH3I and HClO4 produces the methylation and protonation, respectively, of the nitrogen atoms of the piporidine rings giving rise to the formation of the [Fe(μ-(CH3)2NC5H9S)(CO)3]2I2·2H2O and [Fe(μ-HCH3NC5H9S)(CO)3]2·H2O·CH3OH compounds.  相似文献   

8.
H2S has been often invoked as the initial source of sulfur in prebiotic evolution, and several sulfur-containing compounds has been proposed as intermediates in the primordial synthesis of biologically relevant sulfur-containing chemicals. The possibilities of synthesis of the principal key intermediates by glow discharges in CH4−N2−H2S mixtures is studied. It is shown that synthesis of important intermediates such as HCN, (CN)2, CHCCN and CH3SH is possible from such mixtures if the amount of H2S is not more than 10%. For higher amounts of H2S, the syntheses are strongly inhibited.  相似文献   

9.
The structures of complexes of some small molecules (formaldehyde, acetaldehyde, ammonia, methylamine, methanol, ethanol, acetone, benzene, acetonitrile, ethyl acetate, chloroform, and tetrahydrofuran, considered as possible analytes) with ethylbenzene and silanol (C6H5C2H5 and SiH3OH, considered as models of polystyrene and silica gel substrates) and with acridine (C13H9N, considered as a model of an indicator dye molecule of the acridine series) and the corresponding interaction energies have been calculated using the DFT-D approximation. The PBE exchange-correlation potential was used in the calculations. The structures of complexes between the analyte and the substrate were determined by optimizing their ground-state geometry using the SVP split-valence double-zeta plus polarization basis set. The complex formation energies were refined by single-point calculations at the calculated equilibrium geometries using the sufficiently large triple-zeta TZVPP basis set. The calculated interaction energies are used to assess the possibility of using dyes of the acridine series adsorbed on a polystyrene or silica substrate for detecting the small molecules listed above.  相似文献   

10.
The Suzuki-Miyaura reaction of various aryl halides using [Pd{C6H2(CH2CH2NH2)-(OMe)2,3,4} (μ-Br)]2 have been investigated. This orthopalladated complex is an efficient, stable and non-sensitive to air and moisture catalyst for the hetrocoupling reaction in DMF as the reaction solvent at 130 °C. The combination of dimeric complex as homogenous catalyst and microwave irradiation can be very useful and efficient methods in organic synthesis, so the application of microwave irradiation have been investigated using homogenous dimeric complex [Pd{C6H2(CH2CH2NH2)-(OMe)2,3,4} (μ-Br)]2. Application of dimeric complex as catalyst caused to produce the desired coupling products and the using of microwave irradiation improving the yields of the reactions and shortening the reaction times.  相似文献   

11.
Abstract

Methane is a product of the energy-yielding pathways of the largest and most phylogenetically diverse group in the Archaea. These organisms have evolved three pathways that entail a novel and remarkable biochemistry. All of the pathways have in common a reduction of the methyl group of methyl-coenzyme M (CH3-S-CoM) to CH4. Seminal studies on the CO2-reduction pathway have revealed new cofactors and enzymes that catalyze the reduction of CO2 to the methyl level (CH3-S-CoM) with electrons from H2 or formate. Most of the methane produced in nature originates from the methyl group of acetate. CO dehydrogenase is a key enzyme catalyzing the decarbonylation of acetyl-CoA; the resulting methyl group is transferred to CH3-S-CoM, followed by reduction to methane using electrons derived from oxidation of the carbonyl group to CO2 by the CO dehydrogenase. Some organisms transfer the methyl group of methanol and methylamines to CH3-S-CoM; electrons for reduction of CH3-S-CoM to CH4 are provided by the oxidation of methyl groups to CO2.  相似文献   

12.
Gases such as ethylene, hydrogen peroxide (H2O2), nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) have been recognized as vital signaling molecules in plants and animals. Of these gasotransmitters, NO and H2S have recently gained momentum mainly because of their involvement in numerous cellular processes. It is therefore important to study their various attributes including their biosynthetic and signaling pathways. The present review provides an insight into various routes for the biosynthesis of NO and H2S as well as their signaling role in plant cells under different conditions, more particularly under heavy metal stress. Their beneficial roles in the plant's protection against abiotic and biotic stresses as well as their adverse effects have been addressed. This review describes how H2S and NO, being very small-sized molecules, can quickly pass through the cell membranes and trigger a multitude of responses to various factors, notably to various stress conditions such as drought, heat, osmotic, heavy metal and multiple biotic stresses. The versatile interactions between H2S and NO involved in the different molecular pathways have been discussed. In addition to the signaling role of H2S and NO, their direct role in posttranslational modifications is also considered. The information provided here will be helpful to better understand the multifaceted roles of H2S and NO in plants, particularly under stress conditions.  相似文献   

13.
Theoretical calculations using the M062X and QCISD methods were performed on the addition reactions of the aluminum germylenoid H2GeAlCl3 with ethylene. The most two stable structures of germylenoid H2GeAlCl3, i.e., the p-complex and three-membered ring structures, respectively, were employed as reactants. The calculated results indicate that, for the p-complex, H2GeAlCl3 there are two pathways, I and II, of which path I involves just one transition state, while path II involves two transition states between reactants and products. Comparing the reaction barrier heights of path I (44.6 kJ mol?1) and II (37.6 kJ mol?1), the two pathways are competitive, with similar barriers under the same conditions, while for the three-membered ring structure, another two pathways, III and IV, also exist. Path III has one transition state; however, in path IV, two transition states exist. By comparing their barrier heights, path III (barrier height 39.2 kJ mol?1) could occur more easily than path IV (barrier height 92.8 kJ mol?1). Considering solvent effects on these addition reactions, the PCM model and CH2Cl2 solvent were used in calculations, and the calculated results demonstrate that CH2Cl2 solvent is unfavorable for the reactions, except for path II. In CH2Cl2 solvent, paths II and III are more favorable than paths I and IV.  相似文献   

14.
We report here a novel reductive coupling reaction of conjugated, non‐ or poorly enolizable aldehydes induced by H2S and operative in aqueous solutions under prebiotically relevant conditions. This reaction leads from retinal to β‐carotene, and from benzylic aldehydes to the corresponding diarylethylenes. This novel reaction also opens a new potentially prebiotic pathway leading from glyoxylic acid to various compounds that are involved in the reductive tricarboxylic acid cycle. This C? C bond forming reaction of prebiotic interest might have been operative, notably, in the sulfide‐rich environments of hydrothermal vents, which have been postulated as possible sites for the first steps of organic chemical evolution.  相似文献   

15.
A coupled photochemical‐ecosystem model has been developed to simulate the early Archean biosphere. The model incorporates kinetic and nutrient limitations on biological productivity, along with constraints imposed by metabolic thermodynamics. We have used this model to predict the biogenic CH4 flux and net primary productivity (NPP) of the marine biosphere prior to the advent of oxygenic photosynthesis. Organisms considered include chemotrophic and organotrophic methanogens, H2‐, H2S‐, and Fe‐using anoxygenic phototrophs, S‐reducing bacteria, CO‐using acetogens, and fermentative bacteria. CH4 production and NPP in our model are limited by the downward flux of H2, CO, S8, and H2S through the atmosphere–ocean interface and by the upwelling rate of Fe2+ from the deep oceans. For reasonable estimates of the supply rates of these compounds, we find that the biogenic CH4 flux should have ranged from approximately 1/3 to 2.5 times the modern CH4 flux. In the anoxic Archean atmosphere, this would have produced CH4 concentrations of 100 ppmv to as much as 35 000 ppmv (3.5%), depending on the rate at which hydrogen escaped to space. Recent calculations indicating that hydrogen escape was slow favour the higher CH4 concentrations. Calculated NPP is lower than in the modern oceans by a factor of at least 40. In our model, H2‐based metabolism is moderately more productive than Fe2+‐based metabolism, with S‐based metabolism being considerably less productive. Internal recycling of sulphur within the surface ocean could conceivably raise rates of sulphur metabolism by a factor of 10 higher than the values predicted by our model. Although explicit climate calculations have not been performed here, our results are consistent with the idea that the Archean climate was warm, and possibly very hot. Some or most of our ecosystem scenarios are consistent with the carbon isotope record, depending on how that record is interpreted. If the conventional view is correct and organic carbon burial accounted for approximately 20% of total carbon burial during the Archean, then only two of our phototroph‐based model ecosystems are plausible. However, if a recent alternative analysis is correct and only approximately 0–10% of total buried carbon was organic, then essentially all of our anaerobic ecosystems are plausible. A better understanding of both the geochemical and the biological records is needed to better constrain our models.  相似文献   

16.
《Inorganica chimica acta》1986,119(2):149-163
Kinetics of the base-induced decomposition of five 2-alkoxyethyl(aquo)cobaloximes, ROCH2CH2- Co(D2H2)OH2 (R = C6H5, CF3CH2, CH3, CH3CH2, (CH3)2CH), have been studied manometrically in aqueous base, ionic strength 1.0 M (KC1) at 25.0± 0.1 °C under an argon atmosphere. For the complexes with good leaving group alkoxide substituents (R = C6H5 and CF3CH2) the reactions are first- order in cobaloxime and first-order in hydroxide ion and produce stoichiometric amounts of ethylene and leaving group alcohol (ROH). NMR observation of decomposing solutions and workup of cobalt chelate products show that the reaction is initiated by hydroxide ion attack on an equatorial quaternary carbon leading to formation of an altered cobal- oxime product in which one of the Schiff's base linkages has become hydrated. For the remainer of the complexes the yield of ethylene is less than stoichiometric and pH-dependent, and the ethylene evolving reaction is second-order in hydroxide ion activity. The yield-limiting side reaction is shown to be base-catalyzed formation of a base-stable but photolabile alkoxyethylcobaloxime analog in which a Schiff's base linkage of the chelate has become hydrated, β-Elimination to form alkyl vinyl ethers was not observed for any of the alkoxyethylcobal- oximes. The second-order dependence of ethylene formation on hydroxide ion activity for R = CH3, CH2CH3, and CH(CH3)2 is discussed at some length, but is not well understood at present.  相似文献   

17.
《Inorganica chimica acta》1986,121(2):237-241
Kinetic studies on the oxidative coupling of methane over Sm2O3 have been carried out. The experimental rate equation observed could be well explained in terms of the reaction mechanism proposed. The reaction is initiated by abstracting hydrogen atom from the methane adsorbed by the diatomic oxygen on the surface. The coupling of two CH3· radicals leads to C2H6. Deep oxidation of CH3· produces CO and CO2. The large activation energy (149 kJ mol−1) needed for the formation of CH3· explains the sharp increase in the selectivity to C2-compounds (C2H6 + C2H4) as raising temperatures. The oxygen species responsible for initiating the reaction was suggested to be O22− or O2 on the surface.  相似文献   

18.
Free energy calculations and experimental measurements have been used to show that H2S/CO2 mixtures outgassing from a prebiotic Earth's crust would have produced a reducing gas mixture containing CO, H2, H2O, and S x as principal components. Due to rapid recombination of H2, CO, and S x to H2S and CO2 on cooling from a high temperature to ambient conditions, reducing components would have been retained only if efficient quenching of the reduced gas mixture had been possible. Consequently, subsea vents or vents with efficient infusion of water would have been ideal sites for retention of reduced species and for prebiotic organic synthesis. It is suggested that C/H/O/S ratios are important factors in controlling the degree of prebiotic organic synthesis and, hence, the emergence of life, since if oxygen is abundant, CO2 and SO2 would have been dominant species. Received: 5 March 1997 / Accepted: 15 December 1997  相似文献   

19.
For microbial production of CH4 from H2 and CO2, a hollow fiber reactor had been developed to increase an interfacial area between liquid and gas phases. The CH4 production with the hollow fiber reactor was analyzed by applying a plug flow reaction model of a tubular reactor. It was possible to apply the model to the reaction of CH4 production. The relationships between influent gas velocity, length of reactor and reaction yield were simulated by the reaction model. The plug flow reaction model was useful to design a hollow fiber bioreactor for the biomethanation of H2 and CO2.  相似文献   

20.
Zhang H  Xiao R  Wang D  He G  Shao S  Zhang J  Zhong Z 《Bioresource technology》2011,102(5):4258-4264
Biomass fast pyrolysis is one of the most promising technologies for biomass utilization. In order to increase its economic potential, pyrolysis gas is usually recycled to serve as carrier gas. In this study, biomass fast pyrolysis was carried out in a fluidized bed reactor using various main pyrolysis gas components, namely N2, CO2, CO, CH4 and H2, as carrier gases. The atmosphere effects on product yields and oil fraction compositions were investigated. Results show that CO atmosphere gave the lowest liquid yield (49.6%) compared to highest 58.7% obtained with CH4. CO and H2 atmospheres converted more oxygen into CO2 and H2O, respectively. GC/MS analysis of the liquid products shows that CO and CO2 atmospheres produced less methoxy-containing compounds and more monofunctional phenols. The higher heating value of the obtained bio-oil under N2 atmosphere is only 17.8 MJ/kg, while that under CO and H2 atmospheres increased to 23.7 and 24.4 MJ/kg, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号