首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. Leaf litter breakdown and associated invertebrates were compared among three logged and three reference stream reaches 2–3 years before and 3–4 years after logging to assess the environmental impacts of partial‐harvest logging as a novel riparian management strategy for boreal forest streams. 2. Partial‐harvest logging at three sites resulted in 10, 21 and 28% average basal area removal from riparian buffers adjacent to upland clear‐cut areas. 3. Leaf litter breakdown rates were not significantly different between reference and logged sites after logging, but litter breakdown was significantly different from year to year at all sites. 4. Significant post‐logging differences in aquatic invertebrate communities were detected at only one of the three logged sites. These differences were largely the result of increases in some leaf‐shredding stoneflies and a detritivorous mayfly and a decrease in a chironomid group 2–4 years after logging. This site where significant change was detected had the lowest intensity of riparian logging (average 10% removal) but the highest proportion of the catchment area that was clear cut (85%). 5.The post‐logging differences in invertebrate communities at this site were more related to catchment‐wide influences (e.g. weather patterns, water yield, possibly upland clearcutting) than to reach‐level disturbances from riparian logging. 6.The study indicates that partial‐harvest logging in riparian buffers at up to 50% removal should pose little risk of harm to leaf litter breakdown processes or aquatic invertebrate communities beyond any impacts that might arise from upland logging disturbance or catchment‐wide influences. However, the results should be viewed in the context of the natural disturbance (summer drought conditions) through the post‐logging assessment period of this study. Post‐logging summer drought conditions may have masked or confounded logging impacts on streams.  相似文献   

3.
Huge areas of tropical forests are degraded, reducing their biodiversity, carbon, and timber value. The recovery of these degraded forests can be significantly inhibited by climbing plants such as lianas. Removal of super‐abundant climbers thus represents a restoration action with huge potential for application across the tropics. While experimental studies largely report positive impacts of climber removal on tree growth and biomass accumulation, the efficacy of climber removal varies widely, with high uncertainty as to where and how to apply the technique. Using meta‐analytic techniques, we synthesize results from 26 studies to quantify the efficacy of climber removal for promoting tree growth and biomass accumulation. We find that climber removal increases tree growth by 156% and biomass accumulation by 209% compared to untreated forest, and that efficacy remains for at least 19 years. Extrapolating from these results, climber removal could sequester an additional 32 Gigatons of CO2 over 10 years, at low cost, across regrowth, and production forests. Our analysis also revealed that climber removal studies are concentrated in the Neotropics (N = 22), relative to Africa (N = 2) and Asia (N = 2), preventing our study from assessing the influence of region on removal efficacy. While we found some evidence that enhancement of tree growth and AGB accumulation varies across disturbance context and removal method, but not across climate, the number and geographical distribution of studies limits the strength of these conclusions. Climber removal could contribute significantly to reducing global carbon emissions and enhancing the timber and biomass stocks of degraded forests, ultimately protecting them from conversion. However, we urgently need to assess the efficacy of removal outside the Neotropics, and consider the potential negative consequences of climber removal under drought conditions and for biodiversity.  相似文献   

4.
We evaluated nitrogen (N) removal efficiency by riparian buffers at 14 sites scattered throughout seven European countries subject to a wide range of climatic conditions. The sites also had a wide range of nitrate inputs, soil characteristics, and vegetation types. Dissolved forms of N in groundwater and associated hydrological parameters were measured at all sites; these data were used to calculate nitrate removal by the riparian buffers. Nitrate removal rates (expressed as the difference between the input and output nitrate concentration in relation to the width of the riparian zone) were mainly positive, ranging from 5% m−1 to 30% m−1, except for a few sites where the values were close to zero. Average N removal rates were similar for herbaceous (4.43% m−1) and forested (4.21% m−1) sites. Nitrogen removal efficiency was not affected by climatic variation between sites, and no significant seasonal pattern was detected. When nitrate inputs were low, a very large range of nitrate removal efficiencies was found both in the forested and in the nonforested sites. However, sites receiving nitrate inputs above 5 mg N L−1 showed an exponential negative decay of nitrate removal efficiency (nitrate removal efficiency = 33.6 e−0.11 NO3input, r 2 = 0.33, P < 0.001). Hydraulic gradient was also negatively related to nitrate removal (r = −0.27, P < 0.05) at these sites. On the basis of this intersite comparison, we conclude that the removal of nitrate by biological mechanisms (for example, denitrification, plant uptake) in the riparian areas is related more closely to nitrate load and hydraulic gradient than to climatic parameters. Received 15 August 2001; accepted 2 May 2002.  相似文献   

5.
Two beaver ponds in central New York State, one in a forested and one in an agricultural setting, were studied to determine the influence of nutrient enrichment on metabolic activity in small, shallow north temperate lentic systems with extensive littoral zones. Metabolic activity was determined from every 15-min oxygen measurements during the growing season utilizing a sonde and wind, temperature, and depth data. The agricultural Timmerman Pond was more enriched in phosphorus and nitrogen than the forested Hoxie Gorge Pond, a factor likely driving the greater gross primary production (GPP) and more positive net ecosystem production (NEP) measured in Timmerman. Average daily GPP was over 3X greater for the more enriched pond and seasonal average NEP was positive in the enriched pond while negative for the forested pond. Daily GPP and NEP were positively correlated (P < 0.001) with daily solar radiation at both ponds. The active metabolism of small ponds, the most abundant size class of lentic systems, further confirms the important role of inland waters in the transformation of carbon on a global scale.  相似文献   

6.
The removal of conifers through commercial timber harvesting has been successful in restoring aspen, however many aspen stands are located near streams, and there are concerns about potential aquatic ecosystem impairment. We examined the effects of management-scale conifer removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003–2010) involved two projects located in Lassen National Forest. The Pine-Bogard Project consisted of three treatments adjacent to Pine and Bogard Creeks: (i) Phase 1 in January 2004, (ii) Phase 2 in August 2005, and (iii) Phase 3 in January 2008. The Bailey Project consisted of one treatment adjacent to Bailey Creek in September 2006. Treatments involved whole tree removal using track-laying harvesters and rubber tire skidders. More than 80% of all samples analyzed for NO3-N, NH4-N, and PO4-P at Pine, Bogard, and Bailey Creeks were below the detection limit, with the exception of naturally elevated PO4-P in Bogard Creek. All nutrient concentrations (NO3-N, NH4-N, PO4-P, K, and SO4-S) showed little variation within streams and across years. Turbidity and TSS exhibited annual variation, but there was no significant increase in the difference between upstream and downstream turbidity and TSS levels. There was a significant decrease in stream canopy cover and increase in the potential fraction of solar radiation reaching the streams in response to the Pine-Bogard Phase 3 and Bailey treatments; however, there was no corresponding increase in stream temperatures. Macroinvertebrate metrics indicated healthy aquatic ecosystem conditions throughout the course of the study. Lastly, the removal of vegetation significantly increased soil moisture in treated stands relative to untreated stands. These results indicate that, with careful planning and implementation of site-specific best management practices, conifer removal to restore aspen stands can be conducted without degrading aquatic ecosystems.  相似文献   

7.
To integrate multiple uses (mature forest and commodity production) better on forested lands, timber management strategies that cluster harvests have been proposed. One such approach clusters harvest activity in space and time, and rotates timber production zones across the landscape with a long temporal period (dynamic zoning). Dynamic zoning has been shown to increase timber production and reduce forest fragmentation by segregating uses in time without reducing the spatial extent of timber production. It is reasonable to wonder what the effect of periodic interruptions in the implementation of such as strategy might be, as would be expected in a dynamic political environment. To answer these questions, I used a timber harvest simulation model (HARVEST) to simulate a dynamic zoning harvest strategy that was periodically interrupted by changes in the spatial dispersion of harvests, by changes in timber production levels, or both. The temporal scale (period) of these interruptions had impacts related to the rate at which the forest achieved canopy closure after harvest. Spatial dynamics in harvest policies had a greater effect on the amount of forest interior and edge than did dynamics in harvest intensity. The periodically clustered scenarios always produced greater amounts of forest interior and less forest edge than did their never clustered counterparts. The results suggest that clustering of harvests produces less forest fragmentation than dispersed cutting alternatives, even in the face of a dynamic policy future. Although periodic episodes of dispersed cutting increased fragmentation, average and maximum fragmentation measures were less than if clustered harvest strategies were never implemented. Clustering may also be useful to mitigate the fragmentation effects of socially mandated increases in timber harvest levels. Implementation of spatial clustering during periods of high timber harvest rates reduced the variation in forest interior and edge through time, providing a more stable supply of forest interior habitat across the landscape. Received 19 September 1997; accepted 6 August 1998.  相似文献   

8.
In mountainous areas with sufficient snowfall, avalanche chutes are an important component of grizzly bear (Ursus arctos) habitat. Therefore, regional land-use plans have recommended retaining adjacent forest buffers to maintain security and thus reduce potential impacts of clearcut forest harvesting. Our objective was to determine if forest buffers affected selection of avalanche chutes by grizzly bears, while accounting for factors such as vegetation composition and other physical attributes. We used radio-location data from 61 grizzly bears collected between 1994 and 2000 in southern British Columbia, mapped a sample of avalanche chutes (1,045), and quantified the amount of forb, shrub, tree, and non-vegetated cover within each chute. We also measured forested buffer width on each side of the chute, solar radiation, chute size, chute frequency (no. of chutes/km), and the area of clearcut logging adjacent to chutes. Each avalanche chute was the sample unit and the number of grizzly bear radiolocations was the dependent variable. We found that natural biophysical attributes were the strongest factors predicting the level of avalanche chute use by bears. Frequency of large chutes (>100 m wide), chute area, forb content, and solar radiation all positively affected use by bears. Larger avalanche chutes had a higher proportion of forb cover than smaller chutes, and more of these large chutes per unit area provided increased forage opportunities. Based on multivariate analyses, forested buffer width or the amount of clearcut logging were not strong factors predicting the level of use. However, a post hoc univariate analysis revealed that clearcut logging reduced the amount of bear use of the best avalanche chutes (large and abundant chutes). Furthermore, because a portion of our study area contained logging but no vehicle traffic, we concluded that it was the removal of tree cover, rather than displacement by vehicles, that caused the observed pattern. Although our multivariate models did not perform well using independent validation in a different geographic area, 4 factors were consistently important (large and abundant chutes, forb content, with a negative but weaker influence of clearcutting), suggesting broad applicability of these factors in mountainous ecosystems. © 2011 The Wildlife Society.  相似文献   

9.
Timber harvesting can influence headwater streams by altering stream productivity, with cascading effects on the food web and predators within, including stream salamanders. Although studies have examined shifts in salamander occupancy or abundance following timber harvest, few examine sublethal effects such as changes in growth and demography. To examine the effect of upland harvesting on growth of the stream‐associated Ouachita dusky salamander (Desmognathus brimleyorum), we used capture–mark–recapture over three years at three headwater streams embedded in intensely managed pine forests in west‐central Arkansas. The pine stands surrounding two of the streams were harvested, with retention of a 14‐ and 21‐m‐wide forested stream buffer on each side of the stream, whereas the third stream was an unharvested control. At the two treatment sites, measurements of newly metamorphosed salamanders were on average 4.0 and 5.7 mm larger post‐harvest compared with pre‐harvest. We next assessed the influence of timber harvest on growth of post‐metamorphic salamanders with a hierarchical von Bertalanffy growth model that included an effect of harvest on growth rate. Using measurements from 839 individual D. brimleyorum recaptured between 1 and 6 times (total captures, n = 1229), we found growth rates to be 40% higher post‐harvest. Our study is among the first to examine responses of individual stream salamanders to timber harvesting, and we discuss mechanisms that may be responsible for observed shifts in growth. Our results suggest timber harvest that includes retention of a riparian buffer (i.e., streamside management zone) may have short‐term positive effects on juvenile stream salamander growth, potentially offsetting negative sublethal effects associated with harvest.  相似文献   

10.
Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (<20 m). Small harvests (<4 ha) and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years. Long-term monitoring will be necessary to understand the full impacts of forest management on terrestrial salamanders.  相似文献   

11.
1. Fine benthic organic matter (FBOM, particles <1 mm) was collected eight times in 1995 and 1996 from settling ponds located at the base of five catchments, and assayed for total C, N and P, extractable ammonium, mineralisable N, organic P, labile polysaccharides, denitrification potential, acetylene reduction and respiration rates, and β‐glucosidase and phosphatase activities. The five catchments (10–101 ha in size) are located in the Pacific North‐west of the United States. They contain either old‐growth forests dominated by Douglas‐fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla) or stands that were harvested 30 years ago and replanted with Douglas‐fir, with riparian zones dominated by red alder (Alnus rubra), bigleaf and vine maple (Acer macrophyllum; A. circinatum) and understory herbaceous plants. 2. C : N ratios were significantly higher, and mineralisable N, extractable ammonium and labile polysaccharides were all significantly lower, in FBOM from old‐growth catchment sediment than in FBOM from catchments containing harvested stands, showing that the chemical characteristics of FBOM were influenced by forest harvest. C and N concentrations were greatest in sediment from old‐growth catchments, but microbial activities (respiration, denitrification potential, phosphatase and β‐glucosidase) tended to be greater in sediment from the harvested catchments. 3. Levels of certain chemical components of harvested‐catchment FBOM were elevated relative to those found in old growth; specifically, organic and total P, extractable ammonium, mineralisable N and labile polysaccharides, suggesting that stream FBOM from harvested basins is more biodegradable than stream FBOM from old‐growth basins. 4. In addition to effects of past timber harvest on FBOM characteristics, there were also significant seasonal differences in both logged and unlogged catchments in all variables except mineralisable N, labile polysaccharides and acetylene reduction rates. 5. The results indicate that past timber harvest in five river basins influenced both composition of and seasonal fluctuations in fine benthic organic matter (FBOM) collected from stream sediments in settling ponds, suggesting a linkage between forest harvest and stream productivity. 6. Comparisons between seasonal patterns in stream and settling pond sediment FBOM characteristics suggested that the readily decomposable organic matter entering sediments during a storm event are rapidly transported and decomposed during their movement through the catchment basin. It also showed the validity of studying settling pond sediments as a surrogate for mountain stream sediments.  相似文献   

12.
North American beavers (Castor canadensis) were introduced to Tierra del Fuego Island in 1946 for their fur, and have since spread across the archipelago and onto the South American mainland. We assessed the impact of invasive beavers on streams of these forested watersheds by quantifying the trophic basis of production (TBP) and consumptive organic matter flows of benthic macroinvertebrate assemblages. TBP was determined in two streams: clear- and black-water. Stable isotopes were used across four streams to further elucidate food web structure and dominant pathways. TBP and stable isotopes showed that terrestrially derived organic matter (amorphous detritus, leaves, and wood) supported a majority of secondary production in the benthic food webs at all sites (forested reaches, beaver ponds, and sections downstream of ponds with foraged riparian zones). The magnitude of these flows was enhanced in beaver-modified sites compared with forested habitats (4.0–5.3× increase g AFDM m−2 year−1 in pond habitats, 1.1–2.1× increase in downstream habitats). Diatoms were the only autochthonous resource identified in macroinvertebrate guts, but their contribution to secondary production was small. Consumptive flows mirrored trends in TBP (i.e., dominance of terrestrial sources and greater magnitude in beaver ponds). Collector–gatherer consumption of amorphous detrital material dominated food web flows in all habitats, but was higher in beaver ponds relative to other habitats. Food web structure was simplified in beaver ponds; only two of the five possible functional groups contributed >1% of total organic matter flow in ponds (collector–gatherers and predators). Consumptive flows to predators increased in ponds, and stable isotopes of nitrogen and carbon (δ15N and δ13C) corroborated a relatively greater importance of predators (greater trophic distance), as well as less diversity of basal resources (less variation in δ13C) in ponds. Our findings indicate that invasive beaver’s engineering activities resulted in greater flows of terrestrial organic matter subsidies to in-stream food webs, which had a relatively greater change in the clear-water than in the black-water stream. Owing to the fact that these streams were naturally dependent on allochthonous resources for a majority of production and material flows, changes wrought by beavers to streams in forested environments are probably less than in watersheds with inherently greater dependence on autochthonous production such as the adjacent steppe biome.  相似文献   

13.
14.
The hydrochemical signatures of forested ecosystems are known to be determined by a time-variant combination of physical-hydrologic, geochemical, and biologic processes. We studied subsurface potassium (K), calcium (Ca), and nitrate (NO3) in an experimental red -pine mesocosm to determine how trees affect the behavior of these nutrients in soil water, both during growth and after a harvest disturbance. Solution chemistry was monitored for 2 years at the end of a 15-year period of tree growth, and then for 3 more years after harvest and removal of aboveground biomass. Concentrations were characterized by three distinct temporal patterns that we ascribe to changes in solute generation mechanisms. Prior to harvest, K soil-water concentrations were relatively uniform with depth, whereas Ca soil-water concentrations doubled with depth. Nitrate concentrations were below detection in soil water and discharge (drainage) water. Plant uptake and water/nutrient cycling exerted strong control during this interval. During the 1st year after harvest, K concentrations tripled in shallow soil water, relative to preharvest levels, and showed a strong seasonal peak in discharge that mimicked soil temperature. Summer soil temperatures and annual water flux also increased. Decomposition of labile litter, with complete nitrogen (N) immobilization, characterized this interval. In the third interval (years 2 and 3 after harvest), decomposition shifted from N to carbon (C) limitation, and Ca and NO3 concentrations in discharge spiked to nearly 200 and 400 μM, respectively. Relatively stable ionic strength and carbonate chemistry in discharge, throughout the study period, indicate that carbonic-acid weathering was sustained by belowground decomposition long after the harvest. This stable chemical weathering regime, along with the persistence of N limitation for a long period after disturbance, may be characteristic of early-phase primary-successional systems.  相似文献   

15.
Amazonian white-water (várzea) floodplains harbor many commercially important timber species which in Brazil are harvested following regulations of the Federal Environmental Agency (IBAMA). Although it is well-known that tree physiology, growth, and species distribution of Amazonian floodplain trees is linked to the heights and durations of the periodical inundations, information about timber stocks and population dynamics is lacking for most tree species. We investigated timber stocks and the population structure of four intensely logged tree species in a western Brazilian várzea forest on an area totaling 7.5 ha. Spatial distribution was investigated in all trees as a function of inundation height and duration and the distance to the river channel, and additionally for saplings (trees <10 cm diameter at breast height––DBH) as a function of the relative photosynthetically active radiation (rPAR). The diameter-class distribution in Hura crepitans and Ocotea cymbarum indicated that populations are subject to density variations that possibly are traced to small-scale flood variability. In all species, saplings concentrated at higher topographic elevations than the mature tree populations, which suggest that the physical ‘escape’ from a flooded environment is an important acclimation to flooding. While Ocotea cymbarum and Guarea guidonia were high-density wood species characterized by random dispersion and a pronounced shade-tolerance, Hura crepitans and Sterculia apetala presented lower wood density, aggregated dispersion, and were more light-demanding. All species presented exploitable stems according to the current harvest regulations, with elevated abundances in comparison to other Amazonian forest types. However, stem densities are below the harvest rates indicating that the harvest regulations are not sustainable. We recommend that the forest management in várzea forests should include specific establishment rates of timber species in dependence of the peculiar site conditions to achieve sustainability.  相似文献   

16.
A new pond complex, designed to enhance aquatic biodiversity, was monitored over a 7-year period. The Pinkhill Meadow site, located in grassland adjacent to the R. Thames, proved unusually rich in terms of its macrophyte, aquatic macroinvertebrate and wetland bird assemblages. In total, the 3.2 ha mosaic of ca. 40 permanent, semi-permanent and seasonal ponds and pools was colonized by approximately 20% of all UK wetland plant and macroinvertebrate species over the 7-year survey period. This included eight invertebrate species that are Nationally Scarce in the UK. The site supported three breeding species of wading bird and was used by an additional 54 species of waders, waterfowl and other wetland birds. The results from four monitoring ponds investigated in more detail showed that these ponds significantly supported more plant and macroinvertebrate species than both minimally impaired UK reference ponds, and other new ponds for which compatible data were available. Comparisons of the physico-chemical, hydrological and land-use characteristics of the Pinkhill pools with those of other new ponds showed that the site was unusual in having a high proportion of wetlands in the near surrounds. It also had significantly lower water conductivity than other ponds and a higher proportion of (non-woodland) semi-natural land in its surroundings. Given that ponds are known to contribute significantly to UK biodiversity at a landscape level, and that several thousand new ponds are created each year in the UK alone, the findings suggest that well designed and located pond complexes could be used to significantly enhance freshwater biodiversity within catchments. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: R. Céréghino, J. Biggs, B. Oertli & S. Declerck The ecology of European ponds: defining the characteristics of a neglected freshwater habitat  相似文献   

17.
Invasive shrubs can increase ecosystem transpiration and potentially affect hydrology in forested ecosystems. We examined two adjacent sites in a wetland forest in northern Kentucky, USA. One site contained little Lonicera maackii (Amur honeysuckle), while the other contained considerably more. Using Granier (thermal dissipation) and heat balance probes, transpiration was determined for trees, vines and shrubs at the two sites. Tree and vine transpiration in 2009 was usually 1–2 mm day−1, typical of that seen in humid temperate forests. Additional transpiration from L. maackii was roughly proportional to its basal area, and it totaled 1.0% of tree and vine transpiration from the site with less L. maackii cover and 6.0% from the site with considerable cover. This additional transpiration amounts to roughly 10% of stream flow draining the study area. As L. maackii basal areas at these sites are at the lower end of that seen in other invaded forests in the region, regional impacts on transpiration and hydrology may be larger than those reported here. We expect L. maackii to shorten the lives of ephemeral ponds and streams in wetlands and cause adverse impacts on the organisms, such as amphibians, that require these aquatic environments to complete their life cycle.  相似文献   

18.
Inland and transitional aquatic systems play an important role in global carbon (C) cycling. Yet, the C dynamics of wetlands and floodplains are poorly defined and field data is scarce. Air-water fluxes in the wetlands of Doñana Natural Area (SW Spain) were examined by measuring alkalinity, pH and other physiochemical parameters in a range of water bodies during 2010–2011. Areal fluxes were calculated and, using remote sensing, an estimate of the contribution of aquatic habitats to gaseous transport was derived. Semi-permanent ponds adjacent to the large Guadalquivir estuary acted as mild sinks, whilst temporal wetlands were strong sources of (−0.8 and 36.3 ). Fluxes in semi-permanent streams and ponds changed seasonally; acting as sources in spring-winter and mild sinks in autumn (16.7 and −1.2 ). Overall, Doñana''s water bodies were a net annual source of (5.2 ). Up–scaling clarified the overwhelming contribution of seasonal flooding and allochthonous organic matter inputs in determining regional air-water gaseous transport (13.1 ). Nevertheless, this estimate is about 6 times < local marsh net primary production, suggesting the system acts as an annual net sink. Initial indications suggest longer hydroperiods may favour autochthonous C capture by phytoplankton. Direct anthropogenic impacts have reduced the hydroperiod in Doñana and this maybe exacerbated by climate change (less rainfall and more evaporation), suggesting potential for the modification of C sequestration.  相似文献   

19.
In the Netherlands peat was excavated for fuel until 1950. This gave rise to waterbodies (called turf ponds) which were then colonized by aquatic plants. Succession resulted in different aquatic plant communities and more terrestrialized stages such as floating fens. Nature conservation authorities started to excavate new turf ponds in 1990(ca. 2 ha y–1) with the aim to restore calcareous, mesotraphent ecosystems by totally setting back succession. A sequence of new species was revealed by mapping the aquatic vegetation from 1990 onwards.Chara spp. proved early colonizers, which was not expected because they have not been present in ditches and ponds in the area for the last 20 years. The denseChara vegetation prevents the resuspension of organic soil and contributes to keep the water column nutrient-poor and clear. ability of species such asStratiotes aloides to colonise the ponds from adjacent waterbodies is not possible because no open contact exists between a turf pond and a ditch. Management measures, such as re-introduction, have to be considered if the full-range of aquatic plant communities remains the goal.  相似文献   

20.
The objective of this study was to determine the feasibility of using a designed integrated aquaculture–wetland ecosystem (AWE) for experimental food production and inorganic nitrogen removal from tertiary-treated wastewater. The AWE connected polyculture aquaculture ponds with in-pond aquatic plant systems (water hyacinths, Eichhornia crassipes, and Chinese water spinach, Ipomea aquatica), a solar energy aeration system, and an artificial wetland. Ponds were stocked with hybrid tilapia (Oreochromis mossambicus×O. urolepis hornorum), common carp (Cyprinus carpio), mosquitofish (Gambusia affinis), and red swamp crayfish (Procambarus clarkii), and were flushed weekly with new wastewater at 20%. Fish were fed a 32% protein floating ration at 1% fish body weight per day, and wheat bran was added at 1 mg l−1 when water conductivities exceeded 900 μmhos cm−1. Plants were allowed to grow until they reached approximately 50% of the pond surface area, then maintained at this area by manual harvesting. Pond water quality (temperature, conductivity, pH, oxygen) was monitored twice daily, and weekly water samples were taken for analyses of inorganic nitrogen (ammonia and nitrate-N) in the ponds, wetland, and wetland discharge waters (n=30). Tilapia harvest from three ponds was 1134.5 kg. Fish standing crop biomass increased from 0.16 to 0.21 at stocking to 1.50–2.00 kg m−3 at harvest. Tilapia grew from an average stocking weight of 21 to 362–404 g at harvest but had poor survival (48–64%) due to heavy bird predation. Total food conversion ratios ranged 0.9–1.2. Approximately 70% of the tilapia were marketed live at $2.20 kg−1. An estimated standing crop of 1.4 tons wet weight of Ipomea aquatica grew luxuriantly in one 200-m2 polyculture pond which could be harvested sustainably at 20 kg week−1. Water hyacinths removed approximately 90% of the ammonia and nitrate-N in wastewater, and the wetland removed an additional 7% (total removal was 97% of wastewater input concentrations). Overflow water exiting the wetland had less than 0.4 mg ammonia–nitrogen l−1 and no detectable nitrate–nitrogen. The experimental AWE accomplished aquatic food production and almost complete removal of inorganic nitrogen from wastewater, functioning as a `quartenary' wastewater treatment/food production ecosystem. However, more rigorous experimentation is required to optimize fish- and plant-carrying capacities, nutrient cycles, and testing for bioaccumulation of metals in order for the AWE to be socially and economically relevant. The concept of using tertiary-treated wastewater for aquatic food production may be attractive in the peri-urban areas of many meagcities like Los Angeles, both for fish markets and to stem the growing discharges of wastewaters that are causing coastal pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号