首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present study investigated the effects of aluminum on lipid peroxidation, accumulation of reactive oxygen species and antioxidative defense systems in root tips of wheat (Triticum aestivum L.) seedlings. Exposure to 30 μM Al increased contents of malondialdehyde, H2O2, suproxide radical and Evans blue uptake in both genotypes, with increases being greater in Al-sensitive genotype Yangmai-5 than in Al-tolerant genotype Jian-864. In addition, Al treatment increased the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione reductase (GR) and glutathione peroxidase (GPX), as well as the contents of ascorbate (AsA) and glutathione (GSH) in both genotypes. The increased activities SOD and POD were greater in Yangmai-5 than in Jian-864, whereas the opposite was true for the activities of CAT, APX, MDHAR, GR and GPX and the contents of AsA and GSH. Consequently, the antioxidant capacity in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging activity and ferric reducing/antioxidant power (FRAP) was greater in Jian-864 than in Yangmai-5.  相似文献   

2.
The role of organic acids in aluminum (Al) tolerance has been the object of intensive research. In the present work, we evaluated the roles of organic acid exudation and concentrations at the root tip on Al tolerance of soybean. Exposing soybean seedlings to Al3+ activities up to 4.7 μ M in solution led to different degrees of restriction of primary root elongation. Al tolerance among genotypes was associated with citrate accumulation and excretion into the external media. Citrate and malate efflux increased in all genotypes during the first 6 h of Al exposure, but only citrate efflux in Al-tolerant genotypes was sustained for an extended period. Tolerance to Al was correlated with the concentration of citrate in root tips of 8 genotypes with a range of Al sensitivities (r2=0.75). The fluorescent stain lumogallion indicated that more Al accumulated in root tips of the Al-sensitive genotype Young than the Al-tolerant genotype PI 416937, suggesting that the sustained release of citrate from roots of the tolerant genotype was involved in Al exclusion. The initial stimulation of citrate and malate excretion and accumulation in the tip of all genotypes suggested the involvement of additional tolerance mechanisms. The experiments included an examination of Al effects on lateral root elongation. Extension of lateral roots was more sensitive to Al than that of tap roots, and lateral root tips accumulated more Al and had lower levels of citrate.  相似文献   

3.
Ma B  Gao L  Zhang H  Cui J  Shen Z 《Plant cell reports》2012,31(4):687-696
The effects of aluminum (Al) on root elongation, lipid peroxidation, hydrogen peroxide (H2O2) accumulation, antioxidant levels, antioxidant enzymatic activity, and lignin content in the roots of the Al-tolerant rice variety azucena and the Al-sensitive variety IR64 were investigated. Treatment with Al induced a greater decrease in root elongation and a greater increase in H2O2 and lipid peroxidation as determined by the total thiobarbituric acid-reactive substance (TBARS) level in IR64 than in azucena. Azucena had significantly higher levels of superoxide dismutase, ascorbate peroxidase, glutathione reductase, and glutathione peroxidase GSH POD activity compared with IR64. The concentrations of reduced glutathione (GSH) and ascorbic acid, and the GSH/GSSG ratio (reduced vs. oxidized glutathione) were also higher in azucena than in IR64 in the presence of Al. The addition of 1 mg/L GSH improved root elongation in both varieties and decreased H2O2 production under Al stress. By contrast, treatment with buthionine sulfoximine, a specific inhibitor of GSH synthesis, decreased root elongation in azucena and stimulated H2O2 production in both varieties. Moreover, Al treatment significantly increased the cytoplasmic activity of peroxidase (POD) as well as the levels of POD bound ionically and covalently to cell walls in the Al-sensitive variety. The lignin content was also increased. Treatment with exogenous H2O2 also increased the lignin content and decreased root elongation in IR64. These results suggest that Al induces lignification in the roots of Al-sensitive rice varieties, probably through an increase in H2O2 accumulation.  相似文献   

4.
The effects of single or combined stress of aluminum (Al) and chromium (Cr) on plant growth, root dehydrogenase, oxidative stress and antioxidative enzymes were studied using two barley genotypes differing in Al tolerance in a hydroponic experiment. Al or Cr stress decreased plant growth, lowered root dehydrogenase activity and caused oxidative damage, as characterized by increased MDA and H2O2 contents. Under Al or Cr stress, the activities of antioxidative enzymes, including superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT), were dramatically increased in plant tissues. Gebeina, an Al-tolerant genotype, had less oxidative damage than Shang 70-119, an Al-sensitive genotype. The extent of oxidative damage induced by Cr varied with the pH of the culture solution, with lower pH values (4.0) being more severe than higher pH values (6.5). The combination of Cr and Al caused a further decrease in plant growth, a decrease in root dehydrogenase activity and an increase in MDA and H2O2 contents as well as the activities of antioxidative enzymes. There was also a marked difference between the two barley genotypes in the extent of increased antioxidative enzyme activity under the Cr and Al stresses.  相似文献   

5.
铝胁迫对黑大豆膜脂过氧化及抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
以耐酸型黑大豆(丹波黑大豆,简称RB)和酸敏感型黑大豆(简称SB)为材料,在水培条件下分析不同浓度的铝胁迫对这两种黑大豆叶和根膜脂过氧化和抗氧化酶活性的影响。结果显示:RB的铝耐受能力比SB强;在不同浓度铝胁迫下RB叶和根中的H2O2和MDA上升幅度低于SB,SB的叶和根中膜脂过氧化程度大于RB。在不同浓度铝胁迫下,RB叶和根中的SOD活性与SB差异不大,而CAT活性在RB和SB的叶和根中均被诱导显著升高,POD活性在RB叶和根中有下降趋势但仍然显著高于SB。因此,与酸敏感型的黑大豆相比,耐酸型黑大豆在铝胁迫下具有较强的保护酶活性,使其膜脂受氧化损伤的程度较低,从而表现出更强的耐铝胁迫能力。  相似文献   

6.
In the current work, we investigated the effects of dopamine, an neurotransmitter found in several plant species on antioxidant enzyme activities and ROS in soybean (Glycine max L. Merrill) roots. The effects of dopamine on SOD, CAT and POD activities, as well as H2O2, O2•−, melanin contents and lipid peroxidation were evaluated. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), without or with 0.1 to 1.0 mM dopamine, in a growth chamber (25°C, 12 h photoperiod, irradiance of 280 μmol m−2 s−1) for 24 h. Significant increases in melanin content were observed. The levels of ROS and lipid peroxidation decreased at all concentrations of dopamine tested. The SOD activity increased significantly under the action of dopamine, while CT activity was inhibited and POD activity was unaffected. The results suggest a close relationship between a possible antioxidant activity of dopamine and melanin and activation of SOD, reducing the levels of ROS and damage on membranes of soybean roots.  相似文献   

7.
We investigated the role of selenium (Se) against aluminium (Al) stress in ryegrass by evaluating the growth responses and the antioxidant properties of plants cultured hydroponically with Al (0 or 0.2 mM) and selenite (0–10 µM Se). Al addition significantly reduced the yield and length of shoots and roots, and most Al was accumulated in the roots. Al also enhanced lipid peroxidation and activated the peroxidase (POD), ascorbate peroxidase (APX) and superoxide dismutase (SOD) enzymes in the roots. Se application up to 2 µM improved root growth and steadily decreased thiobarbituric acid reactive substances (TBARS) accumulation in plants treated with 0 and 0.2 mM Al. However, above 2 µM, Se induced stress in plants grown with or without Al. Significant changes in antioxidant enzymes activities were also found as a result of the added Se. At low Se addition levels POD was activated, whereas APX activity decreased irrespective of added Al. Furthermore, Se supplied up to 2 µM greatly decreased root SOD activity in Al-stressed plants. Our study provides evidence that Se alleviated the Al-induced oxidative stress in ryegrass roots through the enhancement of the spontaneous dismutation of superoxide radicals and the subsequent activation of POD enzyme.  相似文献   

8.
铝胁迫对不同小麦SOD、CAT、POD活性和MDA含量的影响   总被引:16,自引:0,他引:16  
方法:采用室内水培试验法,研究了不同浓度铝胁迫对耐性不同的几种基因型小麦叶片和根系内SOD、CAT、POD活性和MDA含量的影响。结果:表明铝胁迫条件下导致小麦叶片和根系的3种酶活性在一定范围内随胁迫强度的增加而上升,重度胁迫下会有所下降。这说明SOD、POD、CAT活性的提高与维持是植物耐铝胁迫的重要生理基础。另外,耐铝品种变化不显著,始终维持在比较稳定的活性水平,这可能与铝诱导的有机酸分泌有关,敏感性品种的酶活性在胁迫下会有所下降。而MDA含量在轻度胁迫下变化不明显,在重度胁迫下才会有明显变化,其含量的变化与小麦的耐铝性也有着密切的关系。  相似文献   

9.
Effects of exogenous nickel (Ni: 10 and 200 μM) on growth, mitotic activity, Ni accumulation, H2O2 content and lipid peroxidation as well as the activities of various antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GSH-Px) were investigated in wheat roots. A considerable Ni accumulation in the roots occurred at both the concentrations. Although Ni at 10 μM did not have any significant effect on root growth, it strongly inhibited the root growth at 200 μM. Mitotic activity in the root tips was not significantly affected by exposure of the seedlings to 10 μM Ni; however, it was almost completely inhibited at 200 μM treatment. Ni stress did not result in any significant changes in CAT and APX activities as well as lipid peroxidation. However, H2O2 concentration increased up to 82% over the control in the roots of seedlings exposed to 200 μM Ni. There was a significant decline in both SOD (50%) and GSH-Px (20–30%) activities in the roots when the seedlings were treated with 200 μM Ni. The results indicated that a strong inhibition of wheat root growth caused by Ni stress was not due to enhanced lipid peroxidation, but might be related to the accumulation of H2O2 in root tissue.  相似文献   

10.
Pigeonpea [Cajanus cajan (L.) Millsp.] is a waterlogging-sensitive legume crop. We studied the effect of waterlogging stress on hydrogen peroxide (H2O2) content, lipid peroxidation and antioxidant enzyme activities in two pigeonpea genotypes viz., ICPL-84023 (waterlogging resistant) and MAL-18 (waterlogging susceptible). In a pot experiment, waterlogging stress was imposed for 6 days at early vegetative stage (20 days after sowing). Waterlogging treatment significantly increased hydrogen peroxide accumulation and lipid peroxidation, which indicated the extent of oxidative injury posed by stress conditions. Enzyme activities of peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) increased in pigeonpea roots as a consequence of waterlogged conditions, and all the enzyme activities were significantly higher in waterlogged ICPL-84023 than in MAL-18. POX activity was the maximum immediately after imposing stress, therefore, it was suggested to be involved in early scavenging of H2O2, while rest of the enzymes (CAT, APX, SOD and PPO) were more important in late responses to waterlogging. Present study revealed that H2O2 content is directly related to lipid peroxidation leading to oxidative damage during waterlogging in pigeonpea. Higher antioxidant potential in ICPL-84023 as evidenced by enhanced POX, CAT, APX, SOD and PPO activities increased capacity for reactive oxygen species (ROS) scavenging and indicated relationship between waterlogging resistance and antioxidant defense system in pigeonpea.  相似文献   

11.
The effect of aluminium (Al) on seedlings of two rice cultivars, Pusa Basmati and Vikas was investigated after different hours of exposure to 80 mol/L of external Al supply. With increasing time of exposure, the growing seedlings readily absorbed Al and its localization was greater in roots than shoots. Prolonged exposure to Al intensified lipid peroxidation, changed the activities of SOD and peroxidase and caused DNA damage. However, differential responses were observed between the seedlings of two rice cultivars under Al stress. A close inverse relationship existed between decreased root growth and increased Al accumulation, lipid peroxidation, SOD, peroxidase activities and DNA damage. The results demonstrate that roots are the major sites of Al localization and accumulation of Al promoted oxygen free radicals mediated peroxidation of membranes as evidenced by increased MDA levels and the activities of SOD and peroxidase. Our results for the first time showed that Al can cause DNA damage in rice.  相似文献   

12.
The essential role of 6-benzylaminopurine (BA) in plant tissue culture has been widely known; however, physiological and biochemical mechanisms behind BA requirement have not been fully understood yet. BA may have an important role on callus growth by regulating antioxidant enzyme activities and acting as an effective free radical scavenger. To test this hypothesis, the impact of exogenous BA concentrations on antioxidative system in Vitis vinifera L. cv. ‘Bogazkere’ callus was investigated under in vitro conditions. Relative fresh weight growth (RFWG) of calli, total phenolics (TP) content, endogenous hydrogen peroxide (H2O2), malondialdehyde (MDA), proline concentrations, percentage of electrolyte leakage (EL), and some of the antioxidant enzyme activities; such as superoxide dismutase (SOD), and guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were measured. Inhibitory effect of high concentrations of BA on antioxidant enzyme activities and RFWG was found. In the presence of BA at 0.1 mg L−1, SOD, POD, and APX activities decreased, while CAT activity increased in comparison with the controls. Exogenous BA treatments higher than 0.1 mg L−1 resulted in an increase in cellular TP, H2O2, MDA, proline contents, and percentage of EL, while RFWG of calli decreased. Based on the findings, it may be concluded that only 0.1 mg L−1 BA concentration combined with NAA could play a direct role in reducing the level of free radicals and phenolic production associated with proliferation capacity of grape cells under in vitro conditions. Furthermore, cytokinin was effective in the antioxidative enzyme system, lipid peroxidation, and electrolyte leakage.  相似文献   

13.
低温胁迫对麻竹叶片和根系抗性生理指标的影响   总被引:3,自引:0,他引:3  
采用室内人工低温处理,研究了麻竹(Dendrocalamus latiflorus)叶片及根部质膜透性、丙二醛、可溶性蛋白、可溶性糖含量,超氧化物歧化酶(SOD)、过氧化物酶(POD)活性和膜脂脂肪酸组成的变化,寻找与竹类植物耐寒性关系最密切的抗性生理指标。结果表明:低温预处理(8℃)15d后,麻竹叶片中可溶性糖、可溶性蛋白含量、POD活性显著提高,根部可溶性糖含量、POD活性显著升高;低温胁迫处理(-2℃)72h后,经低温预处理的麻竹叶片可溶性糖、可溶性蛋白质含量、SOD、POD活性显著高于未经低温预处理,而质膜透性显著低于未经低温预处理,但膜脂过氧化程度显著高于-2℃处理前;经低温预处理的麻竹根部SOD、POD活性及膜脂不饱和脂肪酸相对含量显著高于未经低温预处理,而质膜透性、膜脂过氧化程度较-2℃处理前无显著差异。说明剧烈降温对麻竹生理特征造成严重影响,叶片通过提高可溶性蛋白、可溶性糖含量,维持较高的POD活性以减轻低温伤害;根系则通过维持较高的SOD、POD活性以减轻低温下膜脂过氧化水平,并通过提高膜脂不饱和脂肪酸比例降低质膜透性来抵御低温对膜的伤害。  相似文献   

14.
15.
The phytotoxic effects of aluminum and the mechanisms of genetically-based Al tolerance have been widely investigated, as reported in many papers and reviews. However, investigations on many Al-sensitive and Al-resistant species demonstrate that Al phytotoxicity and Al-resistance mechanisms are extremely complex phenomena. The objective of the present study was to analyze the effects of aluminum on the activity of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). Also was evaluated the lipid peroxidation, H2O2 content, levels of ascorbic acid (ASA), non-protein thiols (NPSH) and Al content in three genotypes of oat, Avena sativa L. (UFRGS 930598, UFRGS 17, and UFRGS 280). The genotypes were grown in different concentrations of Al ranging from 90 to 555???M for 5?days. The antioxidant system was unable to overcome toxicity resulting in negative effects such as lipid peroxidation and H2O2 content in UFRGS 930598. The results showed that UFRGS 930598 was the most sensitive genotype. UFRGS 17 and UFRGS 280 were more resistant to Al toxicity. These results suggest that UFRGS 17 has mechanisms of external detoxification and UFRGS 280 has mechanisms of internal detoxification. The different behavior of enzymatic and non-enzymatic antioxidants of the genotypes showed that aluminum resistance in UFGRS 17 and UFRGS 280 may be related to oxidative stress.  相似文献   

16.
Superior effectiveness of Mg over Ca in alleviating Al rhizotoxicity cannot be accounted for by predicted changes in plasma membrane Al3+ activity. The influence of Ca and Mg on the production and secretion of citrate and malate, and on Al accumulation by roots was investigated with soybean genotypes Young and PI 416937 which differ in Al tolerance. In the presence of a solution Al3+ activity of 4.6 microM, citrate and malate concentrations of tap root tips of both genotypes increased with additions of either Ca up to 3 mM or Mg up to 50 microM. Citrate efflux rate from roots exposed to Al was only enhanced with Mg additions and exceeded malate efflux rates by as much as 50-fold. Maximum citrate release occurred within 12 h after adding Mg to solution treatments. Adding 50 microM Mg to 0.8 mM CaSO4 solutions containing Al3+ activities up to 4.6 microM increased citrate concentration of tap root tips by 3- to 5-fold and root exudation of citrate by 6- to 9-fold. Plants treated with either 50 microM Mg or 3 mM Ca had similar reductions in Al accumulation at tap root tips, which coincided with the respective ability of these ions to relieve Al rhizotoxicity. Amelioration of Al inhibition of soybean root elongation by low concentrations of Mg in solution involved Mg-stimulated production and efflux of citrate by roots.  相似文献   

17.
Aluminium tolerance in maize is mainly due to more efficient Al exclusion. Nonetheless, even in tolerant varieties Al can gain access into the cells. Detoxification by binding to strong organic ligands should therefore play a role also in plants with high Al exclusion capacity. To test this hypothesis in this study the concentrations of soluble, free and bound, phenolics were analyzed in roots of two maize varieties differing in Al tolerance. Exposure for 24 h to 50 μM Al in nutrient solution strongly inhibited root elongation in the sensitive variety 16 × 36, but not in the Al-tolerant variety Cateto. Cateto accumulated about half the concentration of Al in roots than 16 × 36 (analysis performed after root desorption with citrate). Roots of Al-tolerant Cateto contained higher concentrations of caffeic acid, catechol and catechin than roots of the sensitive variety. Exposure to Al induced the accumulation of taxifolin in roots of both varieties. However, Al-tolerant Cateto accumulated about twice the concentration than Al-sensitive 16 × 36 of this pentahydroxyfavonol. The molar ratio for phenolics with catecholate groups to Al was about unity in roots of Cateto, while in those of 16 × 36 the ratio was ten times lower. Both the fact that these phenolics are strong ligands for Al and their high antioxidant and antiradical activity suggest that these compounds may provide protection against the Al fraction that is able to surpass the exclusion mechanisms operating in the tolerant maize variety.  相似文献   

18.
Inhibition of root elongation and modification of membrane properties are sensitive responses of plants to aluminium. The present paper reports on the effect of AI on lipid peroxidation and activities of enzymes related to production of activated oxygen species. Soybean seedlings (Glycine max L. cv. Sito) were precultured in solution culture for 3–5 days and then treated for 1–72 h with Al (AICI3) concentrations ranging from 10 to 75 μM at a constant pH of 4.1. In response to Al supply, lipid peroxidation in the root tips (< 2 cm) was enhanced only after longer durations of treatment. Aluminium-dependent increase in lipid peroxidation was intensified by Fe2+ (FeSO4). A close relationship existed between lipid peroxidation and inhibition of root-elongation rate induced by Al and/or Fe toxicity and/or Ca deficiency. Besides enhancement of lipid peroxidation in the crude extracts of root tips due to Al, the activities of superoxide dismutase (EC 1.15.1.1) and peroxidase (EC 1.11.1.7) increased, whereas catalase (EC 1.11.1.6) activity decreased. This indicates a greater generation of oxygen free radicals and related tissue damage. The results suggest that lipid peroxidation is part of the overall expression of Al toxicity in roots and that enhanced lipid peroxidation by oxygen free radicals is a consequence of primary effects of Al on membrane structure.  相似文献   

19.
The effect of salinity on the antioxidative system of root mitochondria and peroxisomes of a cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species L. pennellii (Lpa) was studied. Salt stress induced oxidative stress in Lem mitochondria, as indicated by the increased levels of lipid peroxidation and H(2)O(2). These changes were associated with decreased activities of superoxide dismutase (SOD) and guaiacol peroxidases (POD) and contents of ascorbate (ASC) and glutathione (GSH). By contrast, in mitochondria of salt-treated Lpa plants both H(2)O(2) and lipid peroxidation levels decreased while the levels of ASC and GSH and activities of SOD, several isoforms of ascorbate peroxidase (APX), and POD increased. Similarly to mitochondria, peroxisomes isolated from roots of salt-treated Lpa plants exhibited also decreased levels of lipid peroxidation and H(2)O(2) and increased SOD, ascorbate peroxidase (APX), and catalase (CAT) activities. In spite of the fact that salt stress decreased activities of antioxidant enzymes in Lem peroxisome, oxidative stress was not evident in these organelles.  相似文献   

20.
The aim of this work was to investigate the balance between the activities of ascorbate peroxidase (APX) and phenol peroxidases (POD) and cowpea root growth in response to dehydration and salt stress. Root growth and indicators of oxidative response were markedly changed in response to salinity and dehydration. Salt treatment strongly inhibited root elongation, which was associated with an increase in lignin content and a significant decrease in the concentrations of apoplastic hydrogen peroxide (H2O2) and ascorbate. In conditions of extreme salinity, cytosol–APX activity was significantly decreased. In contrast, cell-wall POD activity was greatly increased, whereas lipid peroxidation was unchanged. These results indicate that POD could be involved in both H2O2 scavenging and the inhibition of root elongation under high salinity. In contrast, dehydration stimulated primary root elongation and increased lipid peroxidation and apoplastic ascorbate content, but it did not change APX and POD activities or H2O2 concentration. When cowpea roots were subjected to salinity followed by dehydration, the water and pressure potentials were decreased, and lipid peroxidation was markedly increased, highlighting the additive nature of the inhibitory effects caused by salt and dehydration. The proline concentration was markedly increased by dehydration alone, as well as by salt followed by dehydration, suggesting a possible role for proline in osmotic adjustment. Salinity and dehydration induce contrasting responses in the growth and morphology of cowpea roots. These effects are associated with different types of oxidative modulation involving cytosolic-APX and cell-wall POD activities and apoplast H2O2 and ascorbate levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号