首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Several lines of evidence suggest that ovarian hormones influence glucose homeostasis, although their exact role in humans has not been clearly defined. In the present study, we sought to test the hypothesis that ovarian hormones regulate glucose homeostasis by examining the effect of pharmacologically induced ovarian hormone deficiency on glucose disposal and insulin secretion. Young, healthy women with regular menstrual patterns were studied during the follicular and luteal phases of their cycle at baseline and after 2 mo of treatment with gonadotropin-releasing hormone agonist (GnRHa; n = 7) or placebo (n = 6). Using hyperglycemic clamps, in combination with stable isotope-labeled (i.e., (13)C and (2)H) glucose tracers, we measured glucose disposal and insulin secretion. Additionally, we assessed body composition and regional fat distribution using radiologic imaging techniques as well as glucoregulatory hormones. Ovarian hormone suppression with GnRHa did not alter body composition, abdominal fat distribution, or thigh tissue composition. There was no effect of ovarian suppression on total, oxidative, or nonoxidative glucose disposal expressed relative to plasma insulin level. Similarly, no effect of ovarian hormone deficiency was observed on first- or second-phase insulin secretion or insulin clearance. Finally, ovarian hormone deficiency was associated with an increase in circulating adiponectin levels but no change in leptin concentration. Our findings suggest that a brief period of ovarian hormone deficiency in young, healthy, eugonadal women does not alter glucose disposal index or insulin secretion, supporting the conclusion that ovarian hormones play a minimal role in regulating glucose homeostasis. Our data do, however, support a role for ovarian hormones in the regulation of plasma adiponectin levels.  相似文献   

2.
Ghrelin affects not only growth hormone secretion but also nutrient utilization and metabolic hormone secretion in humans and experimental animals. The effects of ghrelin on plasma metabolic hormone and metabolite levels in domestic herbivores remain unclear despite the fact that the physiological characteristics of nutrient digestion and absorption imply specific responses to ghrelin. Therefore, the effects of ghrelin on plasma glucose, pancreatic hormones and cortisol concentrations were investigated in Holstein dairy cattle in various physiological states. Ghrelin (0.3 nmol/kg) or placebo (2% bovine serum albumin in saline) was intravenously injected in pre-ruminant calves (pre-rumen function), adult non-lactating (functional rumen) and lactating cows (functional rumen and lactation), and plasma glucose, insulin, glucagon and cortisol concentrations were then determined. Ghrelin injection increased plasma glucose concentrations in adult cows, especially in lactating cows. No hyperglycemic response was observed in pre-ruminant calves. A transient rise of insulin and glucagon levels was distinctively found in lactating cows in response to the ghrelin administration. Ghrelin injection decreased the insulin level in pre-ruminant calves. Ghrelin increased cortisol secretion independently of the physiological state. The results of the present study suggest that the effects of ghrelin on plasma glucose and pancreatic hormone levels may reflect differences in the physiological states of dairy cattle.  相似文献   

3.
The role of hypophysis in the regulation mechanism of the secretion of gut glucagon immunoreactivity (gut GI) that was measured using C-terminal specific glucagon antiserum after pancreatectomy, and gut glucagon-like immunoreactivity (gut GLI) that was obtained by subtracting GI from total glucagon-like immunoreactivity (total GLI) which was measured using non-specific glucagon antiserum, was investigated in depancreatized dogs. Plasma glucose, gut GI and gut GLI levels were found to increase in totally depancreatized dogs. The former two showed a significant decrease after hypophysectomy, and were reversed by the hypophysis-transplantation, while gut GLI was not affected either by hypophysectomy or hypophysis-transplantation. Intramuscular injections of human growth hormone (HGH) or adrenocorticotropic hormone-Z (ACTH-Z) to depancreatized-hypophysectomized dogs had no effect on plasma glucose level or gut GI. It is concluded that hypophysis may promote the secretion of gut GI after pancreatectomy, but not of gut GLI. Gut GI seems to regulate plasma glucose level after pancreatectomy. However, the precise regulation mechanism of gut GI by the hypophysial hormone after pancreatectomy is not clarified yet.  相似文献   

4.
Leptin is an adipocyte-derived hormone participating in the regulation of food intake and energy balance. Its secretion from fat cells is potentiated by insulin and by substrates providing ATP, whereas factors increasing cAMP level attenuate hormone release stimulated by insulin and glucose. The present experiments were aimed to determine the effect of cAMP on leptin secretion stimulated by glucose, alanine or leucine in the presence of insulin. Moreover, the effect of protein kinase A inhibition on leptin secretion was tested. To stimulate leptin secretion, isolated rat adipocytes were incubated for 2 h in the buffer containing 5 mmol/l glucose, 10 mmol/l alanine or 10 mmol/l leucine, all in the presence of 10 nmol/l insulin. Inhibition of protein kinase A (PKA) by H-89 (50 micromol/l) slightly enhanced leptin release stimulated by glucose and leucine but not by alanine. Activation of this enzyme by dibutyryl-cAMP (1 mmol/l) substantially restricted leptin secretion stimulated by glucose, alanine and leucine. The inhibitory influence of dibutyryl-cAMP on leptin secretion was totally (in the case of stimulation induced by glucose) or partially (in the case of stimulation by alanine and leucine) suppressed by H-89. These results demonstrate that leptin secretion induced by glucose, alanine and leucine is profoundly attenuated by cAMP in PKA-dependent manner. Therefore, the action of different stimulators of leptin secretion may be restricted by agents increasing the cAMP content in adipocytes. Moreover, it has also been shown that inhibition of PKA evokes the opposite effect and enhances leptin release.  相似文献   

5.
Glucagon hormone is synthesized and released by pancreatic α-cells, one of the islet-cell types. This hormone, along with insulin, maintains blood glucose levels within the physiological range. Glucose stimulates glucagon release at low concentrations (hypoglycemia). However, the mechanisms involved in this secretion are still not completely clear. Here, using experimental calcium time series obtained in mouse pancreatic islets at low and high glucose conditions, we propose a glucagon secretion model for α-cells. Our model takes into account that the resupply of releasable granules is not only controlled by cytoplasmic Ca2+, as in other neuroendocrine and endocrine cells, but also by the level of extracellular glucose. We found that, although calcium oscillations are highly variable, the average secretion rates predicted by the model fall into the range of values reported in the literature, for both stimulated and non-stimulated conditions. For low glucose levels, the model predicts that there would be a well-controlled number of releasable granules refilled slowly from a large reserve pool, probably to ensure a secretion rate that could last for several minutes. Studying the α-cell response to the addition of insulin at low glucose, we observe that the presence of insulin reduces glucagon release by decreasing the islet Ca2+ level. This observation is in line with previous work reporting that Ca2+ dynamics, mainly frequency, is altered by insulin. Thus, the present results emphasize the main role played by Ca2+ and glucose in the control of glucagon secretion by α-cells. Our modeling approach also shows that calcium oscillations potentiate glucagon secretion as compared to constant levels of this cellular messenger. Altogether, the model sheds new light on the subcellular mechanisms involved in α-cell exocytosis, and provides a quantitative predictive tool for studying glucagon secretion modulators in physiological and pathological conditions.  相似文献   

6.
Ahima RS 《Cell metabolism》2006,3(5):301-302
The hormone ghrelin regulates secretion of growth hormone and energy homeostasis. Sun et al (2006), in this issue of Cell Metabolism, demonstrate that ghrelin inhibits insulin secretion. Deletion of ghrelin increased basal insulin level, enhanced glucose-stimulated insulin secretion, and improved peripheral insulin sensitivity. These effects were not related to changes in food intake or weight, suggesting ghrelin has unique actions on key components of glucose homeostasis.  相似文献   

7.
The AA. have investigated the relationship between the secretion of GH and diabetic angiopathy a group of 17 subjects with chemical diabetes during a standard dexamethasone os i.v. glucose test. The results show that functional subclinical microangiopathy was present in the majority of the diabetics studied, who also showed an exaggerated growth hormone response to glucose. Thus, these results suggest that a positive correlation exists between alterations in the secretion of growth hormone and the development of diabetic microangiopathy.  相似文献   

8.
Four normal volunteers underwent a control insulin tolerance test (ITT) and an insulin tolerance test (ITT) after two days administration of the serotonin antagonist cyproheptadine (Cypro). Cypro administration resulted in an 81 +/- 11.4% (M +/- SEM) reduction in cortisol secretion and a 73 +/- 15.1% reduction in growth hormone (GH) secretion. Despite the reduction in hypoglycemia-induced cortisol and GH secretion, there was a similar decline and recovery of plasma glucose in the control ITT and the ITT after Cypro administration. Although previous studies indicate that normal basal levels of cortisol and growth hormone are needed for normla counter-regulation after insulin-induced hypoglycemia, augmented secretion of these hormones is probably not essential for this response. Hypoglycemia-induced increases in epinephrine and glucagon, secretion may contribute to the restoration of the normal plasma glucose concentration after insulin-induced hypoglycemia.  相似文献   

9.
To determine the pathogenesis of carbohydrate intolerance associated with gonadal dysgenesis, plasma glucose, insulin, glucagon, and growth hormone responses to oral glucose and intravenous tolbutamide, arginine and insulin were evaluated in 21 nonobese patients, 7-19 years old. Glucose intolerance was present in 9 of 21 nonobese patients (42.8%). Insulin levels, the area under the insulin curve after oral glucose and intravenous tolbutamide and the insulin to glucose ratio were significantly greater in patients than in controls (p less than 0.005). The decrease in plasma glucose following intravenous tolbutamide was significantly less in patients than in controls (p less than 0.05) despite insulin levels which were greater than in controls (p less than 0.05). After intravenous insulin, plasma glucose fell significantly less in patients than in controls (p less than 0.01). Plasma glucagon levels and the area under the glucagon curve after oral glucose and arginine infusion were significantly greater in patients than in controls (p less than 0.005 and p less than 0.01, respectively). The increase in glucagon after insulin-induced hypoglycemia was significantly less in patients than in controls (p less than 0.025). Fasting and stimulated growth hormone levels and the mean 24-hour growth hormone concentration were similar in patients and controls. These results indicate that glucose intolerance occurs frequently in gonadal dysgenesis and is associated with normal or increased insulin secretory responses. These abnormalities are probably due to insulin resistance and hyperglucagonemia. The decrease in insulin action does not appear to result from excessive growth hormone secretion or treatment with anabolic steroids or estrogen-progesterone medications.  相似文献   

10.
C Kuhn  K Albright  R Francis 《Life sciences》1991,49(19):1427-1434
Corticotropin releasing factor (CRF) both stimulates ACTH secretion from the pituitary and inhibits secretion of growth hormone (GH) in adult rats through actions in the CNS. The purpose of the present study was to evaluate these pituitary and central actions of CRF in neonatal rats, in which the hypothalamo- pituitary adrenal (HPA) axis is relatively hypo-functional. The results of this study show that central or peripheral administration of CRF evokes a marked dose-related rise in serum corticosterone in 6-day old rats. The same doses of CRF stimulate, rather than inhibit GH secretion. These results suggest that CRF has unique central actions early in ontogeny.  相似文献   

11.
The effects of administration of glucose orally and tolbutamide or arginine intravenously on insulin and glucagon secretion and blood glucose level were studied in normal and thiamine-deficient rats. In thiamine deficiency, insulin secretion and glucose tolerance were impaired during glucose ingestion. Tolbutamide decreased the blood glucose level in both control and thiamine-deficient rats but its stimulatory effect on insulin secretion was minimal in thiamine-deficient rats unlike the control animals. Arginine did not alter substantially the blood glucose or insulin in thiamine-deficient rats, whereas it increased the insulin level in control rats. The fasting plasma glucagon level was high in thiamine deficiency. Tolbutamide increased the plasma glucagon in control rats, but did so only marginally in thiamine-deficient rats. Arginine also increased the glucagon secretion throughout the period of study in control rats. In thiamine-deficient rats the glucagon secretion was pronounced only after 20 min of arginine administration. These results suggest that an unimpaired glucose metabolism is a prerequisite to induce proper insulin secretion. Only proper insulin secretion can check the glucagon secretion rather than the increased glucose level. Hypoglycemia can induce glucagon secretion independent of the insulin level.  相似文献   

12.
The influence of different blood glucose concentrations on the arginine (30 g/30 min i.v.) and TRH (400 micrograms i.v.) induced release of growth hormone and prolactin was studied in six male type II-diabetic patients. Blood glucose concentrations were clamped at euglycaemic (4-5 mmol/l) or hyperglycaemic (12-18 mmol/l) levels by means of an automated glucose-controlled insulin infusion system. The response of growth hormone to arginine, and irregular spikes in growth hormone concentrations following TRH seen in the euglycaemic state were suppressed during hyperglycaemia. The suppression of the arginine-induced release of growth hormone by hyperglycaemia was observed both with and without concomitant administration of exogenous insulin. The rise in serum prolactin concentrations in response to arginine was unaffected by hyperglycaemia, whereas the TRH-induced release of prolactin was suppressed. Since arginine induces the release of growth hormone and prolactin via the hypothalamus, while TRH acts at the pituitary level, the glycaemic state appears to exert a modulatory effect on the secretion of growth hormone and prolactin in type II-diabetics at both locations.  相似文献   

13.
D. C. Sigee 《Protoplasma》1976,90(3-4):333-341
Summary The ligule ofSelaginella kraussiana shows active incorporation of tritiated glucose in the central region; particularly into the Golgi system, but also into endoplasmic reticulum, mitochondria and cell periphery.Two hours chase in unlabelled glucose reveals a small amount of cell wall formation but most of the label remains in the Golgi bodies. The results suggest that the Golgi system in the mature ligule has the capacity to synthesise some complex carbohydrate, but is relatively inactive in its secretion. This is discussed in relation to the ontogeny and phyllogeny of the ligule.  相似文献   

14.
The influence of a short-term treatment with acetylsalicylic acid (ASA 3,2 g/daily), an inhibitor of endogenous prostaglandin synthesis, on plasma glucose, glucagon and growth hormone responses to insulin-induced hypoglycemia, has been investigated in seven subjects. ASA caused a slight but significant reduction in basal glucose levels, but did not alter the pattern of glucagon and growth hormone secretion following hypoglycemia. On the basis of these results, it is hypothesized that endogenous prostaglandins are not implicated in the response of pancreatic alfa-cell to hypoglycemia.  相似文献   

15.
The secretion of insulin in response to glucose and the changes in the B cell at the ultrastructural level were studied in rat pancreas perfused at pH 7.4 and 7.8 with different concentrations of glucose. Raising the extracellular pH from 7.4 to 7.8 significantly inhibits glucose-induced insulin secretion. Coincidentally, morphometric studies showed significant evidences of low secretory activity in B cells from pancreas submitted to high glucose stimulation under alkalosis, namely lower number of emiocytotic figures and microtubules as well as a decrease in the volume density of the granular endoplasmic reticulum and the Golgi complex. On the other hand, a significant increment in the number of images of granulolysis was also demonstrated. These secretory and ultrastructural results confirm the inhibitory effect of pH 7.8 upon B cell secretory activity induced by glucose. Moreover, they lend further support to the role of intracellular hormone degradation as a regulator of B cell insulin content.  相似文献   

16.
Recent studies of isolated human islets have shown that glucose induces hormone release with repetitive pulses of insulin and somatostatin in antisynchrony with those of glucagon. Since the mouse is the most important animal model we studied the temporal relation between hormones released from mouse islets. Batches of 5-10 islets were perifused and the hormones measured with radioimmunoassay in 30s fractions. At 3mM glucose, hormone secretion was stable with no detectable pulses of glucagon, insulin or somatostatin. Increase of glucose to 20mM resulted in an early secretory phase with a glucagon peak followed by peaks of insulin and somatostatin. Subsequent hormone secretion was pulsatile with a periodicity of 5min. Cross-correlation analyses showed that the glucagon pulses were antisynchronous to those of insulin and somatostatin. In contrast to the marked stimulation of insulin and somatostatin secretion, the pulsatility resulted in inhibition of overall glucagon release. The cytoarchitecture of mouse islets differs from that of human islets, which may affect the interactions between the hormone-producing cells. Although indicating that paracrine regulation is important for the characteristic patterns of pulsatile hormone secretion, the mouse data mimic those of human islets with more than 20-fold variations of the insulin/glucagon ratio. The data indicate that the mouse serves as an appropriate animal model for studying the temporal relation between the islet hormones controlling glucose production in the liver.  相似文献   

17.
Metabolic control of beta-cell function   总被引:5,自引:0,他引:5  
  相似文献   

18.
Luteinizing hormone (LH) secretory patterns were characterized in adult male and female rats exposed to ethanol during the last week of fetal life. Gonadectomized fetal alcohol exposed (FAE) males and females had significantly reduced plasma LH titers as compared to those of pair-fed (PF) controls. The phasic afternoon LH secretory response to estrogen and progesterone priming was also significantly reduced in FAE females. These differences do not appear to be a result of altered pituitary sensitivity to luteinizing hormone releasing hormone (LHRH), since the infusion of LHRH resulted in an equal response in PF and FAE females. Subsequent characterization of the episodic pattern of LH secretion in FAE males revealed significantly reduced mean LH level as well as a decreased pulse amplitude and frequency when compared to PF males. Taken together, these data indicate that some of the central mechanisms controlling pituitary LH secretion are altered by prenatal exposure to alcohol.  相似文献   

19.
This study investigates the relationship between serum hormone levels and morphometrics during ontogeny in olive baboons (Papio hamadryas anubis) and sooty mangabeys (Cercocebus atys), to test hypotheses about the endocrine regulation of species size differences. First, we expect that levels of hormones and binding proteins predict size change during ontogeny in both species. Second, a high level of integration among the hormones and binding proteins analyzed is expected, with the implication that they act in combination to influence the development of body size and shape. Utilizing a mixed longitudinal sample, we compare change in 18 different measurements, which reflect overall size growth as well as growth in length and circumference, with levels of six growth-related hormones and binding proteins. We examine the relationship between hormone and binding protein levels and morphometrics, using multivariate analyses and "arithmetically-estimated" velocity curves of hormones, binding proteins, to characterize how the endocrine factors analyzed relate to growth. Results suggest that levels of these endocrine factors can be used to predict local and overall growth during ontogeny and that integration between multiple hormone axes is indicated. While important for growth in both species, ontogenetic changes in hormone and binding protein levels are more tightly correlated with changes in morphometric measurements in baboons than mangabeys. These results have important implications for understanding why some smaller-bodied species have higher absolute growth-related hormone levels than larger-bodied species.  相似文献   

20.
The effects of lowered O2 tension on insulin secretion and changes in cellular energy parameters were investigated in isolated rat pancreatic islets perifused with buffers equilibrated with 21, 9, 5, and 1% oxygen and containing 5 mM glucose. Decreasing the external [O2] reduced the amount of insulin released in response to 16 mM glucose, 20 mM alpha-ketoisocaproic acid, and 40 mM KCl. Secretion elicited by high glucose or KCl had declined significantly at 9% oxygen, whereas that caused by alpha-ketoisocaproic acid became inhibited below 5% O2. Lowering the oxygen tension also decreased the ability of islets to respond with a rise in [ATP]/[ADP] upon stimulation with metabolic secretagogues. This reduction in the evoked increase in the nucleotide ratios paralleled the inhibition of stimulated insulin secretion. Addition of 2 mM amytal markedly decreased the islet energy level and eliminated the secretory response to 16 mM glucose. The results suggest that enhancement of B-cell energy production and a consequent rise in [ATP] (or [ATP]/[ADP]) are a necessary event for the hormone release elicited by high glucose and alpha-ketoisocaproic acid. A decrease in temperature inhibited insulin secretion with all three secretagogues tested. The energies of activation were similar for high glucose and KCl-induced secretion, about 20 kcal/mol, but were higher for alpha-ketoisocaproic acid, about 35 kcal/mol. At 28 degrees C, the [ATP]/[ADP] was larger than that at 38 degrees C (8 versus 5) and was not increased further upon addition of 16 mM glucose. It is suggested that a decrease in the rate of energy production at lowered temperatures may contribute to the inhibition of insulin release caused by metabolic secretagogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号