首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hydrogenase was solubilized from the cytoplasmic membrane fraction of betaine-grown Sporomusa sphaeroides, and the enzyme was purified under oxic conditions. The oxygen-sensitive enzyme was partially reactivated under reducing conditions, resulting in a maximal activity of 19.8 μmol H2 oxidized min–1 (mg protein)–1 with benzyl viologen as electron acceptor and an apparent K m value for H2 of 341 μM. The molecular mass of the native protein estimated by native PAGE and gel filtration was 122 and 130 kDa, respectively. SDS-PAGE revealed two polypeptides with molecular masses of 65 and 37 kDa, present in a 1:1 ratio. The native protein contained 15.6 ± 1.7 mol Fe, 11.4 ± 1.4 mol S2–, and 0.6 mol Ni per mol enzyme. The hydrogenase coupled with viologen dyes, but not with other various artificial electron carriers, FAD, FMN, or NAD(P)+. The amino acid sequence of the N-termini of the subunits showed a high degree of similarity to eubacterial membrane-bound uptake hydrogenases. Washed membranes catalyzed a H2-dependent cytochrome b reduction at a rate of 0.18 nmol min–1 (mg protein)–1. Received: 7 September 1995 / Accepted: 4 December 1995  相似文献   

2.
An amperometric detector and an enzymatic reaction were combined for the measurement of l-ascorbic acid. The enzyme cell (containing immobilized ascorbate oxidase) was connected to a flow injection analyzer (FIA) system with a glassy carbon electrode as an amperometric detector. During optimization and measurements two sample injectors were used, one before and one after the enzyme cell, thus eliminating the background interferences. Subtraction of the signal area given in the presence of enzyme from the one given in the absence of enzyme was applied for measuring analyte concentrations and calibration at 400 mV. Analysis capacity of system is 25 samples/hour. The relative standard deviation (RSD) was below 5% (5 times repeated, 400 μmol/L conc.), linearity up to 400 μmol/L, limit of detection (LOD) 5 μmol/L, fitting of calibration curve in 25–400 μmol/L range was R 2 = 0.99.  相似文献   

3.
In this density functional theory study, reaction mechanisms of a co-catalytic binuclear metal center (Zn1–Zn2) containing enzyme leucine aminopeptidase for two different metal bridging nucleophiles (H2O and –OH) have been investigated. In addition, the effects of the substrate (l-leucine-p-nitroanilide → l-leucyl-p-anisidine) and metal (Zn1 → Mg and Zn2 → Co, i.e., Mg1–Zn2 and Mg1–Co2 variants) substitutions on the energetics of the mechanism have been investigated. The general acid/base mechanism utilizing a bicarbonate ion followed by this enzyme is divided into two steps: (1) the formation of the gem-diolate intermediate, and (2) the cleavage of the peptide bond. With the computed barrier of 17.8 kcal/mol, the mechanism utilizing a hydroxyl nucleophile was found to be in excellent agreement with the experimentally measured barrier of 18.7 kcal/mol. The rate-limiting step for reaction with l-leucine-p-nitroanilide is the cleavage of the peptide bond with a barrier of 17.8 kcal/mol. However, for l-leucyl-p-anisidine all steps of the mechanism were found to occur with similar barriers (18.0–19.0 kcal/mol). For the metallovariants, cleavage of the peptide bond occurs in the rate-limiting step with barriers of 17.8, 18.0, and 24.2 kcal/mol for the Zn1–Zn2, Mg1–Zn2, and Mg1–Co2 enzymes, respectively. The nature of the metal ion was found to affect only the creation of the gem-diolate intermediate, and after that all three enzymes follow essentially the same energetics. The results reported in this study have elucidated specific roles of both metal centers, the nucleophile, indirect ligands, and substrates in the catalytic functioning of this important class of binuclear metallopeptidases.  相似文献   

4.
5.
Methyl parathion hydrolase (MPH) from a methyl parathion-degrading Burkholderia cepacia indigenous to Thailand was purified to apparent homogeneity by three steps of column chromatography using Resource S, Sephadex G100, and Octyl Sepharose 4FF columns. Its molecular mass was determined to be 35 kDa, and the pI to be 8.5. The recombinant plasmid pGT1, containing the MPH-encoding gene, mpdB, cloned into pGEX-4T-2 was over-expressed in Escherichia coli as GST-MPH fusion protein. The recombinant MPH was purified to homogeneity by a single step, using GSTPrep FF affinity column, with the molecular mass identical to that of the native enzyme. The purified enzyme had the specific activity of about 1,600 unit mg−1 protein and the yield of about 75%, a 39-fold increase in recovery compared to that of the native enzyme. The optimal temperature and pH were 25°C and 9.0, respectively. The MPH was stable, with its activity unchanged for 48 h at 4°C, and reduced to 50% after 5 h and to 45% after 48 h at 25°C. The enzyme activity remained 80–90% after 8–15 h at pH 6–7. Cd2+, Co2+, and Zn2+ ions at the concentration of 1 mM enhanced the activity; while sodium dodecyl sulfate (SDS), dithiothreitol (DTT) and ethylenediaminetetraacetate (EDTA) reduced it. The enzyme also showed cross reactivity with other insecticides within the organophosphate group, and the kinetic parameters for individual substrates were investigated. Since MPH from B. cepacia has wide potential applications in detoxification and detection of organophosphate compounds, this study provides important basis for its future use.  相似文献   

6.
Summary Dextran (MW=7.2×104), carboxymethylcellulose (MW=2.5×104, substitution degree=0.7) and Ficoll (MW=6.9×104) were derivatized with 1,4-diaminobutane and covalently attached to bovine pancreatic trypsin through a transglutaminase-catalysed reaction. The conjugates contained an average of 0.7–1.8 mol of polymers per mol of protein, and retained about 61–82% of the original esterolytic activity of trypsin. The optimum pH for trypsin was shifted to alkaline values after enzymatic glycosidation. The thermostability of the polymer–enzyme complexes was increased in about 13.7–50.0 °C over 10 min incubation. The prepared conjugates were also more stable against thermal incubation at different temperatures ranging from 50 °C to 60 °C. In comparison with native trypsin, the enzyme-polymer complexes were about 22- to 48-fold more resistant to autolytic degradation at pH 9.0. Transglutaminase-catalysed glycosidation also protected trypsin against denaturation in surfactant media, with 9- to 68–fold increased half-life times in the presence of 0.3% (w/v) sodium dodecylsulfate.  相似文献   

7.
Tian C  Liu T  Fang S  Du X  Jia C 《Molecular biology reports》2012,39(5):5269-5276
Oxidative damage promotes atherosclerosis. SOD2 is an important antioxidant enzyme. A case–control study and a meta-analysis were performed to assess the association of C47T polymorphism in SOD2 gene with premature, late-onset and overall coronary artery disease (CAD) risk. A hospital-based case–control study was conducted with 269 premature CAD cases, 278 late-onset CAD cases and 299 healthy controls. Polymerase chain reaction (PCR) and Pyrosequencing were used to detect the polymorphism. Multinomial logistic regression model was performed to estimate odds ratio (OR) with 95% confidence intervals (CIs) and adjust potential confounders. A meta-analysis was performed using eight outcomes including our result. Fixed or random effect pooled measure was selected on the basis of homogeneity test among studies. Heterogeneity among studies was evaluated using I 2. Meta-regression was used to explore potential sources of between-study heterogeneity. Publication bias was estimated using Peters’s linear regression test. In our case–control study, compared with the TT as the reference, the mutant genotype of CC + TC was significantly associated with a reduced premature CAD risk both in univariate (OR = 0.60, 95% CI = 0.41–0.87) and multivariate (OR = 0.59, 95% CI = 0.40–0.87) logistic regressions, but not with late-onset CAD risk. After excluding one article that deviated from Hardy–Weinberg equilibrium in controls, this meta-analysis showed a significant association of the C allele with reduced risk of CAD in dominant (FEM: OR = 0.69, 95% CI = 0.61–0.78), recessive (OR = 0.64, 95% CI = 0.50–0.82), and codominant (FEM: OR = 0.73, 95% CI = 0.65–0.80) models. Our study suggested that the mutant genotype of CC + TC was significantly associated with a reduced CAD risk.  相似文献   

8.
Thermostable Mn-dependent catalases are promising enzymes in biotechnological applications. In the present study, a Mn-containing superoxide dismutase of the hyperthermophilic Thermus thermophilus HB27 had been purified and characterized by a two-stage ultrafiltration process after being expressed in E. coli. The enzyme was highly stable at 90°C and retained 57% activity after heat treatment at 100°C for 1 h. The native form of the enzyme was determined as a homotetramer by analytical size exclusion chromatography and sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The final purified enzyme had an isoelectric point of 6.2 and a high α-helical content of 70%, consistent with the theoretical values. This showed that the purified SOD folded with a reasonable secondary structure.  相似文献   

9.
A superoxide dismutase (SOD) was characterized from Beauveria bassiana, a fungal entomopathogen widely applied to insect control. This 209-aa enzyme (BbSod2) showed no more than 71% sequence identity to other fungal Mn-SODs, sharing all conserved residues with the Mn-SOD family and lacking a mitochondrial signal. The SOD activity of purified BbSod2 was significantly elevated by Mn2+, suppressed by Cu2+ and Zn2+ but inhibited by Fe3+. Overexpressing the enzyme in a BbSod2-absent B. bassiana strain enhanced its SOD activity (107.2 ± 6.1 U mg−1 protein) by 4–10-fold in different transformants analyzed. The best BbSod2-transformed strain with the SOD activity of 1,157.9 ± 74.7 U mg−1 was 93% and 61% more tolerant to superoxide-generating menadione in both colony growth (EC50 = 2.41 ± 0.03 versus 1.25 ± 0.01 mM) and conidial germination (EC50 = 0.89 ± 0.06 versus 0.55 ± 0.07 mM), and 23% more tolerant to UV-B irradiation (LD50 = 0.49 ± 0.02 versus 0.39 ± 0.01 J cm−2). Its virulence to Spodoptera litura larvae was enhanced by 26% [LT50 = 4.5 (4.2–4.8) versus 5.7 (5.2–6.4) days]. Our study highlights for the first time that the Mn2+-cofactored, cytosolic BbSod2 contributes significantly to the virulence and stress tolerance of B. bassiana and reveals possible means to improving field persistence and efficacy of a fungal formulation by manipulating the antioxidant enzymes of a candidate strain.  相似文献   

10.
Since there are no data about the protective role of selenium (Se) against cadmium (Cd)-induced oxidative damage in early life, we studied the effect of Se supplementation on antioxidative enzyme activity and lipid peroxidation (through thiobarbituric acid reactive substances; TBARS) in suckling Wistar rats exposed to Cd. Treated animals received either Se alone for 9 days (8 μmol, i.e., 0.6 mg Se as Na2SeO3 kg−1 b.w., daily, orally; Se group), Cd alone for 5 days (8 μmol, i.e., 0.9 mg Cd as CdCl2 kg−1 b.w., daily, orally; Cd group), or pre-treatment with Se for 4 days and then co-treatment with Cd for the following 5 days (Se + Cd group). Our results showed that selenium supplementation, with and without Cd, increased SOD activity in the brain and kidney, but not in the liver and GSH-Px activity across all tissues compared to control rats receiving distilled water. Relative to the Cd group, Se + Cd group had higher kidney and brain SOD and GSH-Px activity (but not the liver), while in the liver caused increased and in the brain decreased TBARS level. These results suggest that Se stimulates antioxidative enzymes in immature kidney and brain of Cd-exposed rats and could protect against oxidative damage.  相似文献   

11.
The well-studied cytosolic Cu,Zn-superoxide dismutase (SOD) protects against reperfusion injury, although its short (6 min) plasma half-life and negative charge create undesirable pharmacokinetics. We have designed, cloned, and expressed a genetic variant of SOD with altered pharmacological properties. A fusion gene consisting of the entire coding region of human SOD followed by a positively charged carboxy-terminal (C-terminal) “tail” of eight glycine and six arginine residues was constructed. The tail was modeled after the extracellular SOD (EC-SOD) C-terminal 26-amino acid basic peptide. This EC-SOD tail binds to heparin-like proteoglycans on cell surfaces and contributes to the enzyme’s very long (30 h) plasma clearance time. After expression inEscherichia coli, the mutant enzyme was purified and characterized. No differences in specific activity or UV absorption spectrum between the mutant and the native enzyme were found. The thermal stability of the fusion protein was greater than that of native SOD. Although native SOD has no affinity for heparin, the modified enzyme bound to a heparin-agarose column. A “designer” SOD able to bind to cell surfaces may aid in the prevention of superoxide-mediated endothelial damage.  相似文献   

12.
The effects of mild water stress induced by polyethylene glycol (PEG) on the activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR)] and their isoenzymes and the antioxidant content [ascorbate (ASC) and glutathione (GSH)] of different subcellular compartments were investigated in maize. For each subcellular compartment, the activities of almost all isoenzymes resolved on native PAGE increased after 4–12 h of exposure to water stress and declined after that, showing concomitant changes with the activities of their respective total enzymes and the antioxidant content. For each subcellular compartment, at least one isoform for the detected antioxidant enzymes was resolved, but different kinds of antioxidant isoenzymes in different subcellular compartments had different responses to water stress. The relative contribution of Fe–SOD in chloroplasts and Mn–SOD in mitochondria was higher than that in other subcellular compartments. However, in apoplasts the activities of Mn–SOD and Fe–SOD declined during the process of water stress, in contrast to those located in other subcellular compartments. The results from the activities of antioxidant (iso)enzymes demonstrated that all antioxidant enzymes in all subcellular compartments were mobilized in cooperation and responded synchronously under mild water stress, with the same trend of changes in their activity. This indicated their orchestrated effects in scavenging reactive oxygen species (ROS) in situ. Additionally, the results suggested that mitochondria and apoplasts, responding most actively, might be targets for improving plant performance under mild water stress.  相似文献   

13.
Fibrous poly(styrene-b-glycidylmethacrylate) brushes were grafted on poly(styrene–divinylbenzene) (P(S–DVB)) beads using surface-initiated atom transfer radical polymerization. Tetraethyldiethylenetriamine (TEDETA) ligand was incorporated on P(GMA) block. The ligand attached beads were used for reversible immobilization of lipase. The influences of pH, ionic strength, and initial lipase concentration on the immobilization capacities of the beads have been investigated. Lipase adsorption capacity of the beads was about 78.1 mg/g beads at pH 6.0. The K m value for immobilized lipase was about 2.1-fold higher than that of free enzyme. The thermal, and storage stability of the immobilized lipase also was increased compared to the native lipase. It was observed that the same support enzyme could be repeatedly used for immobilization of lipase after regeneration without significant loss in adsorption capacity or enzyme activity. A lipase from Mucor miehei immobilized on styrene–divinylbenzene copolymer was used to catalyze the direct esterification of butyl alcohol and butyric acid.  相似文献   

14.
The aim of this study was to evaluate the possible protective effects of caffeic acid phenethyl ester (CAPE) against cholestatic oxidative stress and liver damage in the common bile duct ligated rats. A total of 18 male Sprague–Dawley rats were divided into three groups: control, bile duct ligation (BDL) and BDL + received CAPE; each group contain 6 animals. The rats in CAPE treated groups were given CAPE (10 μmol/kg) once a day intraperitoneally (i.p) for 2 weeks starting just after BDL operation. The changes demonstrating the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, inflammatory cell infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with CAPE attenuated alterations in liver histology. The proliferating cell nuclear antigen and the activity of TUNEL in the BDL were observed to be reduced with the QE treatment. The application of BDL clearly increased the tissue hydroxyproline (HP) content, malondialdehyde (MDA) levels and decreased the antioxidant enzyme (superoxide dismutase (SOD), glutathione peroxidase (GPx)) activities. CAPE treatment significantly decreased the elevated tissue HP content, and MDA levels and raised the reduced of SOD, and GPx enzymes in the tissues. The data indicate that CAPE attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of CAPE is associated with antioxidative potential.  相似文献   

15.
A gene from Withania somnifera (winter cherry), encoding a highly stable chloroplastic Cu/Zn superoxide dismutase (SOD), was cloned and expressed in Escherichia coli. The recombinant enzyme (specific activity of ~4,200 U mg−1) was purified and characterized. It retained ~90 and ~70% residual activities after 1 h at 80 and 95°C, respectively. At 95°C, thermal inactivation rate constant (K d) of the enzyme was 2.46 × 10−3 min−1 and half-life of heat inactivation was 4.68 h. The enzyme was stable against a broad pH range (2.5–11.0). It also showed a high degree of resistance to detergent, ethanol and protease digestion. This recombinant Cu/Zn SOD could therefore have useful applications.  相似文献   

16.
The cytoplasmic Cu/Zn-superoxide dismutase (SOD1) represents along with catalase and glutathione peroxidase at the first defense line against reactive oxygen species in all aerobic organisms, but little is known about its distribution in developing embryos. In this study, the expression patterns of SOD1 mRNA in mouse embryos were investigated using real-time RT-PCR and in situ hybridization analyses. Expression of SOD1 mRNA was detected in all embryos with embryonic days (EDs) 7.5–18.5. The signal showed the weakest level at ED 12.5, but the highest level at ED 15.5. SOD1 mRNA was expressed in chorion, allantois, amnion, and neural folds at ED 7.5 and in neural folds, notochord, neuromeres, gut, and primitive streak at ED 8.5. In central nervous system, SOD1 mRNA was expressed greatly in embryos of EDs 9.5–11.5, but weakly in embryos of ED 12.5. At EDs 9.5–12.5, the expression of SOD1 mRNA was high in sensory organs such as tongue, olfactory organ (nasal prominence) and eye (optic vesicle), while it was decreased in ear (otic vesicle) after ED 10.5. In developing limbs, SOD1 mRNA was greatly expressed in forelimbs at EDs 9.5–11.5 and in hindlimbs at EDs 10.5–11.5. The signal increased in liver, heart and genital tubercle after ED 11.5. In the sections of embryos after ED 13.5, SOD1 mRNA was expressed in various tissues and especially high in mucosa and metabolically active sites such as lung, kidney, stomach, and intestines and epithelial cells of skin, whisker follicles, and ear and nasal cavities. These results suggest that SOD1 may be related to organogenesis of embryos as an antioxidant enzyme.  相似文献   

17.
Effects of polyethylene glycol (PEG)-induced water stress on the activities of total leaf superoxide dismutase (SOD) and chloroplast SOD (including thylakoid-bound SOD and stroma SOD) are described in white clover (Trifolium repens L.) grown in solution culture from rooted cuttings. Both leaf SOD and chloroplast SOD activities were markedly enhanced with increasing concentration of PEG stress, generating osmotic potentials around the roots 0, −0.5, −1.0, −1.5 MPa. The effects increased with time up to 72 h. Chloroplast Fe-containing SOD represented about 30% of the total leaf SOD activity in the control plants and a significant increase in chloroplast SOD activity was found during the stress period. This accounted for about 35.5–71.1% of the total leaf SOD activity. The proportion of chloroplast SOD in total leaf SOD not only increased with the decreasing of osmotic potential, but also increased with incubation time. Furthermore, the increase in thylakoid-bound SOD activity was much higher than that of stroma SOD in chloroplast of plants under water stress. The enhanced chloroplastic SOD activity, especially thylakoid-bound SOD activity, demonstrated in Trifolium repens suggests that Fe-SOD located in chloroplasts play a more important role than cytosolic Cu/Zn-containing SODs in scavenging O2 .  相似文献   

18.
A superoxide dismutase (SOD) was purified from Spirulina platensis sonicate. The SOD was purified to homogeneity (48-fold and 0.24% yield) through ammonium sulphate precipitation and DEAE-52 anion exchange chromatography. The SOD from S. platensis appeared to be a homodimer with a molecular weight of 30 kDa and a subunit MW of 15 kDa as determined by both native polyacrylamide gel electrophoresis and mass spectrometry. The enzyme activity was stable at pH 6.5–10.0 and 50 °C. Using group-specific chemical modifying reagents, the amino acids arginine, histidine, tryptophan, tyrosine and aspartic acid were identified to be essential for S. platensis SOD activity. The amino acid composition was found to lack methionine and cysteine. The inhibition of activity by H2O2 suggests that the enzyme may be an iron containing SOD.  相似文献   

19.
A number of nutritional factors influencing growth and glucose oxidase (EC 1.1.3.4) production by a newly isolated strain of Penicillium pinophilum were investigated. The most important factors for glucose oxidase production were the use of sucrose as the carbon source, and growth of the fungus at non-optimal pH 6.5. The enzyme was purified to apparent homogeneity with a yield of 74%, including an efficient extraction step of the mycelium mass at pH 3.0, cation-exchange chromatography and gel filtration. The relative molecular mass (M r) of native glucose oxidase was determined to be 154 700 ± 4970, and 77 700 for the denatured subunit. Electron-microscopic examinations revealed a sandwich-shaped dimeric molecule with subunit dimensions of 5.0 × 8.0 nm. Glucose oxidase is a glycoprotein that contains tightly bound FAD with an estimated stoichiometry of 1.76 mol/mol enzyme. The enzyme is specific for d-glucose, for which a K m value of 6.2 mM was determined. The pH optimum was determined in the range pH 4.0–6.0. Glucose oxidase showed high stability on storage in sodium citrate (pH 5.0) and in potassium phosphate (pH 6.0), each 100 mM. The half-life of the activity was considerably more than 305 days at 4 °C and 30 °C, and 213 days at 40 °C. The enzyme was unstable at temperatures above 40 °C in the range pH 2.0–4.0 and at a pH above 7.0. Received: 18 November 1996 / Received revision: 3 March 1997 / Accepted: 7 March 1997  相似文献   

20.
The phaZ Sex gene encoding poly(3-hydroxybutyrate) depolymerase from Streptomyces exfoliatus has been successfully cloned and expressed in Rhodococcus sp. T104 for the first time. Likewise, the recombinant enzyme was efficiently produced as an extracellular active form and purified to homogeneity by two hydrophobic chromatographic steps. MALDI-TOF analysis showed that the native enzyme is a monomer. Circular dichroism studies have revealed a secondary structure showing 25.6% α-helix, 21.4% β-sheet, 17.1% β-turns, and 35.2% random coil, with a midpoint transition temperature (T m) of 55.8 °C. Magnesium and calcium ions enhanced the enzyme activity, whereas manganese inhibited it. EDTA moderately decreased the activity, and the enzyme was completely deactivated at 3 M NaCl. Chemical modification studies indicated the presence of the catalytic triad serine–histidine–carboxylic acid in the active site. High-performance liquid chromatography (HPLC)–mass spectrometry (MS) analysis of PHB products of enzymatic hydrolysis showed monomers and dimers of 3-hydroxybutyric acid, demonstrating that PHB depolymerase is an exo-hydrolase. Addition of methyl-β-cyclodextrin simultaneously increased the activity as well as preserved the enzyme during lyophilization. Finally, thermoinactivation studies showed that the enzyme is highly stable at 40 °C. All these features support the potential industrial application of this recombinant enzyme in the production of (R)-3-hydroxyalkanoic acid derivatives as well as in the degradation of bioplastics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号