首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode? anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formation of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.  相似文献   

2.
Results are presented from experiments on the implosion of simple and nested wire arrays of different mass and material composition (W and/or Al). The experiments were performed on the S-300 facility (a high-current pulsed power generator with a voltage pulse amplitude of 700 kV, current amplitude of 2.5–3.5 MA, and pulse duration of 100 ns) at the Kurchatov Institute (Moscow). The imploding arrays were recorded using five-frame laser shadowgraphy, three-frame image-tube photography, an optical streak camera, X-ray pinhole cameras with different filters, X-ray polychromator, and X-ray spectrometer on the basis of a convex mica crystal. Laser probing measurements indicate that the current-carrying structure undergoes a fast (over a time shorter than 10 ns) global rearrangement, which manifests itself as the emergence of transparent regions. This effect is presumably related to the grouping of the wires, which carry currents of a few tens of kiloamperes, or to the current filamentation in their common plasma corona. The radiation of liners of different chemical composition in the final compressed state has been investigated. Electric measurements performed in experiments with nested arrays (e.g., with an aluminum outer liner and a tungsten inner liner) indicate that the inner array, which is still at rest, intercepts the electric current from the outer array when the latter penetrates through it. The effect of the “fall” of the outer liner through the inner one in the course of magnetic implosion has been revealed for the first time by analyzing X-ray emission spectra.  相似文献   

3.
Results are presented from measurements of the distributions of the azimuthal magnetic field in aluminum, copper, molybdenum, tungsten and other wire arrays electrically imploded at currents of up to 3 MA in the Angara-5-1 facility. It is shown that the time during which the magnetic field of the current pulse reaches the array axis depends on the material of the wires or wire coating. The current of the precursor formed on the array axis before the implosion of the main load mass is measured. It is shown that the penetration of the load material with the frozen-in magnetic field into a polymer (agar-agar) foam liner is drastically different from that in the case of a wire array. It is found that the rate of current transfer to the array axis is maximum for tungsten wire arrays. The rates of plasma production during implosion of loads made of different materials are compared.  相似文献   

4.
Results are presented from measurements of the azimuthal magnetic field generated during the implosion of double (nested) tungsten wire arrays in the Angara-5-1 facility at currents of ~3 MA. It is found that the inner array affects the current distribution in the interarray space and that there is an optimal mass (an optimal number of wires) of the inner array at which the full width at half-maximum of the soft X-ray pulse (in the photon energy range of >100 eV) is minimal. On the average, double wire arrays provide a better reproductibility, higher power, and shorter duration of the soft X-ray pulse in comparison to single arrays.  相似文献   

5.
Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 МА at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic (V r < V А ) and super-Alfvénic (V r > V А ) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates ?in /?out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh?Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.  相似文献   

6.
The features are studied of plasma production in the initial stage of implosion of hollow cylindrical wire arrays at electric-field growth rates of 1012 V/(cm s). The results are presented from the analysis of both UV emission from the wire plasma and the discharge parameters in the initial stage of the formation of a Z-pinch discharge. It is found that, a few nanoseconds after applying voltage to a tungsten wire array, a plasma shell arises on the wire surface and the array becomes a heterogeneous system consisting of metal wire cores and a plasma surrounding each wire (a plasma corona). As a result, the current switches from the wires to the plasma. A further heating and ionization of the wire material are due primarily to heat transfer from the plasma corona. A model describing the primary breakdown along the wires is created with allowance for the presence of low-Z impurities on the wire surface.  相似文献   

7.
Results are presented from experimental studies of the generation of hard X-ray (HXR) emission with photon energies above 20 keV during the implosion of wire arrays in the Angara-5-1 facility. An analysis of X-ray images of the Z-pinch shows that the dimensions and spatial structures of the emitting regions are different for hard and soft X rays. It is found that the HXR emission peak is delayed with respect to the soft X-ray (SXR) one. The dependence of the HXR power on the material, initial diameter, and mass (implosion time) of the wire array is determined. It is shown that the HXR intensity in the spectral range >50 keV is several orders higher than the emission intensity in the high-energy tail of the SXR spectrum (assuming that this spectrum is thermal). A comparison of the time evolution and spatial localization of the HXR and SXR sources during the implosion of wire arrays indicates the presence of a new superthermal phenomenon that differs qualitatively from the processes determining the peak power of the SXR pulse. Possible mechanisms that can be responsible for the generation of HXR pulses are considered.  相似文献   

8.
Results are presented from experimental studies of the implosion of cylindrical kapron fiber arrays with addition of high- and medium-Z metal wires (tungsten, aluminum). The experiments were carried out on the Angara-5-1 facility at currents of 3–4 MA. The ablation rate in kapron fiber arrays is estimated and compared with that in tungsten wire arrays.  相似文献   

9.
Results are presented from experimental studies of the spatial distribution of the density of matter in the central part of the discharge gap and the formation of the temporal profile of the X-ray power in the course of implosion of quasi-spherical wire arrays at discharge currents of up to 4 MA. The spatial distribution of the X-ray intensity in the central part of the discharge gap and the temporal profile of the X-ray power are used as implosion characteristics of quasi-spherical wire arrays. The quasi-spherical arrays were formed by the radial stretching of unstrained wires of initially cylindrical and conical wire arrays under the action of the electrostatic field. The temporal profile of the output X-ray pulse in the photon energy range of 0.1–1 keV is shown to depend on both the geometrical parameters of the quasi-spherical array and the longitudinal distribution of its mass. It is found that a 40% increase in the wire mass due to deposition of an additional mass in the equatorial region of a quasi-spherical array leads to a 15% increase in the average current radius of the pinch and a 30% decrease in the X-ray yield. Experiments with quasi-spherical arrays made of kapron fibers with deposited Al and Bi conducting layers were also carried out. It is demonstrated that application of such arrays makes it possible to control the profile and duration of the generated X-ray pulse by varying the mass, material, and location of the deposited layer. It is found that deposition of an additional mass in the form of a thin Bi stripe on tungsten wires near the cathode end of the array allows one to mitigate the influence of the cathode zipper effect on the pinch compression and formation of the X-ray pulse in tungsten arrays.  相似文献   

10.
Results are presented from the studies of the magnetic implosion of a tungsten wire liner onto an aluminum wire at currents of 2.0–2.6 MA. The experiments were carried out in the S-300 high-power pulsed facility at the Russian Research Centre Kurchatov Institute. The liner is composed of 50 wires 6 μm in diameter and 1 cm in length, which are equally spaced on a circle 1 cm in diameter. An aluminum wire 120 μm in diameter is positioned at the array axis. The liner implosion was accompanied by the generation of VUV and soft X-ray emission. The parameters of the pinch plasma produced during the liner implosion onto the aluminum wire were determined from the time-resolved spectral measurements by a five-channel polychromator. The ion and electron densities turned out to be equal to n i≈4×1019 cm−3 and n e≈4×1020 cm−3, respectively, and the electron temperature was T e≈40 eV. The radiation energy measured in the range 50–600 eV was 2–10 kJ. The sources of soft X-ray emission in hydrogen-and helium-like aluminum lines were the bright spots and local objects (clouds) formed in the plasma corona at an electron temperature of 200–500 eV and electron density of 1021–1022 cm−3. The possibility of both the generation of an axial magnetic field during the liner implosion and the conversion of the energy of this field into soft X-ray emission is discussed. __________ Translated from Fizika Plazmy, Vol. 28, No. 6, 2002, pp. 514–521. Original Russian Text Copyright ? 2002 by Bakshaev, Blinov, Dan'ko, Ivanov, Klír, Korolev, Kravárik, Krása, Kubeš, Tumanov, Chernenko, Chesnokov, Shashkov, Juha.  相似文献   

11.
Results are presented from experiments on the irradiation of thin aluminum foils by an intense soft X-ray (SXR) source on the basis of the Z-pinch formed during the implosion of a tungsten wire array at the Angara-5-1 facility. The state of the foil target is examined by taking two-dimensional X-ray frames. The expansion velocity of the plasma formed under the action of pulsed SXR emission on the front (irradiated) and back sides of the foil and the glow intensity of aluminum plasma on the back side are found from the spatial distribution of the radiation intensity of the plasma of the irradiated foil. The time at which the foil plasma becomes transparent to Z-pinch radiation is determined from the increase in the intensity of transmitted SXR emission.  相似文献   

12.
The implosion of nested fiber/wire arrays was studied experimentally at the Angara-5-1 facility. The outer array consisted of kapron fibers, while the inner array was made of tungsten wires. The experiments were carried out at a discharge current of 3 MA. Stable compression of the inner array plasma was achieved by increasing the number of fibers in the outer array. In this case, a compact Z-pinch formed at the array axis. Near the pinch, no trailing plasma produced from the high-Z material of the inner array and capable of scattering and reradiating X-ray photons was observed. The trailing edge of the X-ray pulse was found to shorten in the absence of the trailing plasma around the pinch.  相似文献   

13.
New experimental data on the implosion of plasma of nested kapron?tungsten arrays are obtained at the Angara-5-1 facility. The mode of plasma implosion is implemented in which a shock wave region forms in the space between the inner and outer arrays where a transition from the super-Alfvénic (V r > V A ) to sub-Alfvénic (V r < V A ) plasma flow takes place. Specific features of the formation and decay of the shock region are studied using laser shadow imaging and X-ray frame photography. The plasma density in the transition region is estimated. By comparing the experimental data with the results of simulations of quasi-steady implosion of a nested array with allowance for extended plasma production, the physical conditions are determined at which the implosion mode with the formation the shock region takes place. Stable compression of the plasma of the inner array was observed during the implosion of combined nested arrays with a fiber outer array and tungsten inner array. Suppression of magnetic Rayleigh-Taylor instability during the compression of the inner array plasma results in the formation of a compact radiating Z-pinch and generation of a soft X-ray pulse with a peak power of 4 TW and duration of about 5 ns.  相似文献   

14.
Results are presented from experimental studies of the structure of the compressed plasma of a Z-pinch produced during the implosion of a foam-wire load at the current of up to 3 MA. The foam-wire load consisted of two nested cylindrical cascades, one of which was a solid or hollow cylinder made of low-density agar-agar foam, while the other was a wire array. The wall thickness of a hollow foam cylinder was 100–200 μm. The images of the pinch and its spectrum obtained with the help of multiframe X-ray cameras and a grazing incidence spectrograph with a spatial resolution were analyzed. Data on the spatial structure of the emitting regions and the soft X-ray (SXR) spectrum of the Z-pinch in the final stage of compression of a foam-wire load were obtained. The implosion modes characterized by the formation of hot regions during implosion of such loads were revealed. The characteristic scale lengths of the hot regions were determined. It is shown that the energy distribution of SXR photons in the energy range from 80 eV to 1 keV forms the spatial structure of Z-pinch images recorded during the implosion of foam-wire loads. It is revealed that the spectral density of SXR emission in the photon energy range of 300–600 eV from hot Z-pinch regions exceeds the spectral density of radiation from the neighboring Z-pinch regions by more than one order of magnitude. Groups of lines related to the absorption and emission of radiation by atoms and multicharged ions of carbon and oxygen in the outer foam cascade of a foam-wire load were recorded for the first time by analyzing the spatial distribution of the SXR spectra of multicharged ions of the Z-pinch. The groups of absorption lines of ions (C III, O III, O IV, and O VI) corresponding to absorption of SXR photons in the Z-pinch of a tungsten wire array, which served as the inner cascade of a foam-wire load, were identified. The plasma electron temperature measured from the charge composition of carbon and oxygen ions in the outer agar-agar foam cascade was 10–40 eV. During the implosion of foam-wire loads at currents of up to 3 MA, SXR pulses (hν > 100 eV) with a duration of 10 ns and peak power of 3 TW were detected. It is shown that the temporal profile of single-peak and double-peak SXR pulses can be controlled by varying the parameters of the outer and inner cascades of the foam-wire load.  相似文献   

15.
Results are presented from time-integrated measurements of soft X-ray emission from Z-pinches during the implosion of simple and nested wire arrays. The blackening density distribution obtained with the help of a pinhole camera is recalculated into the time-integrated Z-pinch radiance. It is found that, in the case of a simple wire array, up to 70% of the total SXR energy emitted during a discharge is radiated from the axial region, the rest of energy being radiated from plasma jets, whereas in the case of a nested wire array, more than 90% of the SXR energy is radiated from the axial region.  相似文献   

16.
A method is developed for measurements of laser radiation scattering by wires and fibers in different types of imploding arrays in the initial stage of plasma production at discharge currents per wire of up to 2 kA for aluminum arrays and up to 8 kA for tungsten arrays. The experiments were carried out on the Angara-5-1 facility at a current density in the wires of 108 A/cm2 and current growth rate of ~1013 A/s. It is found that the indicatrix of laser radiation reflected from the wires (fibers) in cylindrical and conical arrays is modified at currents of 0.1–10 kA per wire (fiber). The experimental data on the reflection and scattering of laser radiation from wires and fibers are compared with the results of numerical simulations of their electric explosion in vacuum. It is proposed that the change in the reflection indicatrix of laser radiation is caused by the onset of thermal instabilities. The typical size of density and temperature inhomogeneities on the wire surface is in a range of 10–20 μm, which probably results in a transition from specular to diffuse reflection of laser radiation. A simultaneous abrupt (over 2–3 ns) reduction in the reflection intensity from several wires of an array indicates a homogeneous distribution of the discharge current over the irradiated wires. This closes the issue of the quality of the contact between the wires and the electrodes. The obtained experimental information is of considerable importance for the development of numerical codes for simulations of the implosion of wire arrays and the refinement of the wire parameters in the initial stage of plasma production.  相似文献   

17.
The phenomenon of magnetic flux breakthrough into a wire array during its implosion was studied experimentally at the Angara-5-1 facility. It is shown that breakthroughs develop in the final stage of plasma production from the wire material and occur near the initial wire position. The spatial distributions of the azimuthal magnetic field within tungsten, molybdenum, copper, and aluminum wire arrays were studied using magnetic probes. The distributions of the azimuthal magnetic field B φ(z, t) along the array height in different stages of implosion were measured, and the characteristic dimensions of regions with a nonuniform magnetic field that appear during magnetic flux breakthroughs at the outer boundary of the wire array plasma were determined. The dimensions of these regions are compared with those of the regions with depressed plasma radiation observed in frame and time-integrated X-ray images. The dynamics of the distribution B φ(z, t) in regions with a nonuniform magnetic field during breakthroughs of the azimuthal magnetic flux is compared with that of the spatial distribution of pinch radiation in the frame X-ray images in different stages of implosion. The experimental data on the characteristics of spatially nonuniform breakthroughs of the magnetic flux into the wire array are analyzed using the plasma rainstorm model proposed by V.V. Aleksandrov et al. (JETP 97, 745 (2003)). The plasma density in the region of magnetic flux breakthrough is estimated.  相似文献   

18.
Results are presented from experimental studies of the correlation between X-ray and neutron emissions generated in the implosion of a deuteron plasma shell onto an Al wire. The experiments were carried out on the PF-1000 facility at currents of 1.5–1.8 MA. An Al wire 80 μm in diameter and 7–9 cm in length was placed at the end of the inner electrode. During the implosion of the plasma shell, Al K-shell X-rays were first emitted at the dip of the current derivative. After the X-ray pulse, a relatively stable corona with a diameter of 2–3 mm and lifetime of a few hundred nanoseconds formed around the wire. The presence of the wire did not considerably reduce the total neutron yield (at most 1011 neutrons per shot) in comparison to discharges without a wire. As a rule, the intensity of neutron emission was maximal a few tens of nanoseconds after the peak of X-ray emission. A detailed comparison of two shots with low and high neutron yields have shown that the neutron yield depends on the configuration and dynamics of the discharge. The possible influence of the self-generated axial component of the magnetic field on the development of the plasma focus and the acceleration of fast deuterons is discussed.  相似文献   

19.
Results are presented from experimental studies of hard X-ray (HXR) emission in the photon energy range above 20 keV from dense radiating Z-pinch plasmas. The work is aimed at revealing the nature of fast-electron (electron beam) generation during the implosion of cylindrical and conical wire arrays in the Angara-5-1 facility at currents of up to 3 MA. It is found that the plasma implosion zippering caused by the inclination of wires affects the parameters of the HXR pulse emitted during the implosion of a conical array. It is shown that HXR emission correlates well with the decay of the plasma column near the cathode in the stagnation phase. HXR images of the pinch are produced by the bremsstrahlung of fast electrons generated during plasma column decay and interacting with plasma ions and the anode target. It is found that the use of conical arrays makes it possible to control the direction of plasma implosion zippering and the spatiotemporal and energy parameters of the pinch X-ray emission, in particular the X-ray yield. For wire array with diameters of 12 mm and linear masses of 200–400 μg/cm, the current of the fast electron beam is 20 kA and its energy is 60 J, which is about 1/500 of the energy of the main soft X-ray pulse.  相似文献   

20.
Results are presented from measurements of the axial magnetic field during the implosion of tungsten wire arrays in the Angara-5-1 facility at currents of 2.5–4.5 MA. The azimuthal structure of the plasma produced from the wires is examined using the effect of the compression of the axial magnetic flux by this plasma. It is shown that the plasma starts to penetrate into the axial region of the wire array at the very beginning of implosion. A mechanism other than the formation of a closed current-carrying shell is proposed for describing the transfer of the external axial magnetic field to the central region of the array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号