首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct enzymatic procedure for the determination of liver glycogen   总被引:9,自引:0,他引:9  
A method is proposed to measure glycogen content in liver homogenates without extraction and acid hydrolysis of tissue glycogen. Homogenates were treated with amyloglucosidase, which degrades glycogen to glucose, and the glucose was the determined enzymatically by the use of glucose oxidase and peroxidase. The method was shown to yield nearly complete (99%) recoveries of standard glycogen, while 5 hr of acid hydrolysis of standard glycogen were required to obtain comparable recoveries. When compared to an acid hydrolysis method for liver, amyloglucosidase degradation of rat liver glycogen and subsequent determination of glucose resulted in higher values for glycogen content. The amyloglucosidase, glucose oxidase: peroxidase method has the advantage of rapidity, whereas the traditional method consisting of extraction, precipitation, and acid hydrolysis is not only time consuming, but may also be subject to losses of glycogen in each step.  相似文献   

2.
A method for the determination of isolated glycogen was developed. Glucose was released from glycogen with an amyloglucosidase from Rhizopus. The released glucose was determined with glucose oxidase and peroxidase utilizing diammonium 2,2′-azino-di-[3-ethyl-benzthiazoline sulfonate (6)] (ABTS) as a chromogenic substrate. The ABTS method was found to be three times as sensitive as the older o-dianisidine method. For rabbit liver glycogen, the results obtained with amyloglucosidase correlated highly with those obtained by acid hydrolysis.  相似文献   

3.
A new spectrophotometric assay method of xanthine oxidase applicable to the crude tissue homogenate containing uricase was presented in this paper. By adding potassium 2,4-dihydroxy-6-carboxy-1,3,5-triazine (potassium oxonate) (0.1 mm) to the crude xanthine oxidase reaction system, uric acid was stoichiometrically formed from xanthine and detectable allantoin was not formed and the formation of uric acid was not influenced by uricase.Distribution of xanthine oxidase in various rat tissues was measured by this method, and it was shown that the activity was high in the liver, the small intestine, and the spleen. Uricase was shown to distribute mainly in the liver of rats.  相似文献   

4.
Monoclonal antibodies against rat liver mitochondrial phospholipase A2 were used to develop a rapid immunoaffinity chromatography for enzyme purification. The purified enzyme showed a single band upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The sequence of the N-terminal 24 amino acids was determined. This part of the sequence showed only 25% homology with that of rat pancreatic phospholipase A2 but was 96% identical to that of rat platelet and rat spleen membrane-associated phospholipase A2. These enzymes are distinguished from pancreatic phospholipases A2 by the absence of Cys-11. In rat liver phospholipase A2 activity has been reported in various subcellular fractions. All of these require Ca2+ and have a pH optimum in the alkaline region, but little is known about the structural relationship and quantitative distribution of these enzymes. We have investigated these points after solubilization of the phospholipase A2 activity from total homogenates and crude subcellular fractions by extraction with 1 M potassium chloride. Essentially all of the homogenate activity could be solubilized by this procedure indicating that the enzymes occurred in soluble or peripherally membrane-associated form. Gel filtration and immunological cross-reactivity studies indicated that phospholipases A2 solubilized from membrane fractions shared a common epitope with the mitochondrial enzyme. The quantitative distribution of the immunopurified enzyme activity among subcellular fractions followed closely that of the mitochondrial marker cytochrome c oxidase. Rat liver cytosol contained additional Ca2+-dependent and -independent phospholipase activities.  相似文献   

5.
Acid phosphatase in rat liver lysosomal contents, C-APase I, was purified about 5,700-fold over the homogenate with 8.0% recovery, to apparent homogeneity as determined from the pattern on polyacrylamide gel electrophoresis in the presence and in the absence of SDS. The purification procedures included; preparation of crude lysosomal contents, DEAE-Sephacel ion exchange chromatography, hydroxylapatite chromatography, and gel filtration with Sephacryl S-300. The enzyme is composed of three identical subunits with an apparent molecular weight of 48K. The enzyme contains about 11% carbohydrate and the carbohydrate moiety was composed of mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine in a molar ratio of 20:3:11:1. Sialic acid was not detected in the enzyme. Antisera against the purified C-APase I were raised in goat and the C-APase I was rapidly purified with high yield (10%) by using the specific antibodies coupled to Sepharose 6B.  相似文献   

6.
Convenient assays for superoxide dismutase have necessarily been of the indirect type. It was observed that among the different methods used for the assay of superoxide dismutase in rat liver homogenate, namely the xanthine-xanthine oxidase ferricytochromec, xanthine-xanthine oxidase nitroblue tetrazolium, and pyrogallol autoxidation methods, a modified pyrogallol autoxidation method appeared to be simple, rapid and reproducible. The xanthine-xanthine oxidase ferricytochromec method was applicable only to dialysed crude tissue homogenates. The xanthine-xanthine oxidase nitroblue tetrazolium method, either with sodium carbonate solution, pH 10.2, or potassium phosphate buffer, pH 7·8, was not applicable to rat liver homogenate even after extensive dialysis. Using the modified pyrogallol autoxidation method, data have been obtained for superoxide dismutase activity in different tissues of rat. The effect of age, including neonatal and postnatal development on the activity, as well as activity in normal and cancerous human tissues were also studied. The pyrogallol method has also been used for the assay of iron-containing superoxide dismutase inEscherichia coli and for the identification of superoxide dismutase on polyacrylamide gels after electrophoresis.  相似文献   

7.
I Lundquist 《Enzyme》1975,20(4):234-247
The effect of injection of glycogenolytic enzymes on tissue glycogen, blood glucose and plasma insulin was studied in mice. No effects were observed following phosphorylase, whereas the hydrolytic enzymes, alpha-amylase and acid amyloglucosidase depressed liver glycogen. In addition acid amyloglucosidase induced a decrease in blood glucose, a slight elevation of plasma insulin and a marked increase in tolbutamide-stimulated insulin release. At the doses given none of the enzymes affected muscle glycogen. Amyloglucosidase pretreatment markedly enhanced insulin release induced by glibenclamide, leucine, isoleucine, lysine and glucose whereas insulin release stimulated by IPNA, ACTH, glucagon and "CCK-PZ" was unaffected. Injection of acid amyloglucosidase has a profound influence on carbohydrate content and regulation in mice. It is suggested that the dependence or independence of amyloglucosidase activity among the insulin secretagogues tested might reflect different or partially different mechanisms in the process of insulin secretion.  相似文献   

8.
Glucoamylase and glucose oxidase fromAspergillus niger have been purified to homogeneity by chromatography on DEAE-cellulose and the purified enzymes have been used to investigate structural and antigenicity relationships. In structure, glucoamylase and glucose oxidase are glycoproteins containing 14% and 16% carbohydrate. Earlier methylation and reductive -elimination results have shown that glucoamylase has an unusual arrangement of carbohydrate residues, with 20 single mannose units and 25 di-, tri-, or tetrasaccharide chains of mannose, glucose, and galactose, all attached O-glycosidically to serine and threonine residues of the protein moiety. The antigenicity of the glucoamylase has now been found to reside predominantly in the types and arrangement of the carbohydrate chains. Glucose oxidase contains mannose, galactose, and glucosamine in the N-acetyl form in the native enzyme, but the complete structure of the carbohydrate chains has not yet been determined. The antigenicity of this enzyme does not reside in the carbohydrate units, but rather in the polypeptide chains of the two subunits of the enzyme. Glucose oxidase can be dissociated into subunits by mercaptoethanol and sodium dodecyl sulfate treatment, while glucoamylase cannot be dissociated, but undergoes only an unfolding of the polypeptide chain under these conditions. The subunits of glucose oxidase do not react with the anti-glucose oxidase antibodies, but the unfolded molecule and peptide fragments produced from glucoamylase by cyanogen bromide cleavage do react with antiglucoamylase antibodies.  相似文献   

9.
Development of radioimmunoassay for thromboxane B2   总被引:3,自引:0,他引:3  
A simple method for the preparation of rat liver urate oxidase is described. The enzyme was purified from rat liver homogenate by cell fractionation, detergent treatment, alkali treatment, and affinity chromatography on 8-aminoxanthine-bound Sepharose 4B. This enzyme preparation had a specific activity of 9.1 U/mg of protein and was purified about 1000-fold from the liver homogenate. After sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis followed by staining with Coomassie brilliant blue, this preparation yielded one protein band at a position corresponding to a molecular weight of 33,000.  相似文献   

10.
Aldehyde oxidase (AO) and xanthine oxidase (XO) are cytosolic enzymes that have been involved in some pathological conditions and play an important role in the biotransformation of drugs and xenobiotics. The increasing interest in these enzymes demands for a simple and rapid procedure for their purification. This paper describes for the first time a method that allows simultaneous purification of both enzymes from the same batch of rat livers. It involves few steps, is reproducible and offers high enzyme yields with high specific activities. The rat liver homogenate was fractionated by heat denaturation and by ammonium sulphate precipitation to give a crude extract containing both enzymes. This extract was chromatographed on an Hydroxyapatite column that completely separated AO from XO. Further purification of XO by anion exchange chromatography on a Q-Sepharose Fast Flow column resulted in a highly purified (1200-fold) preparation, with a specific activity of 3.64 U/mg and with a 20% yield. AO was purified about 1000-fold at a yield of 15%, with a specific activity of 3.48 U/mg, by affinity chromatography on Benzamidine-Sepharose 6B. The purified enzymes gave single bands of approximately 300 kDa on a polyacrylamide gel gradient electrophoresis and displayed the characteristic absorption spectra of highly purified enzymes.  相似文献   

11.
A rocket immunoelectrophoretic procedure has been developed for the assay of cathepsin D (EC 3.4.23.5) immunoreactive protein, in a 10-100 ng range, directly on crude soluble liver homogenate extracts. By this method, the drop in activity of rat liver cathepsin D effected by repeated doses of cycloheximide, a protein synthesis inhibitor, reflects a parallel change in total enzyme protein content, the specific activity being stable in the course of the treatment. These observations are compatible with the hypothesis that ongoing enzyme degradation, coupled with impaired synthesis, accounts for such a decline of cathepsin D.  相似文献   

12.
Bovine liver mitochondria contain about 10% of the total glyoxalase II activity in the homogenate. Electrophoresis and isoelectric focussing of either crude mitochondrial extract or the purified mitochondrial glyoxalase II resolved the enzyme activity into five forms (pl 6.3, 6.7, 7.1, 7.7, and 7.9). Since bovine liver cytosol contains a single form of glyoxalase II (pl 7.5), at least four forms are exclusively mitochondrial with no counterpart in the cytosol. The relative molecular mass of mitochondrial glyoxalase II is about 23-24 kDa, similar to the cytosolic form. The kinetic constants obtained using S-D-lactoyl, S-acetyl-, S-acetoacetyl-, and S-succinyl-glutathione as substrates are similar to those reported for glyoxalase II from rat liver mitochondria. S-D-Lactoyl- and S-acetoacetyl-glutathione are the best substrates. S-Acetylglutathione is the poorest substrate with respect to both Vmax and Km values.  相似文献   

13.
Monoamine oxidase is assayed in tissue by a colorimetric reaction using horse radish peroxidase and 2,2'-azinodi(ethylbenzthiazoline-6-sulfonic acid to measure H2O2 formed during oxidation of amines. The method has a coefficient of variation of approximately 2.5% and provides results comparable with those of radiometric assay. Monoamine oxidase activities in rat liver mitochondria and crude mitochondrial fraction from brain and with tyramine as a substrate were 18.9 +/- 0.4 and 4.61 +/- 0.15 nmol/min/mg of protein, respectively, using this method. Kinetic parameters of liver and brain monoamine oxidase with various substrates and inhibitors appeared to be the same when determined by either colorimetric or radiometric methods.  相似文献   

14.
Highly purified peroxisomes were obtained from the liver of untreated rats, and rates of peroxisomal beta-oxidation were measured using fatty acyl-CoAs differing in chain length and degree of unsaturation. A 20–24-fold purification of peroxisomes, indicated by the specific activities of the marker enzymes catalase and urate oxidase, respectively, was obtained from crude liver homogenate using differential centrifugation techniques followed by a 30% Nycodenz gradient separation. The use of a 30% Nycodenz gradient in the final step of purification was extremely effective (e.g. 5.5-fold reduction) in removing lysosomal contamination. The rate of peroxisomal beta-oxidation with lauroyl-CoA (C12:0) as substrate was the highest of all fatty acyl-CoAs tested. Butyryl-CoA (C4:0) was not oxidized by purified peroxisomes. In general, as chain length of the fatty acyl-CoAs increased above 12 carbons, the rates of beta-oxidation decreased.  相似文献   

15.
Human liver alpha-L-fucosidase has been purified 6300-fold to apparent homogeneity with 66% yield by a two-step affinity chromatographic procedure utilizing agarose epsilon-aminocaproyl-fucosamine. Isoelectric focusing revealed that all six isoelectric forms of the enzyme were purified. Polyacrylamide gel electrophoresis of the purified alpha-L-fucosidase demonstrated the presence of six bands of protein which all contained fucosidase activity. The purified enzyme preparation was found to contain only trace amounts of seven glycosidases. Quantitative amino acid analysis was performed on the purified fucosidase. Preliminary carbohydrate analysis indicated that only about 1% of the molecule is carbohydrate. Gel filtration on Sepharose 4B indicated an approximate molecular weight for alpha-L-fucosidase of 175,000 +/- 18,000. High speed sedimentation equilibrium yielded a molecular weight of 230,000 +/- 10,000. Sodium dodecyl sulfate polyacrylamide gels indicated the presence of a single subunit of molecular weight, 50,100 +/- 2,500. The enzyme had a pH optimum of 4.6 with a suggested second optimum of 6.5. Apparent Michaelis constants and maximal velocities were determined on the purified enzyme with respect to the 4-methylumbelliferyl and the p-nitrophenyl substrates and were found to be 0.22 mM and 14.1 mumol/mg of protein/min and 0.43 mM and 19.6 mumol/mg of protein/min, respectively. Several salts had little or no effect on fucosidase activity although Ag+ and Hg2+ completely inactivated the enzyme. Antibodies made against the purified fucosidase were dound to be monospecific against crude human liver supernatant fluids and the pure antigen. No cross-reacting material was detected in the crude liver supernatant fluid from a patient who died with fucosidosis.  相似文献   

16.
The cross-points of rat liver peroxisomes, peroxisomal core and the core components were determined by means of cross-partition in two phase systems. The partitions were carried out in the systems containing 6% (w/w) Dextran T 500 and 6% (w/w) polyethyleneglycol 4000 in sodium salts. The same crosspoint, pH 5.6, was obtained in peroxisomal marker enzymes in light mitochondrial fraction of liver homogenate, such as catalase, d-amino acid oxidase and urate oxidase. The cross-point as determined by cross-partition of purified peroxisomal core was 6.7. The cross-points of urate oxidase and framework protein fractions obtained by alkali treatment on the purified core were 7.8 and 4.2, respectively, and the ratio of the proteins of urate oxidase to framework protein was 2:1. The theoretical value of cross-point of the core calculated from the relationship between the cross-point and protein ratio of each component of the core coincided with the experimental value obtained by this method.  相似文献   

17.
The cross-points of rat liver peroxisomes, peroxisomal core and the core components were determined by means of cross-partition in two phase systems. The partitions were carried out in the systems containing 6% (w/w) Dextran T 500 and 6% (w/w) polyethyleneglycol 4000 in sodium salts. The same cross-point, pH 5.6, was obtained in peroxisomal marker enzymes in light mitochondrial fraction of liver homogenate, such as catalase, D-amino acid oxidase and urate oxidase. The cross-point as determined by cross-partition of purified peroxisomal core was 6.7. The cross-points of urate oxidase and framework protein fractions obtained by alkali treatment on the purified core were 7.8 and 4.2, respectively, and the ratio of the proteins of urate oxidase to framework protein was 2 : 1. The theoretical value of cross-point of the core calculated from from the relationship between the cross-point and protein ratio of each component of the core coincided with the experimental value obtained by this method.  相似文献   

18.
The localization of the membrane-associated thiol oxidase in rat kidney was investigated. Fractionation of the kidney cortex by differential centrifugation demonstrated that the enzyme is found in the plasma membrane. The crude plasma membrane was fractionated by density-gradient centrifugation on Percoll to obtain purified brush-border and basal-lateral membranes. Gamma-Glutamyltransferase, alkaline phosphatase and aminopeptidase M were assayed as brush-border marker enzymes, and (Na+ + K+)-stimulated ATPase was assayed as a basal-lateral-membrane marker enzyme. Thiol oxidase activity and distribution were determined and compared with those of the marker enzymes. Its specific activity was enriched 18-fold in the basal-lateral membrane fraction relative to its activity in the cortical homogenate, and its distribution paralleled that of (Na+ + K+)-stimulated ATPase. This association indicates that thiol oxidase is localized in the same fraction as (Na+ + K+)-stimulated ATPase, i.e. the basal-lateral region of the plasma membrane of the kidney tubular epithelium.  相似文献   

19.
Dipeptidyl peptidase IV (EC 3.4.14.5) was solubilized from rat liver plasma membranes with sulphobetaine 14 and purified by successive affinity chromatography on Con A-Sepharose, wheat germ lectin-Sepharose and arginine-Sepharose columns. The specific activity of the final preparation was 49.4 mumol Gly-Pro p-nitroanilide/min per mg protein, representing a 1098-fold purification of the homogenate. SDS-polyacrylamide gel electrophoresis of the arginine-Sepharose eluate showed a single protein band with a molecular weight of 105,000. The isoelectric point was determined to be 3.9 under non-denaturing conditions with sulphobetaine 14. The preparation was free of post-proline cleaving enzyme. The content of aminopeptidase M was 0.2% of the total protein.  相似文献   

20.
Antibodies against purified NADP-isocitrate dehydrogenase from pig liver cytosol and pig heart were raised in rabbits. The purified enzymes from these sources are different proteins, as demonstrated by differences in electrophoretic mobility and absence of crossreactivity by immunotitration and immunodiffusion. The NADP-isocitrate dehydrogenase in the soluble supernatant homogenate fraction from pig liver, kidney cortex, brain and erythrocyte hemolyzate was identical with the purified enzyme from pig liver cytosol, as determined by electrophoretic mobility and immunological techniques. The enzyme in extracts of mitochondria from pig heart, kidney, liver and brain was identical with the purified pig heart enzyme by the same criteria. However, the 'mitochondrial' isozyme was the major component also in the soluble supernatant fraction of pig heart homogenate. The 'cytosolic' isozyme accounted for only 1-2% of total NADP-isocitrate dehydrogenase in pig heart, as determined by separation of the isozymes with agarose gel electrophoresis and immunotitration. The mitochondrial isozyme was also the predominant NADP-isocitrate dehydrogenase in porcine skeletal muscle. The ratio of cytosolic/mitochondrial isozyme for porcine whole tissue extract, determined by immunotitration, was about 2 for liver and 1 for kidney cortex and brain. The distribution of isozymes in cell homogenate fractions from ox and rat tissues corresponded to that observed in organs of porcine origin. The mitochondrial and cytosolic isozymes from ox and rat tissues exhibited crossreactivity with the antibodies against the pig heart and pig liver cytosol enzyme, respectively, and the electrophoretic migration patterns were similar qualitatively to those found for the isozymes in porcine tissues. Nevertheless, there were species specific differences in the characteristics of each of the corresponding isozymes. NAD-isocitrate dehydrogenase was not inhibited by the antibodies, confirming that the protein is distinct from that of either isozyme of NADP-isocitrate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号