首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strains of Escherichia coli O157 isolated from patients with clinical cases of food-borne illness and other sources exhibited wide differences in resistance to high hydrostatic pressure. The most pressure-resistant strains were also more resistant to mild heat than other strains. Strain C9490, a representative pressure-resistant strain, was also more resistant to acid, oxidative, and osmotic stresses than the pressure-sensitive strain NCTC 12079. Most of these differences in resistance were observed only in stationary-phase cells, the only exception being acid resistance, where differences were also apparent in the exponential phase. Membrane damage in pressure-treated cells was revealed by increased uptake of the fluorescent dyes ethidium bromide and propidium iodide. When strains were exposed to the same pressure for different lengths of time, the pressure-sensitive strains took up stain sooner than the more resistant strain, which suggested that the differences in resistance may be related to susceptibility to membrane damage. Our results emphasize the importance of including stress-resistant strains of E. coli O157 when the efficacy of a novel or mild food preservation treatment is tested.  相似文献   

2.
Although the main reservoirs for pathogenic Escherichia coli O157:H7 are cattle and the cattle environment, factors that affect its tenure in the bovine host and its survival outside humans and cattle have not been well studied. It is also not understood what physiological properties, if any, distinguish these pathogens from commensal counterparts that live as normal members of the human and bovine gastrointestinal tracts. To address these questions, individual and competitive fitness experiments, indirect antagonism assays, and antibiotic resistance and carbon utilization analyses were conducted using a strain set consisting of 122 commensal and pathogenic strains. The individual fitness experiments, under four different environments (rich medium, aerobic and anaerobic; rumen medium, anaerobic; and a minimal medium, aerobic) revealed no differences in growth rates between commensal E. coli and E. coli O157:H7 strains. Indirect antagonism assays revealed that E. coli O157:H7 strains more frequently produced inhibitory substances than commensal strains did, under the conditions tested, although both groups displayed moderate sensitivity. Only minor differences were noted in the antibiotic resistance patterns of the two groups. In contrast, several differences between commensal and O157:H7 groups were observed based on their carbon utilization profiles. Of 95 carbon sources tested, 27 were oxidized by commensal E. coli strains but not by the E. coli O157:H7 strains. Despite the observed physiological and biochemical differences between these two groups of E. coli strains, however, the O157:H7 strains did not appear to possess traits that would confer advantages in the bovine or extraintestinal environment.  相似文献   

3.
Several natural isolates of Escherichia coli O157:H7 have previously been shown to exhibit stationary-phase-dependent variation in their resistance to inactivation by high hydrostatic pressure. In this report we demonstrate that loss of the stationary-phase-inducible sigma factor RpoS resulted in decreased resistance to pressure in E. coli O157:H7 and in a commensal strain. Furthermore, variation in the RpoS activity of the natural isolates of O157:H7 correlated with the pressure resistance of those strains. Heterogeneity was noted in the rpoS alleles of the natural isolates that may explain the differences in RpoS activity. These results are consistent with a role for rpoS in mediating resistance to high hydrostatic pressure in E. coli O157:H7.  相似文献   

4.

Background

In spite of Argentina having one of the highest frequencies of haemolytic uraemic syndrome (HUS), the incidence of Escherichia coli O157:H7 is low in comparison to rates registered in the US. Isolation of several non-O157 shiga toxin-producing Escherichia coli (STEC) strains from cattle and foods suggests that E. coli O157:H7 is an uncommon serotype in Argentina. The present study was undertaken to compare the survival rates of selected non-O157 STEC strains under acidic and alcoholic stress conditions, using an E. coli O157:H7 strain as reference.

Results

Growth at 37°C of E. coli O26:H11, O88:H21, O91:H21, O111:H-, O113:H21, O116:H21, O117:H7, O157:H7, O171:H2 and OX3:H21, was found to occur at pH higher than 4.0. When the strains were challenged to acid tolerance at pH as low as 2.5, viability extended beyond 8 h, but none of the bacteria, except E. coli O91:H21, could survive longer than 24 h, the autochthonous E. coli O91:H21 being the more resistant serotype. No survival was found after 24 h in Luria Bertani broth supplemented with 12% ethanol, but all these serotypes were shown to be very resistant to 6% ethanol. E. coli O91:H21 showed the highest resistance among serotypes tested.

Conclusions

This information is relevant in food industry, which strongly relies on the acid or alcoholic conditions to inactivate pathogens. This study revealed that stress resistance of some STEC serotypes isolated in Argentina is higher than that for E. coli O157:H7.  相似文献   

5.
Among food-borne pathogens, some strains could be resistant to hydrostatic pressure treatment. This information is necessary to establish processing parameters to ensure safety of pressure-pasteurized foods (N. Kalchayanand, A. Sikes, C. P. Dunne, and B. Ray, J. Food Prot. 61:425–431, 1998). We studied variation in pressure resistance among strains of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella species at two temperatures of pressurization. Early-stationary-phase cells in 1% peptone solution were pressurized at 345 MPa either for 5 min at 25°C or for 5, 10, or 15 min at 50°C. The viability loss (in log cycles) following pressurization at 25°C ranged from 0.9 to 3.5 among nine L. monocytogenes strains, 0.7 to 7.8 among seven S. aureus strains, 2.8 to 5.6 among six E. coli O157:H7 strains, and 5.5 to 8.3 among six Salmonella strains. The results show that at 25°C some strains of each species are more resistant to pressure than the others. However, when one resistant and one sensitive strain from each species were pressurized at 345 MPa and 50°C, the population of all except the resistant S. aureus strain was reduced by more than 8 log cycles within 5 min. Viability loss of the resistant S. aureus strain was 6.3 log cycles even after 15 min of pressurization. This shows that strains of food-borne pathogens differ in resistance to hydrostatic pressure (345 MPa) at 25°C, but this difference is greatly reduced at 50°C. Pressurization at 50°C, in place of 25°C, will ensure greater safety of foods.  相似文献   

6.
Multidrug-resistant Escherichia coli is one of the most important public health concern worldwide that can be transferred through the food of animal origin to human being causing serious infection. The genetic responsibility of such resistant genes (Plasmids, integrons, and transposons) can be easily transmitted from the resistant strain to another. Therefore, the main objectives of the study is the molecular characterization of the resistant Escherichia coli isolates recovered from food samples and human isolates collected from outpatient clinics, KSA especially the resistance strains against aminoglycoside resistance genes which are responsible for the resistance against gentamicin and the resistance caused β-lactamases genes. Examination of food samples revealed 120 Escherichia coli isolates (22.22%) (30 strains O26: K60, 28 strains O128: K67, 20 strains O111: K58, 18 strains O126: K58, 10 strains O55: K59, 9 strains O86: K61 and 5 strains O157: H7). All the strains were highly resistance to penicillin, amoxicillin-clavulanic and erythromycin with a percentage of 100%, while the resistance to gentamicin, ampicillin, oxytetracycline, chloramphenicol, norfloxacin, trimethoprim, and nalidixic acid were 83%, 75%, 65.3%, 55.8%, 36.5%, 30.7% and 26.9% respectively. On the other hand, 59.6% of tested strains were sensitive to ciprofloxacin. Positive amplification of 896?bp fragments specific for aacC2 genes were observed by PCR designated for the detection of the aminoglycoside resistance genes. Meanwhile, multiplex PCR designed to detect the ampicillin and amoxicillin-clavulanic acid resistant E. coli isolates revealed positive amplification of 516?bp fragments specific for BlaTEM gene with all the resistant strains to ampicillin and amoxicillin-clavulanic acid. Moreover, positive amplification of 392?bp fragments specific for BlaSHV resistant gene were observed with (60.52%) of E. coli isolate. While all the tested strains were negative for amplification of BlaOXA_1.  相似文献   

7.
8.
Exposure to low pH and organic acids in the bovine gastrointestinal tract may result in the induced acid resistance of Escherichia coli O157:H7 and other pathogens that may subsequently contaminate beef carcasses. The effect of acid adaptation of E. coli O157:H7 on the ability of acetic acid spray washing to reduce populations of this organism on beef carcass tissue was examined. Stationary-phase acid resistance and the ability to induce acid tolerance were determined for a collection of E. coli O157:H7 strains by testing the survival of acid-adapted and unadapted cells in HCl-acidified tryptic soy broth (pH 2.5). Three E. coli O157:H7 strains that were categorized as acid resistant (ATCC 43895) or acid sensitive (ATCC 43890) or that demonstrated inducible acid tolerance (ATCC 43889) were used in spray wash studies. Prerigor beef carcass surface tissue was inoculated with bovine feces containing either acid-adapted or unadapted E. coli O157:H7. The beef tissue was subjected to spray washing treatments with water or 2% acetic acid or left untreated. For strains ATCC 43895 and 43889, larger populations of acid-adapted cells than of unadapted cells remained on beef tissue following 2% acetic acid treatments and these differences remained throughout 14 days of 4°C storage. For both strains, numbers of acid-adapted cells remaining on tissue following 2% acetic acid treatments were similar to numbers of both acid-adapted and unadapted cells remaining on tissue following water treatments. For strain ATCC 43890, there was no difference between populations of acid-adapted and unadapted cells remaining on beef tissue immediately following 2% acetic acid treatments. These data indicate that adaptation to acidic conditions by E. coli O157:H7 can negatively influence the effectiveness of 2% acetic acid spray washing in reducing the numbers of this organism on carcasses.  相似文献   

9.
The resistance of Escherichia coli O157:H7 strains ATCC 43895-, 43895-EPS (an exopolysaccharide [EPS]-overproducing mutant), and ATCC 43895+ (a curli-producing mutant) to chlorine, a sanitizer commonly used in the food industry, was studied. Planktonic cells of strains 43895-EPS and/or ATCC 43895+ grown under conditions supporting EPS and curli production, respectively, showed the highest resistance to chlorine, indicating that EPS and curli afford protection. Planktonic cells (ca. 9 log10 CFU/ml) of all strains, however, were killed within 10 min by treatment with 50 μg of chlorine/ml. Significantly lower numbers of strain 43895-EPS, compared to those of strain ATCC 43895-, attached to stainless steel coupons, but the growth rate of strain 43895-EPS on coupons was not significantly different from that of strain ATCC 43895-, indicating that EPS production did not affect cell growth during biofilm formation. Curli production did not affect the initial attachment of cells to coupons but did enhance biofilm production. The resistance of E. coli O157:H7 to chlorine increased significantly as cells formed biofilm on coupons; strain ATCC 43895+ was the most resistant. Population sizes of strains ATCC 43895+ and ATCC 43895- in biofilm formed at 12°C were not significantly different, but cells of strain ATCC 43895+ showed significantly higher resistance than did cells of strain ATCC 43895-. These observations support the hypothesis that the production of EPS and curli increase the resistance of E. coli O157:H7 to chlorine.  相似文献   

10.
Escherichia coli O157:H7 is a human pathogen that is carried and transmitted by cattle. Scotland is known to have one of the highest rates of E. coli O157 human infections in the world. Two hundred ninety-three isolates were obtained from naturally infected cattle and the environment on two farms in the Scottish Highlands. The isolates were typed by pulsed-field gel electrophoresis (PFGE) with XbaI restriction endonuclease enzyme, and 19 different variations in patterns were found. There was considerable genomic diversity within the E. coli O157 population on the two farms. The PFGE pattern of one of the observed subtypes matched exactly with that of a strain obtained from a Scottish patient with hemolytic-uremic syndrome. To examine the stability of an individual E. coli O157 strain, continuous subculturing of a strain was performed 110 times. No variation from the original PFGE pattern was observed. We found three indistinguishable subtypes of E. coli O157 on both study farms, suggesting common sources of infection. We also examined the antibiotic resistance of the isolated strains. Phenotypic studies demonstrated resistance of the strains to sulfamethoxazole (100%), chloramphenicol (3.07%), and at a lower rate, other antibiotics, indicating the preservation of antibiotic sensitivity in a rapidly changing population of E. coli O157.  相似文献   

11.
Despite the wide range of available antibiotics, food borne bacteria demonstrate a huge spectrum of resistance. The current study aims to use natural components such as essential oils (EOs), chitosan, and nano-chitosan that have very influential antibacterial properties with novel technologies like chitosan solution/film loaded with EOs against multi-drug resistant bacteria. Two strains of Escherichia coli O157:H7 and three strains of Listeria monocytogenes were used to estimate antibiotics resistance. Ten EOs and their mixture, chitosan, nano-chitosan, chitosan plus EO solutions, and biodegradable chitosan film enriched with EOs were tested as antibacterial agents against pathogenic bacterial strains. Results showed that E. coli O157:H7 51,659 and L. monocytogenes 19,116 relatively exhibited considerable resistance to more than one single antibiotic. Turmeric, cumin, pepper black, and marjoram did not show any inhibition zone against L. monocytogenes; Whereas, clove, thyme, cinnamon, and garlic EOs exhibited high antibacterial activity against L. monocytogenes with minimum inhibitory concentration (MIC) of 250–400 μl 100?1 ml and against E. coli O157:H7 with an MIC of 350–500 μl 100?1 ml, respectively. Among combinations, clove, and thyme EOs showed the highest antibacterial activity against E. coli O157:H7 with MIC of 170 μl 100?1 ml, and the combination of cinnamon and clove EOs showed the strongest antibacterial activity against L. monocytogenes with an MIC of 120 μl 100?1 ml. Both chitosan and nano-chitosan showed a promising potential as an antibacterial agent against pathogenic bacteria as their MICs were relatively lower against L. monocytogenes than for E. coli O157:H7. Chitosan combined with each of cinnamon, clove, and thyme oil have a more effective antibacterial activity against L. monocytogenes and E. coli O157:H7 than the mixture of oils alone. Furthermore, the use of either chitosan solution or biodegradable chitosan film loaded with a combination of clove and thyme EOs had the strongest antibacterial activity against L. monocytogenes and E. coli O157:H7. However, chitosan film without EOs did not exhibit an inhibition zone against the tested bacterial strains.  相似文献   

12.
A total of 361 Escherichia coli O157 isolates, recovered from humans, cattle, swine, and food during the years 1985 to 2000, were examined to better understand the prevalence of antimicrobial resistance among these organisms. Based on broth microdilution results, 220 (61%) of the isolates were susceptible to all 13 antimicrobials tested. Ninety-nine (27%) of the isolates, however, were resistant to tetracycline, 93 (26%) were resistant to sulfamethoxazole, 61 (17%) were resistant to cephalothin, and 48 (13%) were resistant to ampicillin. Highest frequencies of resistance occurred among swine isolates (n = 70), where 52 (74%) were resistant to sulfamethoxazole, 50 (71%) were resistant to tetracycline, 38 (54%) were resistant to cephalothin, and 17 (24%) were resistant to ampicillin. Based on the presence of Shiga toxin genes as determined by PCR, 210 (58%) of the isolates were identified as Shiga toxin-producing E. coli (STEC). Among these, resistance was generally low, yet 21 (10%) were resistant to sulfamethoxazole and 19 (9%) were resistant to tetracycline. Based on latex agglutination, 189 (52%) of the isolates were identified as E. coli O157:H7, among which 19 (10%) were resistant to sulfamethoxazole and 16 (8%) were resistant to tetracycline. The data suggest that selection pressure imposed by the use of tetracycline derivatives, sulfa drugs, cephalosporins, and penicillins, whether therapeutically in human and veterinary medicine or as prophylaxis in the animal production environment, is a key driving force in the selection of antimicrobial resistance in STEC and non-STEC O157.  相似文献   

13.
Effect of Cattle Diet on Escherichia coli O157:H7 Acid Resistance   总被引:3,自引:0,他引:3       下载免费PDF全文
The duration of shedding of Escherichia coli O157 isolates by hay-fed and grain-fed steers experimentally inoculated with E. coli O157:H7 was compared, as well as the acid resistance of the bacteria. The hay-fed animals shed E. coli O157 longer than the grain-fed animals, and irrespective of diet, these bacteria were equally acid resistant. Feeding cattle hay may increase human infections with E. coli O157:H7.  相似文献   

14.
Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coli O157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 107 or 1010 CFU/strain/animal. The other strains were given only at 1010 CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 107 or 1010 CFU. One of the ETEC strains also persisted when inoculated at 1010 CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 107 CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes of E. coli.  相似文献   

15.
Human disease caused by Escherichia coli O157:H7 is a function of the number of cells that are present at potential sites of infection and host susceptibility. Such infectious doses are a result, in part, of the quantity of cells that are ingested and that survive human host defenses, such as the low-pH environment of the stomach. To more fully understand the kinetics of E. coli O157:H7 survival in gastric fluid, individual E. coli O157:H7 strains were suspended in various media (i.e., saline, cooked ground beef [CGB], and CGB containing a commercial antacid product [CGB+A]), mixed at various proportions with simulated human gastric fluid (SGF), and then incubated at 37°C for up to 4 h. The highest inactivation rate among nine E. coli O157:H7 strains was observed in saline. Specifically, the average survival rates in 100:1 and 10:1 proportions of SGF-saline were −1.344 ± 0.564 and −0.997 ± 0.388 log10 CFU/h, respectively. In contrast, the average inactivation rate for 10 E. coli O157:H7 strains suspended in 10:1 SGF-CGB was −0.081 ± 0.068, a rate that was 12-fold lower than that observed for SGF-saline. In comparison, the average inactivation rate for Shigella flexneri strain 5348 in 100:1 and 10:1 SGF-saline was −8.784 and −17.310, respectively. These latter inactivation rates were 7- to 17-fold higher than those for E. coli O157:H7 strains in SGF-saline and were 4-fold higher than those for E. coli O157:H7 strains in SGF-CGB. The survival rate of E. coli O157:H7 strain GFP80EC increased as the dose of antacid increased from one-half to twice the prescribed dose. A similar trend was observed for the matrix pH over the range of pH 1.6 to 5.7, indicating that pH is a primary factor affecting E. coli O157:H7 survival in SGF-CGB+A. These results can be used in risk assessment to define dose-response relationships for E. coli O157:H7 and to evaluate potential surrogate organisms.  相似文献   

16.
The persistence of Shiga-like toxin producing E. coli (STEC) strains in the agricultural soil creates serious threat to human health through fresh vegetables growing on them. However, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly. Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genetically modified E. coli strains is also not yet assessed. Hence in the present study, the survival pattern of STEC strain (O157-TNAU) was compared with non-pathogenic (MTCC433) and genetically modified (DH5α) strains on different tropical agricultural soils and on a vegetable growing medium, cocopeat under controlled condition. The survival pattern clearly discriminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days) than those compared (60 days). Similarly, among the soils assessed, the red laterite and tropical latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other two strains. The survival data were successfully analyzed using Double-Weibull model and the modeling parameters were correlated with soil physico-chemical and biological properties using principal component analysis (PCA). The PCA of all the three strains revealed that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents of the soil decided the survival of E. coli strains in those soils and cocopeat. The present research work suggests that the survival of O157 differs in tropical Indian soils due to varied physico-chemical and biological properties and the survival is much shorter than those reported in temperate soils. As the survival pattern of non-pathogenic strain, MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model organism for open field studies.  相似文献   

17.
Characterization of an Escherichia coli O157 strain collection (n = 42) derived from healthy Hungarian cattle revealed the existence of diverse pathotypes. Enteropathogenic E. coli (EPEC; eae positive) appeared to be the most frequent pathotype (n = 22 strains), 11 O157 strains were typical enterohemorrhagic E. coli (EHEC; stx and eae positive), and 9 O157 strains were atypical, with none of the key stx and eae virulence genes detected. EHEC and EPEC O157 strains all carried eae-gamma, tir-gamma, tccP, and paa. Other virulence genes located on the pO157 virulence plasmid and different O islands (O island 43 [OI-43] and OI-122), as well as espJ and espM, also characterized the EPEC and EHEC O157 strains with similar frequencies. However, none of these virulence genes were detected by PCR in atypical O157 strains. Interestingly, five of nine atypical O157 strains produced cytolethal distending toxin V (CDT-V) and carried genes encoding long polar fimbriae. Macro-restriction fragment enzyme analysis (pulsed-field gel electrophoresis) revealed that these E. coli O157 strains belong to four main clusters. Multilocus sequence typing analysis revealed that five housekeeping genes were identical in EHEC and EPEC O157 strains but were different in the atypical O157 strains. These results suggest that the Hungarian bovine E. coli O157 strains represent at least two main clones: EHEC/EPEC O157:H7/NM (nonmotile) and atypical CDT-V-producing O157 strains with H antigens different from H7. The CDT-V-producing O157 strains represent a novel genogroup. The pathogenic potential of these strains remains to be elucidated.Escherichia coli O157:H7 is a food- and waterborne zoonotic pathogen with serious effects on public health. E. coli O157:H7 causes diseases in humans ranging from uncomplicated diarrhea to hemorrhagic colitis and hemolytic-uremic syndrome (HUS) (30). Typically, enterohemorrhagic E. coli (EHEC) strains express two groups of important virulence factors: one or more Shiga toxins (Stx; also called verotoxins), encoded by lambda-like bacteriophages, and a pathogenicity island called the locus of enterocyte effacement (LEE) encoding all the proteins necessary for attaching and effacing lesions of epithelial cells (41). Comparative genomic studies of E. coli O157:H7 strains revealed extensive genomic diversity related to the structures, positions, and genetic contents of bacteriophages and the variability of putative virulence genes encoding non-LEE effector proteins (29, 43).Ruminants and, in particular, healthy cattle are the major reservoir of E. coli O157:H7, although the prevalence of O157:H7 strains in cattle may vary widely, as reviewed by Caprioli et al. (12). E. coli O157:H7 has been found to persist and remain infective in the environment for a long time, e.g., for at least 6 months in water trough sediments, which may be an important environmental niche.In Hungary, infections with E. coli O157 and other Shiga toxin-producing E. coli (STEC) strains in humans in cases of “enteritidis infectiosa” have been notifiable since 1998 on a case report basis. Up to now, the disease has been sporadic, and fewer than 100 (n = 83) cases of STEC infection among 2,700 suspect cases have been reported since 2001. However, until the present study, no systematic, representative survey of possible animal sources had been performed.In this study, our aim was to investigate healthy cattle in Hungary for the presence of strains of E. coli O157 and the genes encoding Shiga toxins (stx1 and stx2) and intimin (eae) and a wide range of putative virulence genes found in these strains. In addition, the phage type (PT) was determined, and pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to further compare the strains at the molecular level. Shiga toxin and cytolethal distending toxin (CDT) production was also examined, and phage induction experiments were conducted. The high incidence of enteropathogenic E. coli (EPEC; eae-positive) O157:H7 strains and atypical (eae- and stx-negative) O157 strains indicates that cattle are a major reservoir of not only EHEC O157 but also EPEC O157 and atypical E. coli O157 strains. These atypical, non-sorbitol-fermenting O157 strains frequently produced CDT-V and may represent a novel O157 clade as demonstrated by MLST and PFGE.  相似文献   

18.
On the basis of their sedimentation properties, the ribosomal particles in crude extracts of Bacillus subtilis W168 are characterized as pressure-sensitive couples, pressure-resistant couples, or non-associating subunits. Pressure-sensitive couples dissociate into subunits, yielding a peak at 60 S in the gradient profile, on sedimentation at high speed in the presence of 10 to 15 mm-Mg2+. Under the same conditions, pressure-resistant couples sediment at 70 S. Under certain conditions, pressure-resistant couples apparently aggregate, possibly in 70 S · 70 S dimers. Procedures are described for the isolation of pressure-sensitive couples from B. subtilis. The isolated couples are shown by chemical fixation experiments to require approximately twice the Mg2+ concentration required by Escherichia coli couples to remain associated at atmospheric pressure.All three types of B. subtilis ribosome incorporate amino acids into acid-insoluble material in the presence of B. subtilis cellular RNA, B. subtilis ribosomal salt wash fraction, and E. coli post-ribosomal supernatant. Overall incorporation, dependence on added RNA, and dependence on salt wash fraction are greatest with pressure-sensitive couples. The products of protein synthesis in vitro stimulated by total B. subtilis RNA appear to be a low molecular weight subset of the proteins synthesized most abundantly in vivo. Incubation of pressure-sensitive couples with cellular RNA from B. subtilis, fMet-tRNAfMet, ribosomal salt wash fraction and GTP results in their conversion to pressure-resistant couples, with concomitant and stoichiometric binding of fMet-tRNA to the 70 S species. It is concluded that in B. subtilis as in E. coli, pressure-sensitive couples are “vacant”, while pressure-resistant couples are “complexed” with messenger RNA. fMet-tRNA-bearing complexed couples are interpreted as initiation complexes in which ribosomes have bound mRNA, presumably at initiation sites. Their formation in vitro is strictly dependent on RNA, salt wash fraction and fMet-tRNA when vacant ribosomal couples are used.  相似文献   

19.
Pathogenic strains of Escherichia coli, such as E. coli O157:H7, have a low infectious dose and an ability to survive in acidic foods. These bacteria have evolved at least three distinct mechanisms of acid resistance (AR), including two amino acid decarboxylase-dependent systems (arginine and glutamate) and a glucose catabolite-repressed system. We quantified the survival rates for each AR mechanism separately in clinical isolates representing three groups of Shiga toxin-producing E. coli (STEC) clones (O157:H7, O26:H11/O111:H8, and O121:H19) and six commensal strains from ECOR group A. Members of the STEC clones were not significantly more acid resistant than the commensal strains when analyzed using any individual AR mechanism. The glutamate system provided the best protection in a highly acidic environment for all groups of isolates (<0.1 log reduction in CFU/ml per hour at pH 2.0). Under these conditions, there was notable variation in survival rates among the 30 O157:H7 strains, which depended in part on Mg2+ concentration. The arginine system provided better protection at pH 2.5, with a range of 0.03 to 0.41 log reduction per hour, compared to the oxidative system, with a range of 0.13 to 0.64 log reduction per hour. The average survival rate for the O157:H7 clonal group was significantly less than that of the other STEC clones in the glutamate and arginine systems and significantly less than that of the O26/O111 clone in the oxidative system, indicating that this clonal group is not exceptionally acid resistant with these specific mechanisms.  相似文献   

20.
Escherichia coli O157:H7 causes life-threatening outbreaks of diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome in humans and significant economic loss in agriculture and could be a potential agent of bioterrorism. Although the prevalence of E. coli O157:H7 in cattle and other species with which humans have frequent contact is high, human infections are relatively uncommon, despite a low infectious dose. A plausible explanation for the low disease incidence is the possibility that not all strains are virulent in humans. If there are substantial differences in virulence among strains in nature, then human disease may select for high virulence. We used a gnotobiotic piglet model to investigate the virulence of isolates from healthy cattle and from humans in disease outbreaks and to determine the correlation between production of Shiga toxin 1 (Stx1) and Stx2 and virulence. Overall, E. coli O157:H7 strains isolated from healthy cattle were less virulent in gnotobiotic piglets than strains isolated from humans during disease outbreaks. The amount of Stx2 produced by E. coli O157:H7 strains correlated with strain virulence as measured by a reduction in piglet survival and signs of central nervous system disease due to brain infarction. The amount of Stx1 produced in culture was not correlated with the length of time of piglet survival or with signs of central nervous system disease. We suggest that disease outbreaks select for producers of high levels of Stx2 among E. coli O157:H7 strains shed by animals and further suggest that Stx1 expression is unlikely to be significant in human outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号