首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A regulatory sequence near the 3'' end of sea urchin histone genes.   总被引:27,自引:11,他引:16       下载免费PDF全文
The 3' flanking sequences of all five histone genes have been sequenced in the histone DNA clone h19 of the sea urchin Psammechinus miliaris. A large (23 bp) and a small (10 bp) conserved sequence was found by sequence comparison, some 29-40 bp downstream from the termination codon. 12 bases of the larger homology block show a dyad symmetry. The available sequences of clone h22 of the same species and those of the histone clones pSp2 and pSp17 of Strongylocentrotus purpuratus, another sea urchin species, fit well into this comparison. Two types of sequences are involved in the dyad symmetry; one is H1, H3 and H4 specific, the other is H2A and H2B specific. If these conserved sequences are transcribed, a hairpin loop could form in the RNA molecules. This secondary structure might serve as a recognition signal for a regulatory protein.  相似文献   

2.
Mammalian U6 small nuclear RNA (snRNA) is heterogeneous with respect to the number of 3' terminal U residues. The major form terminates with five U residues and a 2',3' cyclic phosphate. Because of the presence in HeLa cell nuclear extracts of a terminal uridylyl transferase, a minor form of U6 snRNA is elongated, producing multiple species containing up to 12 U residues. In this study we have used glycerol gradients to demonstrate that these U6 snRNA forms are assembled into U6 ribonucleoprotein (RNP), U4/U6 snRNPs, and U4/U5/U6 tri-snRNP complexes. Furthermore, glycerol gradients combined with affinity selection of biotinylated pre-mRNAs led us to show that elongated forms of U6 snRNAs enter the spliceosome and that some of these become shortened with time to a single species having the same characteristics as the major form of U6 snRNA present in mammalian nuclear extracts. We propose that this elongation-shortening process is related to the function of U6 snRNA in mammalian pre-mRNA splicing.  相似文献   

3.
Functional analysis of the sea urchin U7 small nuclear RNA.   总被引:9,自引:2,他引:9       下载免费PDF全文
U7 small nuclear RNA (snRNA) is an essential component of the RNA-processing machinery which generates the 3' end of mature histone mRNA in the sea urchin. The U7 small nuclear ribonucleoprotein particle (snRNP) is classified as a member of the Sm-type U snRNP family by virtue of its recognition by both anti-trimethylguanosine and anti-Sm antibodies. We analyzed the function-structure relationship of the U7 snRNP by mutagenesis experiments. These suggested that the U7 snRNP of the sea urchin is composed of three important domains. The first domain encompasses the 5'-terminal sequences, up to about nucleotides 7, which are accessible to micrococcal nuclease, while the remainder of the RNA is highly protected and hence presumably bound by proteins. This region contains the sequence complementarities between the U7 snRNA and the histone pre-mRNA which have previously been shown to be required for 3' processing (F. Schaufele, G. M. Gilmartin, W. Bannwarth, and M. L. Birnstiel, Nature [London] 323:777-781, 1986). Nucleotides 9 to 20 constitute a second domain which includes sequences for Sm protein binding. The complementarities between the U7 snRNA sequences in this region and the terminal palindrome of the histone mRNA appear to be fortuitous and play only a secondary, if any, role in 3' processing. The third domain is composed of the terminal palindrome of U7 snRNA, the secondary structure of which must be maintained for the U7 snRNP to function, but its sequence can be drastically altered without any observable effect on snRNP assembly or 3' processing.  相似文献   

4.
5.
6.
3' Processing of sea urchin H3 histone pre-mRNA depends on a small nuclear RNP which contains an RNA of nominally 60 nucleotide length, referred to below as U7 RNA. The U7 RNA can be enriched by precipitation of sea urchin U-snRNPs with human systematic lupus erythematosus antiserum of the Sm serotype. We have prepared cDNA clones of U7 RNA and determined by hybridization techniques that this RNA is present in sea urchin eggs at 30-fold lower molar concentration than U1 RNA. The RNA sequences derived from an analysis of eight U7 cDNA clones show neither homologies nor complementarities to any other know U-RNAs. The 3' portion of the presumptive RNA sequence can be folded into a stem-loop structure. The 5'-terminal sequences would be largely unstructured as free RNA. Their most striking feature is their base complementarity to the 3' conserved sequences of histone pre-mRNAs. Six out of nine bases of the conserved CAAGAAAGA sequence of the histone mRNA precursor and 13 out of 16 nucleotides from the conserved palindrome can be base paired with presumptive U7 RNA sequence, suggesting a unique hybrid structure for a processing intermediate formed from histone precursor and U7 RNA.  相似文献   

7.
8.
U14 is one of several nucleolar small nuclear RNAs required for normal processing of rRNA. Functional mapping of U14 from Saccharomyces cerevisiae has yielded a number of mutants defective in U14 accumulation or function. In this study, we have further defined three structural elements required for U14 accumulation. The essential elements include the U14-conserved box C and box D sequences and a 5', 3' terminal stem. The box elements are coconserved among several nucleolar small nuclear RNAs and have been implicated in binding of the protein fibrillarin. New mutational results show that the first GA bases of the box C sequence UGAUGA are essential, and two vital bases in box D have also been identified. An intragenic suppressor of a lethal box C mutant has been isolated and shown to contain a new box C-like PyGAUG sequence two bases upstream of normal box C. The importance of the terminal stem was confirmed from new compensatory base changes and the finding that accumulation defects in the box elements can be complemented by extending the terminal stem. The results suggest that the observed defects in accumulation reflect U14 instability and that protein binding to one or more of these elements is required for metabolic stability.  相似文献   

9.
The expression of the sea urchin L. variegatus U1 snRNA gene is temporally regulated during embryogenesis. Using a microinjection assay we show that a region between 203 and 345 nts 5' of the gene is required for expression. There are four conserved regions between two sea urchin species in the 345 nts 5' to the U1 gene. One region, located at about -300, binds a protein factor which is present in blastula but not gastrula nuclei. Three other potential protein binding sites within the first 200 nts 5' to the gene have been identified using a mobility shift assay and/or DNase I footprinting. Two of these regions bind factors which are not developmentally regulated and one binds a factor which is developmentally regulated. It is likely that the factor which binds at -300 is involved in expression and developmental regulation of the sea urchin U1 snRNA gene.  相似文献   

10.
Structure of the sea urchin U1 RNA repeat.   总被引:16,自引:6,他引:10       下载免费PDF全文
The genes coding for U1 RNA in the sea urchin L. variegatus are present in a 1400 base pair tandem repeat. One member of the repeat has been cloned and its sequence determined. The repeat unit contains a single copy of the gene for L. variegatus U1 RNA. This gene encodes an RNA which is 75% homologous to mammalian U1 RNA. The L. variegatus U1 RNA could assume a secondary structure similar to that proposed for other U1 RNAs. In addition the L. variegatus U1 RNA is precipitated by anti-SM and anti-RNP antisera. Analysis of the L. variegatus genomic DNA using the cloned U1 gene as a probe reveals a major and a minor type of repeat unit. The two repeated units are the same length but differ in a number of restriction enzyme sites clustered 200-500 bases down-stream from the gene. The monomer we have cloned and sequenced is a representative of the minor repeat. A sequence (GATAA) which is -41 to -37 bases 5' to the gene has homology to the putative RNA polymerase II promoter. Fifteen bases 3' of the gene is a sequence (CAAAGAAAGAAAA) which is very similar to the sequence found 3' of the sea urchin histone genes. The two Hha I, Hpa II and Ava I sites in the repeat are all unmethylated in sperm DNA.  相似文献   

11.
Oligonucleotides derived from the spacer element of the histone RNA 3' processing signal were used to characterize mouse U7 small nuclear RNA (snRNA), i.e., the snRNA component active in 3' processing of histone pre-mRNA. Under RNase H conditions, such oligonucleotides inhibited the processing reaction, indicating the formation of a DNA-RNA hybrid with a functional ribonucleoprotein component. Moreover, these oligonucleotides hybridized to a single nuclear RNA species of approximately 65 nucleotides. The sequence of this RNA was determined by primer extension experiments and was found to bear several structural similarities with sea urchin U7 snRNA. The comparison of mouse and sea urchin U7 snRNA structures yields some further insight into the mechanism of histone RNA 3' processing.  相似文献   

12.
N Hernandez 《The EMBO journal》1985,4(7):1827-1837
U1 is a small non-polyadenylated nuclear RNA that is transcribed by RNA polymerase II and is known to play a role in mRNA splicing. The mature 3' end of U1 snRNA is formed in at least two steps. The first step generates precursors of U1 RNA with a few extra nucleotides at the 3' end; in the second step, these precursors are shortened to mature U1 RNA. Here, I have determined the sequences required for the first step. Human U1 genes with various deletions and substitutions near the 3' end of the coding region were constructed and introduced into HeLa cells by DNA transfection. The structure of the RNA synthesized during transient expression of the exogenous U1 gene was analyzed by S1 mapping. The results show that a 13 nucleotide sequence located downstream from the U1 coding region and conserved among U1, U2 and U3 genes of different species is the only sequence required to direct the first step in the formation of the 3' end of U1 snRNA.  相似文献   

13.
14.
Using 3 overlapping cDNA clones we have determined the nucleotide sequence of chicken histone H5 mRNA. The mRNA does not contain the 23 base conserved sequence element that is present at the 3' end of cell-cycle regulated histone mRNAs. Although the RNA is polyadenylated it lacks the 3' AAUAAA sequence.  相似文献   

15.
E C Scharl  J A Steitz 《The EMBO journal》1994,13(10):2432-2440
Two conserved elements direct the 3' end processing of histone messenger RNA: a stem-loop structure immediately upstream of the site of cleavage and the histone downstream element (HDE), located 12-19 nucleotides downstream of the stem-loop in the premessenger RNA. We studied the role of these two elements by systematically inserting up to 10 C residues between them in the mouse H2A-614 histone pre-mRNA. 3' End mapping of RNAs processed in vitro demonstrated that as the HDE is move downstream, the site of cleavage correspondingly moves 3'. In addition, the efficiency of processing declines. In the wild-type substrate, cleavage occurs 3' of an A residue; modest increases in the efficiency of processing of the insertion mutants were observed when an A residue was placed at the new cleavage site. The results of psoralen cross-linking studies and immunoprecipitations using anti-trimethylguanosine antibodies indicated that the decreased processing efficiency of the insertion mutants is not due to impaired binding of the U7 small nuclear ribonucleoprotein (snRNP). We conclude that the mammalian U7 snRNP acts as a molecular ruler, targeting enzymatic components of cleave histone pre-mRNAs a fixed distance from its binding site, the HDE.  相似文献   

16.
17.
18.
19.
Transcription boundaries of U1 small nuclear RNA.   总被引:2,自引:1,他引:2       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号