首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review covers the modern concepts and recent data demonstrating the integrity and coherence of microbial populations (colonies, biofilms, etc.) as peculiar “superorganisms.” Special attention is given to such relevant phenomena as apoptosis, bacterial altruism, quorum effects, collective differentiation of microbial cells, and the formation of population-level structures such as an extracellular matrix. Emphasis is placed on the channels and agents of intercellular communication in microbial populations. The involvement of a large number of evolutionarily conserved communicational facilities and patterns of intercellular interactions is underscored. Much attention is also given to the role of colonial organization and intercellular communication in parasite/commensal/symbiont-multicellular host organism systems.  相似文献   

2.
Microbial signaling molecules such as autoinducers and microbial hormones play important roles in intercellular communication in microorganisms. Information transfer between the individual cells of a microorganism is one of the most important biological events among them. Researchers often suffer from extremely low levels of microbial signaling molecule contents, which prevent them from understanding chemistry and biology of intercellular communication in microorganisms. Chemical synthesis is a powerful tool to obtain sufficient amounts of sample and to clarify the structure of a molecule. This review focuses on the synthesis and stereochemistry-bioactivity relationships of five microbial signaling molecules, Vibrio cholerae autoinducer-1 (CAI-1), AI-2 precursor (DPD), an acylhomoserine lactone from Rhizobium leguminosarum (small bacteriocin), a diffusible extracellular factor of Xanthomondas campestris pv. campestris, and Phytophthora mating hormone α1.  相似文献   

3.
Bacteria do many things as organized populations. We have recently learned much about the molecular basis of intercellular communication among prokaryotes. Colonies display bacterial capacities for multicellular coordination which can be useful in nature where bacteria predominantly grow as films, chains, mats and colonies. E. coli colonies are organized into differentiated non-clonal populations and undergo complex morphogenesis. Multicellularity regulates many aspects of bacterial physiology, including DNA rearrangement systems. In some bacterial species, colony development involves swarming (active migration of cell groups). Swarm colony development displays precise geometrical controls and periodic phenomena. Motile E. coli cells in semi-solid media form organized patterns due to chemotactic autoaggregation. On poor media, B. subtilis forms branched colonies using group motility and longrange chemical signalling. The significances of bacterial colony patterns thus reside in a deeper understanding of prokaryotic biology and evolution and in experimental systems for studying self-organization and morphogenesis.  相似文献   

4.
Involvement of gap-junctional intercellular communication in the stimulation of growth was investigated in quiescent 3T3-L1 cells. When the cells in monolayer were growth-arrested by culture in a low concentration of calf serum, addition of dibutyryl cyclic AMP enhanced dye-coupling and suppressed the enhancement of DNA synthesis, induced by calf serum, in quiescent cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA) suppressed dye-coupling in quiescent cells and enhanced DNA synthesis in both quiescent and serum-treated cells. When about 5000 cells were cultured in contact to form a colony, growth arrest of the cells was observed in the central region of such colonies rather than in the peripheral region, but addition of calf serum induced DNA synthesis in the cells in both the peripheral and central regions of the colonies. Addition of TPA enhanced serum-induced DNA synthesis in the cells in the central region of colonies rather than in the peripheral region. These results suggest that the ability of quiescent cells to escape from growth arrest is inversely correlated to the extent of gap-junctional intercellular communication.  相似文献   

5.
This review concentrates on the history of the subfield of microbiology referred to as the population organization-and communication-related research direction (POCRRD). The focal points of POCRRD include intercellular interactions, information exchange between cells, and multicellular structures (colonies, biofilms, flocs, etc.). Special attention in this review is given to the contribution of Russian scientists to the development of POCRRD. In terms of POCRRD, microorganisms are viewed as social creatures that constantly communicate and form supraorganismic, intrinsically heterogeneous systems.  相似文献   

6.
This review concentrates on the history of the subfield of microbiology referred to as the population organization- and communication-related research direction (POCRRD). The focal points of POCRRD include intercellular interactions, information exchange between cells, and multicellular structures (colonies, biofilms, flocs, etc.). Special attention in this review is given to the contribution of Russian scientists to the development of POCRRD. In terms of POCRRD, microorganisms are viewed as social creatures that constantly communicate and form supraorganismic, intrinsically heterogeneous systems.  相似文献   

7.
Cell—cell interactions in bacterial populations   总被引:5,自引:0,他引:5  
In developing bacterial populations many essential processes, such as division, genetic transformation, sporulation, and synthesis of antibiotics and secondary metabolites, are regulated by intercellular communication mediated by secretion of signaling molecules, such as homoserine lactones and peptides. Another intercellular communication type, namely a physical contact between cells (cell aggregation), plays a key role in formation of biofilms or cellular consortia and in cell proliferation under unfavorable conditions. The mechanisms involved in these two types of bacterial communication are discussed in this review.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1555–1564.Original Russian Text Copyright © 2004 by Voloshin, Kaprelyants  相似文献   

8.
Gap junction-mediated intercellular communication was analyzed in a model system in which tissue necrosis and remodeling could be modulated. This in vitro system, previously used for analysis of epithelial-mesenchymal tissue interaction, was modified to permit analysis of the presence and extent of intercellular communition by monitoring intercellular transfer of the micro-injected fluorescent dye, Lucifer Yellow. Light and transmission electronmicroscopy were employed to correlate the presence and degree of gap junctional communication (coupling) with tissue morphology. Digital image analysis was used to determine cell density and mitotic indices within the outgrowths of explants. Our results indicated that cell communication in outgrowths adjacent to necrotic foci within an explant was minimal or absent. Cell-coupling in outgrowths adjacent to a compartment of viable mesenchyme was significantly higher-equivalent to unseparated control cultures. A time-course study demonstrated correlation of increased levels of cell-coupling in outgrowths with the level of tissue remodeling within an explant. Our conclusions from these studies are that embryonic mesenchymal cell populations may be selectively uncoupled as a result of alterations in the microenvironment produced by a proximate impaired cell population. It is proposed that endogenous factors in the microenvironment (wound signals), emanating from impaired cell populations, regulate gap junction-mediated intercellular communication in adjacent viable tissue. Normal, unimpaired populations of cells surrounding an area of injury are thereby isolated from the effects of a potentially toxic environment. This could serve as a protective function in development and may represent, in a more general sense, part of the repertoire of events associated with tissue repair and remodeling.  相似文献   

9.
In response to certain environmental signals, bacteria will differentiate from an independent free-living mode of growth and take up an interdependent surface-attached existence. These surface-attached microbial communities are known as biofilms. In flowing systems where nutrients are available, biofilms can develop into elaborate three-dimensional structures. The development of biofilm architecture, particularly the spatial arrangement of colonies within the matrix and the open areas surrounding the colonies, is thought to be fundamental to the function of these complex communities. Here we report a new role for rhamnolipid surfactants produced by the opportunistic pathogen Pseudomonas aeruginosa in the maintenance of biofilm architecture. Biofilms produced by mutants deficient in rhamnolipid synthesis do not maintain the noncolonized channels surrounding macrocolonies. We provide evidence that surfactants may be able to maintain open channels by affecting cell-cell interactions and the attachment of bacterial cells to surfaces. The induced synthesis of rhamnolipids during the later stages of biofilm development (when cell density is high) implies an active mechanism whereby the bacteria exploit intercellular interaction and communication to actively maintain these channels. We propose that the maintenance of biofilm architecture represents a previously unrecognized step in the development of these microbial communities.  相似文献   

10.
Gap junctions (GJs) traverse apposing membranes of neighboring cells to mediate intercellular communication by passive diffusion of signaling molecules. We have shown previously that cells endocytose GJs utilizing the clathrin machinery. Endocytosis generates cytoplasmic double-membrane vesicles termed annular gap junctions or connexosomes. However, the signaling pathways and protein modifications that trigger GJ endocytosis are largely unknown. Treating mouse embryonic stem cell colonies – endogenously expressing the GJ protein connexin43 (Cx43) – with epidermal growth factor (EGF) inhibited intercellular communication by 64% and activated both, MAPK and PKC signaling cascades to phosphorylate Cx43 on serines 262, 279/282, and 368. Upon EGF treatment Cx43 phosphorylation transiently increased up to 4-fold and induced efficient (66.4%) GJ endocytosis as evidenced by a 5.9-fold increase in Cx43/clathrin co-precipitation.  相似文献   

11.
12.
多年来微生物一直被认为是相对孤立的个体,在环境中独立地生存,但近些年的研究使人们认识到微生物也使用复杂多样的方式进行种内、种间,甚至与其他生物间的跨界信息交流。这些交流由特定的信号分子来完成,称之为微生物语言。借助这些交流语言使微生物在特定的生态位中与其相邻个体或种群建立了多样的互动关系,包括合作、竞争与资源共享等,通过协调群体行为,共同应对多变的环境。随着现代分子科学对自然微生物群落的不断深入研究,人们对微生物交流也逐渐有了更为清晰的认知。本综述总结了原核和真核微生物所使用的主要信号物质(如群体感应、群体猝灭、抗生素等)和交流方式,讨论了这些通讯语言在种内(同种微生物)、种间(异种微生物),以及跨界(微生物与宿主)交流上的表现。旨在更为深入地解读这一有趣的多学科交叉研究领域,更好地理解微生物交流语言的形式、机制和目的,为微生物行为的解读和生态事件的解析获取基于化学生态学的新思路。  相似文献   

13.
Gap junctions serve as intercellular conduits that allow for the direct transfer of small molecular weight molecules (up to 1 kDa) including ions involved in cellular excitability, metabolic precursors, and second messengers. The observation of extensive intercellular coupling and large numbers of gap junctions in the central nervous system (CNS) suggests a syncytium-like organization of glial compartments. Inflammation is a hallmark of various CNS diseases such as bacterial and viral infections, multiple sclerosis, Alzheimer's disease, and cerebral ischemia. A general consequence of brain inflammation is reactive gliosis typified by astrocyte hypertrophy and proliferation of astrocytes and microglia. Changes in gap junction intercellular communication as reflected by alterations in dye coupling and connexin expression have been associated with numerous CNS inflammatory diseases, which may have dramatic implications on the survival of neuronal and glial populations in the context of neuroinflammation. A review of the effects of inflammatory products on glia-glia gap junctional communication and glial glutamate release is presented. In addition, the hypothesis of a "syncytial switch" based upon differential regulation of gap junction expression in astrocytes and microglia during normal CNS homeostasis and neuroinflammation is proposed.  相似文献   

14.
While microbial growth is well-understood in pure culture systems, less is known about growth in intact soil systems. The objective of this work was to develop a technique to allow visualization of the two-dimensional spatial distribution of bacterial growth on a homogenous soil surface. This technique is a two-step process wherein an agar lift is taken and analyzed using a universal gene probe. An agar lift is comprised of a thin layer of soil that is removed from a soil surface using an agar slab. The agar is incubated to allow for microbial growth, after which, colonies are transferred to a membrane for conventional bacterial colony DNA/DNA hybridization analysis. In this study, a eubacterial specific probe was used to demonstrate that growing bacterial populations on soil surfaces could be visualized. Results show that microbial growth and distribution was nonuniform across the soil surface. Spot supplementation of the soil with benzoate or glucose resulted in a localized microbial growth response. Since only growing colonies are detected, this technique should facilitate a greater understanding of the microbial distribution and its response to substrate addition in more heterogenous soil systems.  相似文献   

15.
Growing tendrils of aflagellate hag mutants of Bacillus subtilis were found to show an avoidance response when colonizing a semi-solid medium, suggesting a tip-to-tip communication mechanism between colonies. There may be a second sensing mechanism involved in shaping the morphology of tendrils. Tendril growth in B. subtilis was dependent on and possibly shaped by the release of surfactin, a biosurfactant. Transposon mutagenesis yielded two mutants with 'touching' tendrils, and each had a disrupted gspA gene that encodes a putative glycosyltransferase. Tendrils of gspA mutants, unlike the parental strain, were unresponsive to tendril tip growth by surfactin, suggesting disruption of intercellular signaling. Tendril sensing and avoidance could be physiologically relevant in habitats, such as plant roots, where some limiting nutrient might induce this type of multicellular behavior, promoting avoidance of previously explored areas by sibling colonies.  相似文献   

16.
17.
In the context of a general overview of molecular mechanisms of microbial evolution, several genetic systems known to either promote or restrain the generation of genetic variations are discussed. Particular attention is given to functions involved in DNA rearrangements and DNA acquisition. Sporadic actions by a variety of such systems influencing genetic stability in either way result in a level of genetic plasticity which is tolerable to the overall wealth of microbial populations but which allows for evolutionary change needed for a steady adaptation to variable selective forces. Although these evolutionarily relevant biological functions are encoded by the genome of each individual, their actions are exerted to some degree randomly in rare individuals and are therefore seemingly nondeterministic and become manifest at the population level.  相似文献   

18.
19.
Propagation of electrical activity between myocytes in the heart requires gap junction channels, which contribute to coordinated conduction of the heartbeat. Some antipsychotic drugs, such as thioridazine and its active metabolite, mesoridazine, have known cardiac conduction side-effects, which have resulted in fatal or nearly fatal clinical consequences in patients. The physiological mechanisms responsible for these cardiac side-effects are unknown. We tested the effect of thioridazine and mesoridazine on gap junction-mediated intercellular communication between cells that express the major cardiac gap junction subtype connexin 43. Micromolar concentrations of thioridazine and mesoridazine inhibited gap junction-mediated intercellular communication between WB-F344 epithelial cells in a dose-dependent manner, as measured by fluorescent dye transfer. Kinetic analyses demonstrated that inhibition by 10 μmol/L thioridazine occurred within 5 min, achieved its maximal effect within 1 h, and was maintained for at least 24 h. Inhibition was reversible within 1 h upon removal of the drug. Western blot analysis of connexin 43 in a membrane-enriched fraction of WB-F344 cells treated with thioridazine revealed decreased amounts of unphosphorylated connexin 43, and appearance of a phosphorylated connexin 43 band that co-migrated with a “hyperphosphorylated” connexin 43 band present in TPA-inhibited cells. When tested for its effects on cardiomyocytes isolated from neonatal rats, thioridazine decreased fluorescent dye transfer between colonies of beating myocytes. Microinjection of individual cells with fluorescent dye also showed inhibition of dye transfer in thioridazine-treated cells compared to vehicle-treated cells. In addition, thioridazine, like TPA, inhibited rhythmic beating of myocytes within 15 min of application. In light of the fact that the thioridazine and mesoridazine concentrations used in these experiments are in the range of those used clinically in patients, our results suggest that inhibition of gap junction intercellular communication may be one factor contributing to the cardiac side-effects observed in some patients taking these medications.  相似文献   

20.
微生物具有结构多样性和功能多样性,其生态行为受多种信号因子的调节,其一便是群体感应信号(Quorum sensing,QS)。QS可作为菌群的通讯语言调节多种生物学功能,包括微生物被膜(Biofilm)的形成、毒力因子的表达、抗生素的分泌以及活性物质的生成等。相比之下,群体感应抑制剂(Quorum sensing inhibitor,QSI)的作用与QS相反,它能阻断QS信号的合成或传递、降低细菌致病性、干扰Biofilm的生成、阻断QS级联效应,因而被广泛应用于医药、农业和环境等领域。本文聚焦QSI,对其来源、特性、作用机制的最新进展进行总结,并对其在海洋生态领域上的应用进行综述,以期为QSI物质的开发和海洋生态资源的有效利用提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号